公路车辆动态荷载测量及车型分类技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
车辆动态荷载和车型分类一直是高速公路研究工作者研究的热点和难点问题。随着国民经济的快速发展,国家对高速公路建设费用的投入逐年加大,使得我国高速公路里程数已经跃居世界前列,同时国家因每年道路破坏造成的损失也高达几百亿元。传统的车辆动态荷载测量系统(即动态称重系统)由于系统造价高、获取信息少以及称量速度慢很难实现不间断测量等缺点,难以满足公路对车辆荷载监测和车型分类的要求。研究一种能够快速、准确地测量车辆轴重和总重并能对车辆进行分类的动态称重系统具有重要的意义。本课题得到了黑龙江省交通厅基金(No:HJZ_2004_12)的资助,旨在研究一种廉价的能够满足高速公路对车辆荷载监测和车型分类要求的动态称重系统,为重载车辆对刚性路面破坏作用研究提供客观、准确的车辆荷载及车型分类数据。基于此目的本文在分析大量的实验数据的基础上,提出一种新颖的基于路面结构应变响应的车辆荷载测量和车型分类技术,并就若干关键技术进行深入研究,论文具体的研究工作如下:
     1、论文在全面了解国内外动态称重和车型分类技术研究现状的基础上,分析了现有的动态称重方式和车辆分类方法存在的问题。
     2、针对路面结构的力学特性,研究了各种移动荷载下刚性路面的响应模型。用三维傅立叶变换方法分析了移动两轴常荷载和谐波荷载下刚性路面的应变响应,建立了荷载、应变响应与移动车速之间的明确数学关系。为基于刚性路面应变响应的动态荷载测量的研究奠定理论基础。
     3、在研究影响动态称重的精度和称量速度主要因素的基础上,指出车辆振动是影响动态称重的效率和精度的主要因素,提出利用等间距分布的多传感器进行多点测量的方式提高动态称重精度和效率。从理论上给出了等间距分布多传感器的设计方法和设计公式,利用此方法和公式设计和建立了基于多个埋入式应变传感器的动态称重系统原型。
     4、在获取大量的实验车辆样本数据的基础上,研究了基于多分类支持向量机(MSVM)的多传感器融合分类方法,提出了两种融合分类策略,并用实际数据对两种不同MSVM算法(OAA,OAO)进行了融合分类实验,分别比较了不同算法和不同融合策略对分类准确率的影响。实验数据表明车辆分类准确率超过94.6%。
     5、对多传感器动态称重系统进行了实际标定实验,并研究了基于支持向量回归和熵权多传感器融合建模方法。并用此方法解决了三个应变传感器动态称重系统建模标定的问题。实验数据测试表明模型可以获得6%以内的动态称重预测误差。
Vehicle dynamic loads and vehicle classification has been a research hotspot and difficult problems for highway researchers. With the rapid development of the national economy, the state highway construction cost inputs to increase year by year, which leads our country highway mileage in front of the word. At the same time the costs for the damage of the roads is also as high as several hundreds billions of RMB each year. Due to the disadvantage such as high costs, less information gaining and slow weighing measurement, the traditional vehicle dynamic loads measurement system (ie, weigh in motion, WIM) is hardly to meet the requirements for highway vehicle load monitoring and vehicle classification. Thus it is very important to study a dynamic weighing system for increasing the accuracy and feasibility in weighing the vehicle axle loads and classifying the vehicles. This research has been aided by Heilongjiang Communications Fund (No: HJZ_2004_12). The purpose for the research work is to find a cheap way to meet the requirements for vehicle load monitoring and vehicle classification in the dynamic weighing system. It can provide objective and accurate vehicle load and vehicle classification data for heavy-duty vehicles damaging effects of rigid pavement research. For this purpose, according to the analysis of abundant experimental data, a novel dynamic weighing classification models based on strain response of pavement structure has been provided. According to these technical characteristics, a number of key technical issues were carried out, which was listed as follows:
     R&D of the WIM and vehicle classification in the world was reviewed in detail. Consequently, the existing problems in WIM and vehicle classification were pointed out.
     According to the mechanical properties of rigid pavement structure, the rigid pavement response model under different moving load has been studied. The response of the rigid pavement under the two-axle moving loads of constant amplitude and harmonic loads using a triple Fourier transform were simulated and the relationship between loads, strain response and speed were derived. These results may lead a theoretical foundation for studying on rigid pavement strain response dynamic loads measurement technology.
