大容量高保真海底管道超声检测数据处理技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
输油管道检测技术是目前国际无损检测领域的研究热点,国内在此方面的研究起步较晚。开展管道检测相关技术和方法的研究具有重大的理论和现实意义。超声检测因其所具有的特点一直受到相关领域专家和学者的高度重视。研制开发适合我国实际状况的管道超声智能检测系统装置,对我国在役油气管道进行全面检测和安全评价具有重大的社会、经济、环境效益。
     在管道超声检测中,存在着若干理论和实际问题:超声检测装置的设计,超声检测中的噪声处理,超声数据压缩,管道壁厚检测以及管道超声检测数据的分析等理论与实际问题,论文依托国家海洋资源开发技术主题下资源与环境技术领域中的一项国家海洋863项目“海底管道内爬行器及其检测技术”,针对海底管道的检测要求,为研制具有我国自主知识产权的海洋输油管道超声智能检测系统提供关键技术。
     首先介绍了超声测厚的原理以及海底管道超声检测装置的组成。根据检测要求,介绍了适用于海底管道超声检测数据采集与存储装置;根据项目工程样机的性能指标,通过理论分析和计算,确定了管道检测用的超声探头的中心频率,晶片直径,检测的提离距离等重要参数,并综合考虑管道检测的环境因素,为合理选取超声探头提供了必要的依据;通过分析,提出了适用于海底管道检测多通道超声数据的实时采集以及大容量数据的快速存储系统;总结了所设计的超声管道检测数据采集与存储装置的特点。
     文章应用经验模式分解方法,对非线性非稳态的超声射频信号进行分解,得到了超声信号的各个固有模态函数分量,根据信号分解的特点,提出了基于能量的分量选择方法达到超声信号去噪的目的,通过仿真研究,验证了该方法具有很好的去噪效果,并且具有自适应性,比较了能量去噪以及阈值去噪两种方法;在此基础上,提出了基于EMD-MMSE的多传感器超声信号处理方法,通过实验验证,该方法优于算术平均融合的结果,并且具有自适应性,更便于计算机实现;针对海底管道超声壁厚检测时得到的超声信号的特点,采用一种典型的非线性滤波方法中值滤波对超声壁厚检测信号进行滤波,通过实验证明它对随机脉冲噪声有良好的抑制作用。
     超声阵列进行管道检测时会得到海量的超声数据,文章讲述了几种超声信号压缩的原理与方法。基于变换的超声信号压缩方法中,在使用提升小波变换进行超声信号处理达到最优的压缩目的时,考虑了以下几个方面的因素,小波基的选择,分解层数的确定,阈值的选取等几个因素。通过实际的超声射频信号分析,确定了最佳的参数达到最优的压缩目的;根据超声回波信号的高斯回波模型,介绍了连续小波变换以及最大似然估计的参数估计方法,在匹配追踪算法的的匹配过程中,使用遗传算法来估计时频原子的参数,也就是高斯回波模型函数的参数,文章使用遗传算法实现匹配追踪分解的方法,通过仿真以及实验可以看出,这种方法基本可以搜索到最佳匹配信号结构的参数,并且计算时间比原匹配追踪算法的时间有大幅的降低;文章通过几种无损压缩方法的比较,在考虑压缩时间以及压缩比的情况下,选取Huffman编码来对管道超声检测数据进行实时数据压缩。
     文章分析了特殊情况下的管道缺陷测厚工艺,根据不同的检测情况,提出了相应的检测处理方法,根据海底管道超声检测信号,使用FFT方法以及自相关方法进行海底管道壁厚检测,能够达到了检测的要求,在FFT方法的基础上,通过二次FFT方法提高了FFT检测的精度;提出了一种新的特征提取方法,使用Hilbert-Huang变换提取了超声检测信号的时域、频域以及时频域特征;引入专家系统对管道超声数据进行处理,通过推理机访问由产生式规则集建立的管道缺陷知识库,推理判断出管道缺陷的种类以及缺陷的大小,从而达到管道缺陷识别的目的。
     为了研究检测工艺和进行检测工艺试验,在实验室阶段制作了一些标准缺陷的样本来满足试验的要求,建立了管道缺陷样本库。对超声探头检测工艺进行了实验,测量结果表明,检测系统能够检测出课题指标要求的缺陷并且满足测量精度要求,缺陷定位和缺陷尺寸测量满足工程要求。为了验证超声检测系统的实时检测能力,建立了一个实验检测系统,并进行了管道数据采集实验,并且进行了实际输油管道检测,通过实验充分说明了超声检测装置能够实时检测以及采集数据,说明了分析软件的有效性。
     本文提出的超声信号各种处理方法也可用于其它类似情况的信号处理中。
Currently, offshore pipeline inspection technique is a research hotspot in the international nondestructive evaluation (NDE) field, but it is late for domestic research. The research on technologies, methods, and approaches for pipeline detection makes great theoretical and realistic sense. Experts and scholars attach importance to ultrasonic detection because of its merits.
     Based on the high technology research and development program“Offshore pipeline detection device and inspection technology”, ultrasonic signal denoising, ultrasonic data compression, thickness of pipeline detection and pipeline defect recognition are studied deeply according to detection requirement of offshore pipeline. All these provide key technologies for the offline data analysis system of the program.
     The theory of ultrasonic thickness measurement and offshore pipeline detection device were introduced firstly. According to performance guideline of offshore pipeline detection device, the pipeline ultrasonic inspection device was designed, the parameters of the center frequency, the wafer diameter, SO were determined by analyzing and caculating. Ultrasonic sensors were selected and inspection transducer device was designed. The ultrasonic data storage system was developed.
     The one of key research on ultrasonic non-destructive detection is denoising ultrasonic echo signals. Ultrasonic RF signals are decomposed by empirical mode decomposition and IMFs of ultrasonic signal can be obtained. According to the performance of signal decomposition, the method of component selection based on energy is composed to denoise the ultrasonic signal. The experimental results and discussion demonstrated the usefulness and effectiveness of empirical mode decomposition as a signal processing technique for the analysis of ultrasonic waveforms. This method is adaptive. It is easy to be realized in computer. The multi-sensor data fusion algorithm has been applied to sensor array signal processing. A fusion method based on EMD and noise variance is proposed. Experiments in lab have testified the efficiency of this method. In addition, the comparison in fusion time and fusion results with existing fusion method based on wavelet and average technique shows the advantage of this method greatly. Collected and stored data are demodulation signal when thickness of offshore pipeline is detected by ultrasonic sensors array, signal noises represent as pulse noise. By analyzing the performance of pipeline detection ultrasonic signals, the ultrasonic signal is filtered by the median filter, a typical nonlinear filter. Experiments in lab have testified the efficiency of this method.
     The theory and method were introduced in this dissertation. Lifting wavelet transform has been used to ultrasonic signal compression. In order to obtain best compression ratio, some factors, such as selection a proper wavelet base, setting the decomposition level number, defining the threshold by wavelet coefficients and so on, must be considered. By analyzing the performance of pipeline detection ultrasonic RF signals, the best parameters were confirmed to get the good compression result. The parameter estimation methods of the continuous wavelet transform and maximum likelihood estimation were introduced in this dissertation. MP based GA is applied to estimate the parameters of atom functions that best represent the detected ultrasonic signal in this dissertation. GA is a numerical optimization method based on the concepts of genetics and natural selection. It is an efficient technique to optimize difficult functions in large search spaces. The simulation signals and experimental results have testified the efficiency of this method. Using LS, it also need spend considerable searching time and find the time-frequency atoms best matched original signal. Genetic algorithm (GA) can estimate the values of the parameter vector, in order to reduce the calculation amount. The collected data must be compressed and saved timely during the inspection. Ultrasonic detecting device requires lossless and real-time (high speed) data compression for the inspection of long time. The method of Huffman coding is selected by comparing some sorts of lossless compression methods.
     The algorithms of pipeline thickness detection based on FFT and correlation were expatiated, in order to enhance measurement precision, second FFT method was proposed. The Hilbert-Huang transform was used to extract the signal features of time domain, frequency domain and time frequency domain. The expert system was used to process the ultrasonic data of pileline, defect database was built and the classidication and grade of pipeline defects was deduced.
     Because of the offshore pipeline detection entironment variety, the flaws of the pipeline are multiplex. Some standard defect samples were made by experiment machining.Experiments showed that the accuracy of detected time of flight between the transmitted pulse and echo from the pipeline wall as well as the thickness of the pipeline wall was clearly improved. In order to testify the vality of the ultrasonic inspection device, inspection system was built in lab, the experimental results testified the efficiency of the ultrasonic inspection device and data anlysis software.
     All the approaches regarding ultrasonic signal feature extraction and information fusion can be used in other similar signal processing cases.
引文
[1]黄建东, "我国油气管道检测技术应用市场前景广阔,"能源工程, no. 2, p. 9, 2003.
    [2]刘振国,马良,王金英, "海底管道检测技术,"中国海洋平台, vol. 9, no. 6, pp. 160-165, 1994.
    [3] V. B. Southwell D, Basu A, "A conical pipeline inspection system," in IEEE International Conference on, 1996, pp. 3253-3258.
    [4] M. S. Hwang K, Udpa S, "Characterization of gas pipeline inspection signals using wavelet basis function neural networks," NDT & E International, vol. 33, no. 8, 2000.