     This dissertation studied the main factors affecting the accuracy and speed of dynamic loads measurement; pointed out that the efficiency and accuracy of dynamic loads measurement was mainly affected by vehicle dynamic vibration; presented that multi-sensor of multi-point measurement methods can improve dynamic weighing accuracy and efficiency. Furthermore, the design methods and formulas of multi-sensor spacing system are introduced. Dynamic loads measurement system prototype based on the multiple embedded strain sensors was designed and set up using this method and formula.
     On the basis of many experimental vehicle sample data, Multi-sensor vehicle classification methods based on two multi-class Support Vector Machines (OAA, OAO) and two data fusion are researched in this dissertation. Different algorithms and different fusion strategies on classification accuracy using the experimental data show that vehicle classification accuracy can be reached more than 94.6 percent.
     Multi-sensor dynamic loads measurement system calibration using the actual experiment and multi-sensor fusion modeling method based on support vector regression and entropy weight were researched in this dissertation. Experimental data show that the model can be tested within 6% dynamic loads measurement prediction error.
引文
1王振清.公路超限运输概论.北京:人民交通出版社. 1997:102-123
    2李嘉,丁连棣.汽车超载对道路运输的影响.中南公路工程. 2000,25(4):84-85
    3王燕重.浅析超载运输对公路的破坏.公路. 2000,11:77-78
    4神英龙,尹征琦.动态称重技术在治理超限超载中的应用.交通科技. 2006(01)
    5李月华.道路超载车辆的动态称重设计.科学之友(B版). 2008(05)
    6 Astm E1318-02. Standard Specification for Highway Weigh-in-Motion (Wim) System with User Requirements and Test Method. American Society for Testing and Materials, ASTM International, USA. 2002(03)
    7 B. McCall, W. C. Vodrazka. State's Successful Practices Weigh-in-Motion Handbook. Center for Transportation Research & Education, Iowa State University,1997
    8 Cost 323(Wim-Load),Collection and Analysis of Requirements as Regards Weighing Vehicles in Motion. 1997
    9 Wave Report on Work Package 1.1:Multiple Sensor Wim. online: http://wim.zag.si/wim. 2001
    10 Wave Report on Work Package 1.2: Bridge Wim Systems. . Online: http://wim.zag.si/wim. 2001
    11 Wave Report on Work Package 2: A Data Quality Assurance System for the European Wim-Database. Online: http://wim.zag.si/wim. 2001.
    12 Wave Report on Work Package 3.1: Durability of Wim Systems in Cold Climates. Online: http://wim.zag.si/wim. 2001
    13 Wave Report on Work Package 3.2: Calibration Wim Systems. Online: http://wim.zag.si/wim. 2001
    14 Wave Report on Work Package 4:Optical Fibre Wim Systems,Technology for the Future. Online: http://wim.zag.si/wim. 2001
    15 J. Wang, M. Wu. An Overview of Research on Weigh-in-Motion System. Proceeding of the 5th World Congress on Intelligent Control and Automation.2004:5241-5244
    16吴明光. Pat动态称重系统.衡器. 2006(03)
    17魏鲁原,伍斌,崔霞.动态称重系统的设计.自动化仪表. 2002,23(8):34-37
    18 ALMODARRESI S. M. T, W. H. N.M. Application of Artificial Neural Networks to Intelligent Weighing Systems. Science, Measurement and Technology, IEE Proceeding. 1999,146(6):265-269
    19张雨,袁明新.车辆动态称重仪使用现状及其轴重信号分析.长沙交通学院学报.2003,19(001):1-6
    20袁明新,张勇,张雨.基于RBF网络的动态称重系统设计.交通与计算机. 2003,21(002):60-63
    21徐光华,张继军,屈梁生.基于系统辨识的动态汽车衡称重方法.中国机械工程. 2002,13(8):682-685
    22 L. Jahreiss, R. Calderara. A Novel Quartz Wim Sensor. First European Conference on Weigh-In-Motion of Road Vehicles. Zurich,1995:241-250
    23 R. B. Malla, A. Sen, N. W. Garrick. A Special Fiber Optic Sensor for Measuring Wheel Loads of Vehicles on Highways. Sensors. 2008,8:2551-2568
    24刘波,童峥嵘,曾剑,等.一种利用啁啾光栅反射滤波的光纤光栅传感解调方法.光子学报. 2004,33(1):57-60
    25杨义勇,王延利,王人成,等.车辆荷重动态检测系统的传感器设计及有限元分析.仪表技术与传感器. 2006,43(12):4-5
    26李庆斌,尹玉先.汽车当量轮重的光纤传感器测量.清华大学学报:自然科学版. 2004,44(006):801-803
    27刘汉平,王健刚,王科,等.利用光纤光栅制作动态称重仪.传感技术学报. 2007,20(003):540-542
    28李素珍.光纤传感器的研究和应用展望.红外与激光技术. 1994(006):18-20
    29 B. Jacob. Spatial Repeatability of the Impact Forces on a Pavement and Multiple Sensor Wim-Research Element 5 of the Pecd Ir6 Divine Project. Proceedings of the First European WIM conference. Zurich,1995:147-156
    30 D. Cebon, C. B. Winkler. Multiple-Sensor Weigh-in-Motion: Theory and Experiments. Transportation Research Board,1991:70-78
    31 A. González, A. T. Papagiannakis, E. J. O'Brien. Evaluation of an Artificial Neural Network Technique Applied to Multiple-Sensor Weigh-in-Motion Systems. Transportation Research Record. 2003,1855(1):151-159
    32 F. Moses. Weigh-in-Motion System Using Instrumented Bridges. Transportation. 1979,105(3):233-249
    33 R. J. Peters. Axway–a System to Obtain Vehicle Axle Weights. Proceedings 12th Australian Road Research Board Conference. Australia,1984:17-29
    34 A. T. Dempsey, E. J. O’Brien, J. M. O’Connor. A Bridge Weigh-in-Motion System for the Determination of Gross Vehicle Weights. post proceeding of First European conference on Weigh-in-motion of Road Vehicles.1995:239-249
    35 C. O'Connor, T. H. T. Chan. Dynamic Wheel Loads from Bridge Strains. Journal of Structural Engineering. 1988,114(8):1703-1723
    36袁向荣,陈思利.由梁的响应识别移动荷载.振动测试与诊断. 1995,15(003):30-34
    37 S. S. Law, T. H. T. Chan, Q. H. Zeng. Moving Force Identification: A Time Domain Method. Journal of Sound and Vibration. 1997,201(1):1-22
    38袁向荣,陈恩利.由正交异性板的响应识别移动荷载.振动测试与诊断. 1998,18(003):201-206
    39 S. S. Law, T. H. T. Chan, Q. H. Zeng. Moving Force Identification—a Frequency and Time Domains Analysis. Journal of Dynamic Systems, Measurement, and Control. 1999,121:394
    40 T. H. T. Chan, S. S. Law, T. H. Yung, et al. An Interpretive Method for Moving Force Identification. Journal of Sound and Vibration. 1999,219(3):503-524
    41 X. Q. Zhu, S. S. Law. Moving Forces Identification on a Multi-Span Continuous Bridge. Journal of Sound and Vibration. 1999,228(2):377-396
    42 X. Q. Zhu, S. S. Law. Identification of Vehicle Axle Loads from Bridge Dynamic Responses. Journal of Sound and Vibration. 2000,236(4):705-724
    43 X. Q. Zhu, S. S. Law. Identification of Moving Interaction Forces with Incomplete Velocity Information. Mechanical Systems and Signal Processing. 2003,17(6):1349-1366
    44 X. Q. Zhu, S. S. Law. Moving Loads Identification through Regularization. Journal of Engineering Mechanics. 2002,128:989-1000
    45 S. S. Law, Y. L. Fang. Moving Force Identification: Optimal State Estimation Approach. Journal of Sound and Vibration. 2001,239(2):233-254
    46 S. S. Law, J. Q. Bu, X. Q. Zhu, et al. Vehicle Axle Loads Identification Using Finite Element Method. Engineering Structures. 2004,26(8):1143-1153