    [5] L. W. Katragadda G, Sun Y S, et al, "Alternative Magnetic Flux Leakage Modalities for pipeline Inspection," IEEE Transactions on Magnetics, vol. 32, no. 3, 1996.
    [6]陈天璐, "海底管道传感器阵列损伤信息的提取和融合研究,"上海, 2006.
    [7] P. W. Q. J Tao, Z. S. Tao, "Designing and Signal Processing of Intelligent Inspection Pig Applying Magnetic Flux Leakage Methods," in Proceedings of the 2004 International Conference on Intelligent Mechatronicr and Automation Cheng Du, 2004, pp. 815-819.
    [8] c. x. Yang Lijian, Wei ling., "Signal processing technology in oil-gas pipeline magnetic flux leakage inspection," Journal of Shenyang Polytechnic university, vol. 21, pp. 516-518, 1999.
    [9]曾祥照, "无损检测文化概论,"无损探伤, no. 5, 2002.
    [10] R. J. D. J.Bruce Nestleroth, "Application of eddy currents induced by permanent magnets for pipeline inspection," NDT&E International, vol. 40, pp. 77-84, 2007.
    [11] J. R. E. Pan, S.K. Datta, A.H. Shah, "Mode selection of guided waves for ultrasonic inspection of gas pipelines with thick coating," Mechanics of Materials, vol. 31, pp. 165-174, 1999.
    [12]刘福顺,汤明, "无损检测技术基础," in北京航空航天大学出版社, 2002, pp. 1-2.
    [13]李光海,沈功田,李鹤年, "工业管道无损检测技术,"无损检测, vol. 28, no. 2, 2006.
    [14]黄作英, "海底管道漏磁检测的研究,"上海:上海交通大学, 2005.
    [15]高宏扬, "管道泄漏检测技术的应用与发展,"油气储运, vol. 23, no. 11.
    [16]何宏,江秀汉,李琳, "国内外管道腐蚀检测技术的现状与发展," vol. 20, no. 4, pp. 7-10, 2001.
    [17] S. U. Muhammad Afzal, "Advanced signal processing of magnetic flux leakage data obtained from seamless gas pipeline," NDT&E International, vol. 35, pp. 449-457, 2002.
    [18] A. D. Mackintosh DD, Schmidt TR, Russell DE., "Back to basics: remote field Eddy current for examination of ferromagnetic tubes," Mater Eval, vol. 54, no. 6, pp. 652-657, 1996.
    [19]廉纪祥,沈越, "管道远场涡流检测技术的进展,"油气储运, vol. 23, no. 7, pp. 14-16, 2004.
    [20] S. M. Riichi Murayama, Mitutoshi Kodama,, "Development of an ultrasonic inspection robot using an electromagnetic acoustic transducer for a Lamb wave and an SH-plate wave," Ultrasonics, vol. 42, pp. 825-829, 2004.
    [21]周龙伟,黄杰, "在役管道超声检测系统的现状及发展趋势,"中国机械工程, vol. 7, no. 2, pp. 52-55, 1996.
    [22]韩文花, "油气管道漏磁信号去噪及缺陷重构算法的研究,"上海:上海交通大学, 2006.
    [23]宋寿鹏, "海底管道检测中缺陷重构及超声回波信号处理方法的研究,"上海:上海交通大学, 2006.
    [24]李萍,李喜孟,王来, "超声回波射频(RF)信号的特征值提取,"数理统计与管理, vol. 23, no. 4, pp. 24-27, 2003.
    [25]施克仁, "超声检测信号处理,"无损检测, vol. 16, no. 5, pp. 141-144, 1994.
    [26]毛捷,简晓明,李明轩,黄振俨, "信号处理在超声检测中的应用,"应用声学, vol. 19, no. 3, pp. 45-47, 2000.
    [27] U. L. Kim J, Udpa S, "Multi-stage adaptive noise cancellation for ultrasonic NDE," NDT&E International, vol. 34, pp. 319-329, 2001.
    [28] V.-C. P. Ruiz-Reyes N, Curpia′n-Alonso J, et al, "New matching pursuit-based algorithm for SNR improvement in ultrasonic NDT," NDT&E International, no. 38, pp. 453–458, 2005.
    [29] K. H. S. Jin-Chul Hong, Yoon Young Kim, "The matching pursuit approach based on the modulated Gaussian pulse for efficient guided-wave damage inspection," Smart Mater. Struct, no. 14, pp. 548–560, 2005.
    [30] S. J. Oruklu E, "Ultrasonic Flaw Detection Using Discrete Wavelet Transform for NDE Applications," in IEEE Ultrasonics Symposium, 2004, pp. 1054-1057.
    [31] J. K. A. Abbate, J. Frankel, S. C. Schroeder, and P. Das, "Signal detection and noise suppression using a wavelet transform signal processor: Application to ultrasonic flaw detection," IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 44, pp. 14-26, 1997.
    [32] M. D. Legendre S, Goyette J, et al, "Wavelet-Transform-Based Method of Analysis for Lamb-Wave Ultrasonic NDE Signals," IEEE Transactions on Instrumentation and Measurement, vol. 49, no. 3, pp. 524-530, 2000.
    [33] S. E. J. L. Lazaro J C, et al, "Influence of thresholding procedures in ultrasonic grain noise reduction using wavelets," Ultrasonics, vol. 40, pp. 263-267, 2002.
    [34] L. C. Q. Zhang Y, "Design of matching wavelet filter and its application to ultrasonic signal processing," NDT&E International, vol. 24, no. 12, pp. 507-511, 2002.
    [35] Z. S. Norden E.Huang, Steven R Long, et a1, "The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis," in Proc.R.Soc.Lond.A, 1998, pp. 903-995.
    [36] S. L. B. Hualou Liang, Robert Desimone, Pascal Friesd, "Empirical mode decomposition: a method for analyzing neural data," Neurocomputing, vol. 65, no. 66, pp. 801–807, 2005.
    [37] S. J. Loutridis, "Damage detection in gear systems using empirical mode decomposition," Engineering Structures, vol. 26, pp. 1833-1841, 2004.
    [38] S. N. Adriano O. Andrade, Peter Kyberd, "EMG signal filtering based on Empirical Mode Decomposition," Biomedical Signal Processing and Control, vol. 1, pp. 44-55, 2006.
    [39] C. C. H. Ghouti L, "Deconvolution of ultrasonic nondestructive evaluation signals using higher-order statistics," in ICASSP, IEEE International conference on Acoustics, Speech and Signal Processing-Proceedings, 1999, pp. 1457-1468.
    [40] B. M. Yamani A, Ghouti L, "High-order spectra-based deconvolution of ultrasonic ndt signals for defect identification," Ultrasonics, vol. 35, no. 7, pp. 525-537, 1997.
    [41] M. D. Nandi A K, Roscher B, "Blind deconvolution of ultrasonic signals in nondestructive testing applications," IEEE Transactions on Signal Processing, vol. 45, no. 5, pp. 1382-1393, 1997.
    [42] R.-H. M. A, "Ultrasonic non-destructive evaluation with spatial combination of wigner-ville transforms," NDT&E International, vol. 36, no. 6, pp. 441-453,2003.
    [43] H. M. G. Izquierdo M A G, Graullera O, et al, "Time-frequency wiener filtering for structural noise reduction," Ultrasonics, vol. 40, no. 1-8, pp. 259-270, 2002.
    [44] B. N. M. Xing L, "Wiener filter realization for target detection using group delay statistics," IEEE Transactions on Signal Processing, vol. 41, no. 6, pp. 2067-2076, 1993.
    [45] L. M. Liu Z, Wei M, "Structure noise reduction of ultrasonic signals using artificial neural network adaptive filtering," Ultrasonics, vol. 35, no. 4, pp. 325-336, 1997.
    [46] P. Q. Qinglun Liu, Huawei Guo, et al, "Noise cancellation for ultrasonic ndt signals using blind source separation," Russian Journal of Nondestructive Testing, no. 1, pp. 83-89, 2006.
    [47]金涛, "海底管道漏磁检测信号处理及缺陷识别研究." vol.博士论文上海:上海交通大学, 2006.
    [48] J. S. Guilherme Cardoso, "DATA COMPRESSION AND NOISE SUPPRESSION OF ULTRASONIC NDE SIGNALS USING WAVELETS," in IEEE Ultrasonics Symposium, 2003, pp. 250-253.
    [49] J. S. Guilherme Cardoso, "Ultrasonic Data Compression via Parameter Estimation," ieee transactions on ultrasonics, ferroelectrics, and frequency control, vol. 52, no. 2, pp. 313-325, 2005.
    [50] J. S. Ramazan Demirli, "Denoising and Compression of Ultrasonic Signals Using Model-based Estimation Techniques," in 2004 IEEE International Ultrasonics, Ferroelectrics, and Frequency Control Joint 50th Anniversary Conference, 2004, pp. 2306-2309.
    [51] J. S. R. Demirli, "Model-based estimation of ultrasonic echoes, part I: analysis and algorithms," in IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control (UFFC), 2001, pp. 787- 802.
    [52]陈岳军,史耀武,霍永平, "信号处理识别技术在超声检测中的应用,"压力容器, vol. 13, no. 5, pp. 433-437, 1996.
    [53] S. W. Grabec, "Experimental characterization of ultrasonic phenomena by a neural-like learning system," in Review of progress in QNDE, 1989, pp. 649-656.