    47 T. Pinkaew. Identification of Vehicle Axle Loads from Bridge Responses Using Updated Static Component Technique. Engineering Structures. 2006,28(11):1599-1608
    48 P. Asnachinda, T. Pinkaew, J. A. Laman. Multiple Vehicle Axle Load Identification from Continuous Bridge Bending Moment Response. Engineering Structures. 2008
    49 T. Pinkaew, P. Asnachinda. Experimental Study on the Identification of Dynamic Axle Loads of Moving Vehicles from the Bending Moments of Bridges. Engineering Structures. 2007,29(9):2282-2293
    50 L. Yu, T. H. T. Chan. Identification of Multi-Axle Vehicle Loads on Bridges. Journal of vibration and acoustics. 2004,126(1):17-26
    51张存功.动态称重技术.自动化仪表. 1996,17(11):5-7
    52樊丽辉.车辆动态称重技术.中南汽车运输. 1998(002):5-7
    53戴长永,许宏科,姚永福.动态称重在高等级公路收费中的应用.山西交通科技. 1999,29(6):21-24
    54周天佑.双联轴和三联轴的动态轴荷分配.公路交通科技. 1994,11(001):51-56
    55周志峰.应变式汽车轴重动态测量系统性能增长研究.上海交通大学博士学位论文,上海2007
    56 P. Arfos, P. Monteil. Low Speed Weigh-in-Motion System Using a Portable Axle Weigher. Proceeding of the First European conference on weigh-in- Motion of road vehicles. Zurich,1995:259-264
    57钟汉如,冯建宏.便携式车辆超载动态称重仪研究.机械与电子. 2006(002):27-30
    58孙宇,丁彦闯,兆文忠.便携式机车车辆动态称重仪的研制.计算机测量与控制. 2007(06)
    59程路.车辆动态称重技术研究.浙江大学博士论文,杭州2008
    60 E. S. K. Fekpe, A. M. Clayton. Vehicle Classification from Weigh-in-Motion Data - the Progressive Sieving Algorithm. Canadian Journal of Civil Engineering. 1994,21(2):195-206
    61宋颖华.交通检测技术及其发展.公路. 2000(009):34-37
    62 C. Sun, S. G. Ritchie. Heuristic Vehicle Classification Using Inductive Signatures on Freeways. Highway and Traffic Safety: Crash Data, Analysis Tools, and Statistical Methods. 2000(1717):130-136
    63 J. Gajda, R. Sroka, M. Stencel, et al. A Vehicle Classification Based on Inductive Loop Detectors. Imtc/2001: Proceedings of the 18th Ieee Instrumentation and Measurement Technology Conference, Vols 1-3. 2001:460-464
    64 Y. K. Ki, D. K. Baik. Vehicle Classification Model for Loop Detectors Using Neural Networks. Data Initiatives. 2005(1917):164-172
    65 J. M. Xu, P. Q. Lin. Adaptive Vehicle Classification Based on Information Entropy and Multi-Branch Bp Neural Networks. Proceedings of the 24th Chinese Control Conference, Vols 1 and 2. 2005:1654-1658
    66 Y. K. Ki, D. K. Baik. Vehicle-Classification Algorithm for Single-Loop Detectors Using Neural Networks. Ieee Transactions on Vehicular Technology. 2006,55(6):1704-1711
    67 G. H. Zhang, Y. H. Wang, H. Wei. Artificial Neural Network Method for Length-Based Vehicle Classification Using Single-Loop Outputs. Traffic and Urban Data. 2006(1945):100-108
    68 P. Bajaj, P. Sharma, A. Deshmukh. Vehicle Classification for Single Loop Detector with Neural Genetic Controller: A Design Approach. 2007 Ieee Intelligent Transportation Systems Conference, Vols 1 and 2. 2007:921-925
    69 S. W. Kim, Y. Eun, H. Kim, et al. Performance Comparison of Loop/Piezo and Ultrasonic Sensor-Based Traffic Detection Systems for Collecting Individual Vehicle Information. Proc. of 6th World Congress on ITS 1998
    70 S. Q. Peng, C. A. Harlow. A System for Vehicle Classification from Range Imagery. Proceedings of the Twenty-Eighth Southeastern Symposium on System Theory. 1996:327-331
    71 C. Harlow, S. Q. Peng. Automatic Vehicle Classification System with Range Sensors. Transportation Research Part C-Emerging Technologies. 2001,9(4):231-247