    [54] O. T, "A neural network applied to crack type recognition," in Review of progress in QNDE, 1990, pp. 689-696.
    [55] M. R. C. Singh G P, " Discrimination of ultrasonic indication from austenitic stainless steelpipe welds," NDT international, vol. 16, no. 6, pp. 325-329, 1983.
    [56] M. R. C. Singh G P, "An artificial intelligence approach to ultrasonic weld evaluation," in Review of progress in QNDE, 1983, pp. 245-255.
    [57] "国家十五863计划"海底管道内爬行器及其检测技术"课题实施方案报告," R 2001.
    [58]中国机械工程学会无损检测分会,超声波检测:机械工业出版社, 2000.
    [59]彭应秋,李坚,权义萍等, "超声检测中的声场特性及应用分析,"无损检测, vol. 25, no. 12, pp. 612-615, 2003.
    [60]美国无损检测学会,美国无损检测手册(超声卷) vol. 5:世界图书出版公司, 1996.
    [61]周明, "在役管道壁厚超声检测爬机技术,"无损检测, vol. 21, no. 6, pp. 249-257, 1999.
    [62] J. C. Jun Okamoto Jra, "Adamowskia, Marcos S.G. Tsuzukia et al. Autonomous system for oil pipelines inspection," Mechatronics, vol. 9, pp. 731-743, 1999.
    [63]胡超, "小管道的内部超声检测,"无损检测, vol. 22, no. 7, pp. 334-336, 2000.
    [64]陆唯一, "海底管道检测超声探头及探头阵列的设计,"上海:上海交通大学, 2006.
    [65]杨跃忠, "基于ARM的海底管道超声在线数采系统的设计和实现,"上海:上海交通大学, 2006.
    [66]宋万杰,罗峰,吴顺君, "CPLD技术及其应用,"西安电子科技大学出版社, 1999.
    [67]邹彦, "DSP原理及应用,"北京:电子工业出版社, 2005.
    [68]钱旺, "SCSI接口技术及硬盘驱动器,"冶金丛刊, no. 3, pp. 27-30, 2001.
    [69]刘刚,向健勇,段德军, "基于FPGA的脱机IDE硬盘控制,"电子科技, no. 4, pp. 46-49, 2001.
    [70]刘镇清, "超声无损检测与评价中的信号处理及模式识别,"无损检测, vol. 42, pp. 31-34, 2001.
    [71]刘旭,夏金东,弓乐,吴淼, "超声检测缺陷分类中信号处理方法的探讨,"仪器仪表学报, vol. 3, pp. 638-641, 2002.
    [72]王明泉,史步青,李建华, "超声检测信号的特征分析,"华北工学院学报, vol. 19, pp. 121-123, 1998.
    [73]郭成彬, "超声检测中的结构噪声,"应用声学, vol. 17, pp. 1-5, 1998.
    [74]张小飞,王茁,周有鹏, "超声检测中的噪声处理,"无损检测, vol. 24, pp. 200-203, 2002.
    [75] T. S. H. Kantz "Nonlinear time series analysis," in Cambridge: Cambridge Univ. Press, 1997.
    [76] J. M. B. K. D. Konohue, and T. Varghese, "Spectral correlation in ultrasonic pulse echo signal processing," ieee transactions on ultrasonics, ferroelectrics, and frequency control, vol. 40, pp. 330-341, 1993.
    [77] A. V. C. Fritsch, "Detecting small flaws near the interface in pulse-echo," Ultrasonics, vol. 42, pp. 797-801, 2004.
    [78] P. V.-C. N. Ruiz-Reyes, "High-resolution pursuit for detecting flaw echoes close to the material surface in ultrasonic NDT," NDT&E International, vol. 39, pp. 487-492, 2006.
    [79] H. Ravanbod, "Application of neuro-fuzzy techniques in oil pipeline ultrasonic nondestructive testing," NDT&E International, vol. 38, pp. 643-653, 2005.
    [80]刘清坤, "超声无损检测信号及图像处理新算法的研究." vol.博士论文上海:上海交通大学, 2006.
    [81] R. D. a. J. Saniie, "Model-based estimation of ultrasonic echoes, part I: analysis and algorithms," IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control (UFFC), vol. 48, no. 3, pp. 787- 802, 2001.
    [82]刘清坤, "超声无损检测信号及图像处理新方法的研究,"上海:上海交通大学博士学位论文, 2006, p. 133.
    [83]张小飞,王茁,周有鹏, "超声检测中的噪声处理,"无损检测, vol. 24, no. 5, pp. 200-203, 2002.
    [84]郭成彬, "超声检测中的结构噪声,"应用声学, vol. 17, no. 4, pp. 1-5, 1998.