    72徐巍,王桂珠.用超声测距法配合PR技术实现交通流特征参数的自动测量.自动化与仪表. 2000,15(6):56-59
    73 H. Zeng, J. Huang, Y. Liang. Combat Vehicle Classification Using Machine Learning. Advances in Computer-Assisted Recognition. 1999,3584:2-7
    74 I. R. Urazghildiiev, R. Ragnarsson, K. Wallin, et al. A Vehicle Classification System Based on Microwave Radar Measurement of Height Profiles. Radar 2002. 2002(490):409-413
    75 D. Nesser, H. Essen, D. Buth. Vehicle Classification by Vibration Analysis Using Millimeterwave Sensors. IRMMW-THz2005: The Joint 30th International Conference on Infrared and Millimeter Waves and 13th International Conference on Terahertz Electronics, Vols 1 and 2. 2005:349-350
    76 D. Urazghildiiev, R. Ragnarsson, P. Ridderstrom, et al. Vehicle Classification Based on the Radar Measurement of Height Profiles. Ieee Transactions on Intelligent Transportation Systems. 2007,8(2):245-253
    77 B. N. Nelson. Automatic Vehicle Detection in Infrared Imagery Using a Novel Method for Defining Regions of Interests, Feature Extraction, and a Fuzzy Logic Classification System. Automatic Target Recognition X. 2000,4050:129-138
    78 G. H. Gu, L. F. Bai, Q. Chen, et al. Fuzzy Pattern Recognition Auto Vehicle Classification Based on Plane Infrared Detecting Technique. Multispectral and Hyperspectral Image Acquisition and Processing. 2001,4548:293-296
    79 B. N. Nelson. Automatic Vehicle Detection in Infrared Imagery Using a Fuzzy Inference-Based Classification System. Ieee Transactions on Fuzzy Systems. 2001,9(1):53-61
    80 S. Gupte, O. Masoud, N. P. Papanikolopoulos. Vision-Based Vehicle Classification. 2000 Ieee Intelligent Transportation Systems Proceedings. 2000:46-51
    81 J. Stephens, J. Carson, D. A. Hult, et al. Preservation of Infrastructure by Using Weigh-in-Motion Coordinated Weight Enforcement. Transportation Data Research. 2003(1855):143-150
    82 A. J. Graettinger, R. R. Kilim, M. R. Govindu, et al. Federal Highway Administration Vehicle Classification from Video Data and a Disaggregation Model. Journal of Transportation Engineering-Asce. 2005,131(9):689-698
    83 X. X. Ma, W. E. L. Grimson. Edge-Based Rich Representation for VehicleClassification. Tenth IEEE International Conference on Computer Vision, Vols 1 and 2, Proceedings. 2005:1185-1192
    84 P. J. Ji, L. W. Jin, X. T. Li. Vision-Based Vehicle Type Classification Using Partial Gabor Filter Bank. 2007 Ieee International Conference on Automation and Logistics, Vols 1-6. 2007:1037-1040
    85 A. Klausner, A. Tengg, B. Rinner. Vehicle Classification on Multi-Sensor Smart Cameras Using Feature- and Decision-Fusion. 2007 First Acm/Ieee International Conference on Distributed Smart Cameras. 2007:63-70
    86 G. H. Zhang, R. P. Avery, Y. H. Wang. Video-Based Vehicle Detection and Classification System for Real-Time Traffic Data Collection Using Uncalibrated Video Cameras. Transportation Research Record. 2007(1993):138-147
    87 B. T. Morris, M. M. Trivedi. Learning, Modeling, and Classification of Vehicle Track Patterns from Live Video. Ieee Transactions on Intelligent Transportation Systems. 2008,9(3):425-437
    88 M. Tariq, W. Balachandran, S. Song. Checkweigher Modeling Using Dynamical Subsystems. Industry Applications Conference Thirtieth IAS Annual Meeting.1995:1715-1722.
    89 T. Ono. On Dynamic Weighing of Highway Vehicles in Motion. SICE Annual Conference.2003:2108-2115.
    90徐志玲.动态公路车辆电子秤的设计.衡器. 2002,31(006):18-20
    91 N. Gagarine, I. Flood, P. Albrecht. Weighing Trucks in Motion Using Gaussian-Based Neural Networks. IJCNN, International Joint Conference on Neural Networks.1992:484-489
    92 H. B. Bahar, D. H. Horrocks. Dynamic Weight Estimation Using an Artificial Neural Network. Artificial Intelligence in Engineering. 1998,12(1-2):135-139
    93 S. M. T. Almodarresi Yasin, N. M. White. Application of Artificial Neural Networks to Intelligent Weighing Systems. IEE Proceeding Science, Measurement and Technology. 1999,146(6):265-269
    94 M. Mangeas, S. Glaser, V. Dolcemascolo. Neural Networks Estimation of Truck Static Weights by Fusing Weight-in-Motion Data. Proceedings of the Fifth International Conference on Information Fusion.2002:456-462
    95 L. Cheng, H. J. Zhang. Application of Support Vector Machine to Vehicle Weigh-in-Motion Systems Proceeding of the Third International Symposium on Instrumentation Science and Technology.2004:1196-1200
    96 W. Q. Shu. Dynamic Weighing under Nonzero Initial Conditions. Instrumentation and Measurement, IEEE Transactions on. 1993,42(4):806-811
    97 M. Niedzwiecki, A. Wasilewski. Application of Adaptive Filtering to DynamicWeighing of Vehicles. Control Engineering Practice. 1996,4(5):635-644
    98于哲峰,杨智春. EMD技术在动态称重数据处理中的应用.机械科学与技术. 2004,23(4):244-246
    99周志峰,蔡萍,许嘉,等. EMD方法在汽车动态称重中的应用.数据采集与处理. 2005,20(3):338-341
    100 Z. F. Zhou, P. Cai, R. X. Chen. Empirical Mode Decomposition for Vehicle Weigh-in-Motion System. Dynamics of Continuous Discrete and Impulsive Systems-Series B-Applications & Algorithms. 2006,13E:1788-1791
    101张君,姚恩涛,倪国芬,等.图像分类结合经验模分解和径向基函数网络在车辆动态称重中的应用.机械科学与技术2007,26(006):701-704
    102姚恩涛,季娟,张明.两轴车辆动态称重信号分析方法研究.传感器技术. 2005,24(012):22-25
    103 H. Huang Yang. Pavement Analysis and Design. University of Kentucky. Prentice Hall, inc. USA. 1993
    104 A. Kononov, H. Dieterman. A Uniformly Moving Constant Load Along a Winkler Supported Strip. European Journal of Mechanics/A Solids. 1999,18(4):731-743
    105 C. Wu, P. Shen. Dynamic Analysis of Concrete Pavements Subjected to Moving Loads. Journal of Transportation Engineering. 1996,122(5):367-373
    106 A. Papagiannakis, N. Amoah, R. Taha. Formulation for Viscoelastic Response of Pavements under Moving Dynamic Loads. Journal of Transportation Engineering. 1996,122(2):140-145
    107 Y. CHEN, Y. HUANG, C. SHIH. Response of an Infinite Timoshenko Beam on a Viscoelastic Foundation to a Harmonic Moving Load. Journal of Sound and Vibration. 2001,241(5):809-824
    108 M. Huang, D. ASCE. Dynamic Response of Plates on Elastic Foundation to Moving Loads. Journal of Engineering Mechanics. 2002,128:1016
    109 S. M. Kim, B. F. McCullough. Dynamic Response of Plate on Viscous Winkler Foundation to Moving Loads of Varying Amplitude. Engineering Structures. 2003,25(9):1179-1188
    110黄炎.弹性薄板理论.国际科技大学出版社,1992:1-15
    111 Szilard.R.板的理论和分析-经典法和数值法.中国铁道出版社,1984:3-79
    112 M. Zaman, A. Alvappillai. Contact-Element Model for Dynamic Analysis of Jointed Concrete Pavements. Journal of Transportation Engineering. 1995,121(5):425-433
    113邓学钧.车辆-地面结构系统动力学研究.东南大学学报:自然科学版. 2002,32(003):474-479
    114孙璐.运动车辆随机荷载及其激励下地面动力响应的理论研究.南京:东南大学1996
    115 R. Ervin, R. Nisonger, M. Sayers, et al. Influence of Truck Size and Weight Variables on the Stability and Control Properties of Heavy Trucks. Federal Highway Administration Report FHWA-RD-83-030. 1983,179