    [85] Z. W. a. N. E. Huang, "A study of the characteristics of white noise using the Empirical Mode Decomposition," in,4th Int. Workshop on Biosignal Interpretation, 2002, pp. 123-126.
    [86] G. R. a. P. G. P. Flandrin, "Empirical Mode Decomposition as a filter bank," IEEE Sig.Proc.Lett., vol. 11, no. 2, pp. 112-114, 2004.
    [87]黄汪阳,吴迪,孙夫雄, "基于第二代小波变换的电力系统故障录波数据压缩方法,"电力自动化设备, vol. 24, no. 3, pp. 59-62, 2004.
    [88] P. FLANDRIN, "EMPIRICAL MODE DECOMPOSITIONS AS DATA-DRIVENWAVELET-LIKE EXPANSIONS," International Journal of Wavelets, Multiresolution and Information Processing, pp. 1-28, 2004.
    [89]毛义梅,海底管道超声检测信号的时频分析及缺陷评估研究,上海:上海交通大学, 2006.
    [90] M. T. SANG Hongwei, WANG Shuozhong, "Hurst Exponent Analysis of Financial Time Series," Journal of Shanghai University, vol. 5, no. 4, pp. 269-272, 2001.
    [91] Y. Y. Yang Dongyong, "Multi-sensor Data Fusion and Its Application to Industrial Control," pp. 215-220, 2000.
    [92] L. C. Haakon Waerstad, Urmila Datta, et al, "Multisensor Data Fusion With Flange Mounted Acoustic Emission Sensors in the Monitoring of Fluidised beds," in 2002 IEEE Ultrasonics Symposium, 2002, pp. 691-694.
    [93] C.GianLuca Foresti, "Multi sensor Data Fusion for Autonomous Vehicle Navigationin Risky Environments," IEEE TRANSACTION SONVEHICULAR TECHNOLOGY, vol. 51, no. 5, pp. 1165-1184, 2002.
    [94]苏.王军,席裕庚, "多传感器融合综述,"数据采集与处理, vol. 19, no. 1, pp. 72-76, 2004.
    [95]惠克翔,王建军, "多级信息融合技术的机载导弹电路故障诊断,"导弹与航天运载技术, no. 271, pp. 32-36, 2004.
    [96] D. L. J. Rao A M, "A Denoising Approach to Multisensor Signal Estimation," IEEE Transactions On Signal Processing, vol. 48, no. 1225-1234, 2000.
    [97] Z. X. D, Modern Signal Processing. beijing: Tsinghua Univ, 1995.
    [98] L. X. M. XU L J, DONG F, et al, "Optimum estimation of the mean flow velocity for the multi-electrode inductance flowmeter," Meas. Sci. Technol, vol. 12, pp. 1139–1146, 2001.
    [99] Z. J. Xu Lijun, and Yan Yong, "A Wavelet-Based Multisensor Data Fusion Algorithm," IEEE Transactions on Instrumentation and Measurement, vol. 53, pp. 1539-1545, 2004.
    [100]谢荣生,孙枫,杨树国, "基于多小波噪声方差阈值的信号滤波方法,"哈尔滨工程大学学报vol. 23, no. 2, pp. 51-54, 2002.
    [101]张兆礼等,现代图像处理技术及Matlab实现北京:人民邮电出版社, 2001.
    [102]闫德俊,孙杰, "一种改进的金相图像处理自适应加权均值滤波方法,"辽宁石油化工大学学报, vol. 25, no. 4, pp. 58-61, 2005.
    [103]刘.卢海南,赵录怀, "新型递归多级中值滤波器,"模式识别与仿真技术, vol. 23, no. 4, pp. 30-32, 2004.
    [104]吴乐南,数据压缩电子工业出版社2000.
    [105] http://baike.eccn.com/eewiki/index.php?title=%E5%8F%98%E6%8D%A2% E7%BC%96%E7%A0%81.
    [106] J. S. Guilherme Cardoso, "Compression of Ultrasonic Data Using Transform Thresholding and Parameter Estimation Techniques," in Ieee Ultrasonics Symposium, 2002, pp. 837-840.
    [107] J. S. Guilherme Cardoso, "Performance Evaluation of DWT, DCT, and WHT for Compression of Ultrasonic Signals," in IEEE International Ultrasonics, Ferroelectrics, and Frequency Control Joint 50th Anniversary Conference, 2004, pp. 2314-2317.
    [108] P. V.-C. N. Ruiz-Reyes, J. Curpia′n-Alonso,et al, "New matching pursuit-based algorithm for SNR improvement in ultrasonic NDT," NDT&E international, vol. 38, pp. 453-458, 2005.
    [109] V. B. A. Pesavento, H. Ermert, "Compression of Ultrasonic RF' data," in Ieee Ultrasonics Symposium, 1997, pp. 1471-1474.