    116 D. Cole, A. Collop, T. Potter, et al. Spatial Repeatability of Measured Dynamic Tyre Forces. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering. 1996,210(3):185-197
    117 L. SUN. Computer Simulation and Field Measurement of Dynamic Pavement Loading. Mathematics and computers in simulation. 2001,56(3):297-313
    118 L. Sun. Optimum Design of“Road-Friendly”Vehicle Suspension Systems Subjected to Rough Pavement Surfaces. Applied Mathematical Modelling. 2002,26(5):635-652
    119 A. Preumont. Random Vibration and Spectral Analysis. Kluwer Academic Publishers,1994
    120范钦珊,殷雅俊.材料力学.清华大学出版社,2004
    121 R. Szilard.板的理论和分析.北京:中国铁道出版社1984
    122吴道悌.非电量电测技术.西安交通大学出版社,2001:51-67
    123彭春华,刘建业,刘岳峰,等.车辆检测传感器综述.传感器与微系统. 2007,26(006):4-7
    124 P. Q. Lin, J. M. Xu. Adaptive Vehicle Classification Based on Information Gain and Multi-Branch Bp Neural Networks. WCICA 2006: Sixth World Congress on Intelligent Control and Automation, Vols 1-12, Conference Proceedings. 2006:8687-8691
    125 M. Junghans, H. Jentschel. Qualification of Traffic Data by Bayesian Network Data Fusion. 2007 10th International Conference on Information Fusion.2007:1-7
    126 S. Gunn, M. Brown, K. Bossley. Network Performance Assessment for Neurofuzzy Data Modelling. LECTURE NOTES IN COMPUTER SCIENCE. 1997,1280:313-324
    127 FHWA. Traffic Monitoring Guide. US Department of Transportation. 2001
    128杨兆升,杨志宏.高速公路收费系统的车型自动分类.吉林大学学报:工学版. 2002,32(003):6-9
    129 C. Sun, S. Ritchie, S. Oh. Inductive Classifying Artificial Network for Vehicle Type Categorization. Computer-Aided Civil and Infrastructure Engineering. 2003,18:161-172
    130 G. Vachtsevanos, F. Lewis, M. Roemer, et al. Intelligent Fault Diagnosis and Prognosis for Engineering Systems. Wiley,2006:125-145
    131 J. De Sa. Pattern Recognition: Concepts, Methods, and Applications. Springer,2001
    132孙即祥.现代模式识别.国防科技大学出版社,2002:278-330
    133 W. Krzanowski. Principles of Multivariate Analysis: A User's Perspective. Oxford University Press,2000:33-83
    134 N. Baek, S. M. Park, K. J. Kim, et al. Vehicle Color Classification Based on the Support Vector Machine Method. Advanced Intelligent Computing Theories and Applications. 2007,2:1133-1139
    135 P. Paysan. Stereovision Based Vehicle Classification Using Support Vector Machines. In. MASSACHUSETTS INSTITUTE OF TECHNOLOGY 2004
    136 C. Burges. A Tutorial on Support Vector Machines for Pattern Recognition. Data Mining and Knowledge Discovery. 1998,2(2):121-167
    137 B. Scholkopf, A. Smola. Learning with Kernels. MIT press Cambridge, Mass,2002
    138 V. Vapnik. The Nature of Statistical Learning Theory. springer,2000
    139 V. Vapnik,张学工.统计学习理论的本质.北京:清华大学出版社, 2000.
    140 C. Lin, C. Chang, C. Hsu. A Practical Guide to Support Vector Classification. National Taiwan University. 2004
    141 J. Weston, C. Watkins. Support Vector Machines for Multi-Class Pattern Recognition.1999
    142 R. Rifkin, A. Klautau. In Defense of One-Vs-All Classification. The Journal of Machine Learning Research. 2004,5:101-141
    143 H. Chih-Wei, L. Chih-Jen. A Comparison of Methods for Multi-Class Support Vector Machines. Ieee Transactions on Neural Networks. 2002,13(2):415-425
    144 J. Platt, N. Cristianini, J. Shawe-Taylor. Large Margin Dags for Multiclass Classification. Advances in neural information processing systems. 2000,12(3):547-553
    145 L. Klein,戴亚平,刘征,等.多传感器数据融合理论及应用.北京:北京理工大学出版社2004.pp. 52-59
    146 H. Pan, Z. Liang, T. Anastasio, et al. A Hybrid Nn-Bayesian Architecture for Information Fusion. ICIP.1998:368-371
    147 Z. L. Cai, G. Y. Jiang, Y. Liu. Algorithms of Svm-Aid Based on Data-Level and Decision-Making-Level Data Fusion Methods. 2008 Chinese Control and Decision Conference, . 2008:3851-3856
    148 D. Hall, J. Llinas. An Introduction to Multisensor Data Fusion. Proceedings of the IEEE.1997:6-23
    149 O. Chapelle, V. Vapnik. Model Selection for Support Vector Machines. Co. M I T Press,1999:230-236
    150 O. Chapelle, V. Vapnik, O. Bousquet, et al. Choosing Multiple Parameters for Support Vector Machines. Machine Learning. 2002,46(1):131-159
    151 D. Anguita, S. Ridella, F. Rivieccio, et al. Hyperparameter Design Criteria forSupport Vector Classifiers. Neurocomputing. 2003,55(1-2):109-134
    152 F. Friedrichs, C. Igel. Evolutionary Tuning of Multiple Svm Parameters. Brugge, BELGIUM. Elsevier Science Bv,2004:107-117
    153 S. Keerthi, C. Lin. Asymptotic Behaviors of Support Vector Machines with Gaussian Kernel. Neural Computation. 2003,15(7):1667-1689
    154王鹏,朱小燕.基于RBF核的SVM的模型选择及其应用.计算机工程与应用. 2003,39(024):72-73
    155 D. Donoho. De-Noising by Soft-Thresholding. IEEE transactions on information theory. 1995,41(3):613-627
    156T. Connor, E. Brien, B. Jacob. An Experimental Investigation of Spatial Repeatability. International Journal of Heavy Vehicle Systems. 2000,7(1):64-81
    157 U. Brannolte, W. Griesbach, N. Youssef, et al. Wheel Load Measurement, Wim, Accuracy, Top Trial. Proceedings of the 7th International Symposium of Heavy Vehicle Weights & Dimensions,. Delft, TheNetherlands,2002:131-139
    158 V. Dolcemascolo. Performance of Multiple-Sensor Weigh-in-Motion Systems by Testing. Proceedings of the Final Symposium of the project WAVE.1999:345-354
    159 A. González, A. Papagiannakis, E. O'Brien. Evaluation of an Artificial Neural Network Technique Applied to Multiple-Sensor Weigh-in-Motion Systems. Transportation Research Record. 2003,1855(-1):151-159
    160 Y. Dibike, S. Velickov, D. Solomatine, et al. Model Induction with Support Vector Machines: Introduction and Applications. Journal of Computing in Civil Engineering. 2001,15(3):208-216
    161 D. Cebon. Handbook of Vehicle Road Interaction. Vehicle System Dynamics. 1999,2:65-76
    162 B. Jacob, E. O’Brien, S. Jehaes. Weigh-in-Motion of Road Vehicles: Final Report of the Cost 323 Action (Wim-Load). In. LCPC Publications, Paris 2002
    163 M. R. John. Fusion Ofmulti-Sensor Data. Journal of Robotics Research. 1998,7(6):78-96
    164翟翌立,戴逸松.多传感器数据自适应加权融合估计算法的研究.计量学报. 1998,19(001):69-75
    165李战明,陈若珠,张保梅.同类多传感器自适应加权估计的数据级融合算法研究.兰州理工大学学报. 2006,32(004):78-82
    166万树平,潘鹏.基于信息熵的多传感器数据的融合方法.传感器与微系统. 2008(05):64-66
    167刘敏华,萧德云.基于信息熵的多传感器数据分类方法.控制与决策. 2006,21(4):410-414
    168 A. C. S. Chung, H. C. Shen. Integrating Dependent Sensory Data. Proc of the 1998IEEE Int Conf on Robotics and Automation. Belgium,1998:3546-3551
    169 G. Gonzalez. Soft Sensors for Processing Plants. Proceeding of the Second International Conference on Intelligent Processing and Manufacturing of Materials.1999:59-69
    170尹力.多传感器数据融合方法在系统建模中的应用.系统仿真学报. 2001,13:62-65
    171 K. Browning, P. Panagi, E. Dicks. Multi-Sensor Synthesis of the Mesoscale Structure of a Cold-Air Comma Cloud System. Meteorological Applications. 2002,9(02):155-175
    172王耀南,李树涛.多传感器信息融合及其应用综述.控制与决策. 2001,16(005):518-522
    173 A. Smola, B. Sch?lkopf. A Tutorial on Support Vector Regression. Statistics and Computing. 2004,14(3):199-222
    174 S. Gunn. Support Vector Machines for Classification and Regression. ISIS technical report. 1998,14
    175 V. Cherkassky, Y. Ma. Practical Selection of Svm Parameters and Noise Estimation for Svm Regression. Neural Networks. 2004,17(1):113-126

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700