    [110] http://baike.baidu.com/view/971579.htm.
    [111]刘财,王培茂,薛亚丽等, "离散余弦变换(DCT)编码在地震勘探数据压缩中的应用,"吉林大学学报, vol. 23, no. 2, pp. 277-282, 2004.
    [112] K. E. GülayTohumoglu, "ECG signal compression by multi-iteration EZW coding for different wavelets and thresholds," Computers in Biology and Medicine, vol. 37, pp. 173-182, 2007.
    [113] M. L. Hilton, "Wavelet and Wavelet Packet Compressionof Electrocardiograms," IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, vol. 44, no. 5, pp. 394-402, 1997.
    [114]王孟娟, "基于小波变换的混合二维ECG数据压缩方法,"生物物理学报, vol. 22, no. 3, pp. 217-223, 2006.
    [115]吴继伟,孔祥茜,岳继光, "地震数据的小波变换压缩方法,"软件研究与探讨, vol. 1, pp. 34-36, 2006.
    [116] E. C. Guillaume Savaton, Eric Martin, "Design of a ?exible 2-D discrete wavelet transform IP core forJPEG2000 image coding in embedded imaging systems," Signal Processing, vol. 86, pp. 1375-1399, 2006.
    [117] J. C. Paul Cristea, Adrian Munteanu "Progressive lossless coding of medical images " Future Generation Computer Systems vol. 14, pp. 23-32, 1998.
    [118] W.Sweldens, "The lifting scheme: A custom-design construction of biorthogonal wavelets," Appl. Comp. Harmon. Anal., vol. 13, no. 2, pp.186-200, 1996.
    [119] W. Sweldens, "The lifting scheme: a construction of second generation wavelets," SIAM journal on mathematical anaysis, vol. 29, no. 2, 1998.
    [120] M. A. Malik, "Unified time-frequency analysis of ultrasonic signals." vol. Ph.D Chicago: Illinois Institute of Technology, 1995.
    [121] G. C. a. J. Saniie, "Data compression and noise suppression of ultrasonic NDE signals using wavelets," in Proc. IEEEUltrason. Symp., 2003, pp. 250–253.
    [122] A. G. P. Goupillaud, and J. Morlet, "Cycle-octave and related transforms in seismic signal analysis," Amer. Geoexploration, vol. 23, pp. 85–102, 1984.
    [123] Z. Z. S. Mallat, "Matching pursuit with time-frequency dictionaries," IEEE Trans. Signal Processing, vol. 41, pp. 397–3415, 1993.
    [124] L. W. Y. Zhang, Y. Gao, J. Chen, and X. Shi, "Noise reduction in Doppler ultrasound signals using an adaptive decomposition algorithm," Medical Engineering & Physics, pp. 1-9, 2006.
    [125] M. K. F. Tang K. S., Kwong S., He Q, "Genetic algorithms and their applications," IEEE Signal Processing Magazine, vol. 13, no. 6, pp. 22-37, 1996.
    [126] S. I. A. Gonos I. F., "Estimation of multilayer soil parameters using genetic algorithms," IEEE Transactions on Power Delivery, vol. 20, no. 1, pp. 100-106, 2005.
    [127] L. Y. Tu Z., "A robust stochastic genetic algorithm (StGA) for global numerical optimization," IEEE Transactions on Evolutionary Computation, vol. 8, no. 5, pp. 456-470, 2004.
    [128] D. C. Brito L. C., Paulo H. P., "An evolutionary approach for multi-objective optimization of nonlinear microwave circuits," in IEEE MTT-S International Microwave Symposium Digest, 2004, pp. 949-952.
    [129] C. V. Yokose Y., Yamashita H., "Genetic Algorithms with assistant chromosomes for inverse shape optimization of electromagnetic devices," IEEE Transactions on Magnetics, vol. 36, no. 4, pp. 1052-1056, 2000.
    [130] M. A. Caorsi S., Pastorino M., " A crack identification microwave procedure based on a genetic algorithm for nondestructive testing," IEEE Transactions on Antennas and Propagation, vol. 49, no. 12, pp. 1812-1820, 2001.
    [131] C. T. C. Wu X., Sharif B. S., Hinton O. R., "Adaptive robust detection for CDMA using a genetic algorithm," IEE Proceedings: Communications, vol. 150, no. 6, pp. 437-444, 2003.
    [132] T. P. Nich Z. Z., "Web search using a genetic algorithm," IEEE Internet Computing, vol. 5, no. 2, pp. 18-26, 2001.
    [133] J. L. C. Kuncheva L. I., "Designing classifier fusion systems by genetic algorithms," IEEE Transactions on Evolutionary Computation, vol. 4, no. 4, pp. 327-336, 2000.
    [134] A. T. Umberto Morbiducci, Mauro Grigioni, "Genetic algorithms for parameter estimation in mathematical modeling of glucose metabolism," Computers in Biology and Medicine, vol. 35, pp. 862-874, 2005.
    [135] H. Z Shi, "Estimation of the Exponential Autoregressive Time Series Model By Using the Genetic Algorithm," Journal of Sound and Vibration, vol. 205, pp. 309-321, 1997.
    [136]周明,孙树栋,遗传算法原理及应用:国防工业出版社, 1999.
    [137]陈国良,王熙法,庄镇泉等,遗传算法及其应用:人民邮电出版社, 1996.
    [138] T. W. CooleyJ W, " an algorithm for the machine computation of complex Fourier series[" Mathematics of Computation, vol. 19, pp. 297-301, 1965.
    [139]蔡敏,阙沛文,张琦, "油气管道超声测厚算法研究,"电子测量与仪器学报, 2007.
    [140]胡广书,数字信号处理.北京:清华大学出版社, 2003.
    [141] H. Kantz and T. Schreiber, Nonlinear time series analysis. Cambridge: Cambridge Univ. Press, 1997.
    [142]胡广书,数字信号处理-理论、算法与实现.北京:清华大学出版社, 2003.
    [143] S. Qian and D. Chen, Joint time-frequency analysis: methods and applications. Englewood Cliffs, NJ: Prentice Hall, 1996.
    [144]宋寿鹏, "海底管道检测中缺陷重构及超声回波信号处理方法的研究,"上海:上海交通大学博士学位论文, 2006, p. 178.
    [145] S. Suranthiran and S. Jayasuriya, "Optimal fusion of multiple nonlinear sensor data," IEEE Sensors Journal, vol. 4, no. 5, pp. 651-663, 2004.
    [146] C. B. Naima Ait oufroukh, Etienne Colle, "Ultrasonic Multi-transducer Processing for Pattern Recognition," in Sensors, 2002. Proceedings of IEEE, 2002, pp. 1329 -1334.
    [147] J. Chao, Udpa, L., and S. Udpa, "Ultrasonic signal analysis using wavelet transform," Review of Progress in Quantitative Nondestructive Evaluation, vol. 12, p. 735, 1993.
    [148] E. a. T. T. Meyer, "Bayesian classification of ultrasound signals using wavelet coefficients," in Proc. IEEE 1995 National Aerospace and ElectronicsConference,, 1995, p. 240.
    [149] G. L. Chen, "Neural networks for ultrasonic NDE signal classification using time-frequency analysis," in IEEE International Conference on Acoustics, Speech, and Signal Processing, 1993, p. 439.
    [150] M. A. Malik, Jin, X.M, and J. Saniie,, "Joint time-frequency processing of ultrasonic signals," Review of Progress in Quantitative Nondestructive Evaluation, vol. 15, p. 2089, 1995.
    [151] U. Qidwai, Costa, A.M., Insight, vol. 41, p. 700, 1999.
    [152] J. S. H.C. Sun, "Nonlinear signal processing for ultrasonic target detection," in Ieee Ultrasonics Symposium, 1998, pp. 855-858.
    [153] B. H. Solis M, Medina L, "Location of Material Flaws Using Wavelet Analysis and Neural Network," in Ieee Ultrasonics Symposium. , 2002, pp. 841-844.
    [154] G. G. L. C H. Chen, "Neural Networks For Ultrasonic NDE Signal Classification Using Time frequency Analysis," in Ieee Ultrasonics Symposium, 1993, pp. 493-496.
    [155] G. D. A. Antonino S. Fiorillo, "Echo Signals Processing With NeuralNetwork In Bat-Like Sonars Based On PVDF," in Ieee Ultrasonics Symposium, 2002, pp. 781-784.
    [156] D. W. A. A.J. McGrail, B.R.Varlow, " Detecting and Classifying Flaws within Insulating Materials using Ultrasound," in Conference Record of the 1994 IEEE Intemational Symposium on Electrical Insulation, 1994, pp. 22-24.
    [157] Y.-H. W. Jian-Da Wu, Mingsian R. Bai, "Development of an expert system for fault diagnosis in scooter engine platform using fuzzy-logic inference," Expert Systems with Applications,, vol. 33, no. 4, pp. 1063-1075, 2007.
    [158] R. K. Rajeev Dwivedi, "An expert system for generation of machine inputs for laser-based multi-directional metal deposition," International Journal of Machine Tools and Manufacture, vol. 46, no. 14, pp. 1811-1822, 2006.
    [159] T. R. J. Taboada, M.A. Saavedra, M. Araújo, A. Argüelles, "A fuzzy expert system application to the evaluation of ceramic- and paper-quality kaolin," Applied Clay Science, vol. 33, no. 3, pp. 287-297, 2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700