基于小波分析的测量信号处理技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在实际生产生活中,人们经常要面对大量的动态测量信号处理问题,实时高效准确的处理结果一直是人们所追求的目标。小波分析理论由于自身所具有的分时分频精细表达和多尺度多分辨率分析等独特优势,已经逐渐发展成为动态测量信号处理领域中的重要技术手段。
     然而,小波分析理论在实际应用中仍旧存在着一些限制和缺陷,其中比较突出的有:如何选择最合适的小波基函数;如何选择有用信号小波系数的适当阈值;如何解决经典DWT导致的方向性差以及平移不变性的缺失等等。对这些问题的妥善解决是保证小波分析理论在实际工程中得以实用化的关键,具有重要的理论价值和工程意义。
     本文在大量查阅国内外相关文献的基础上,对小波函数的特性、小波变换的性质以及相关动态测量信号的特点进行了深入研究,提出了一些有成效的解决措施,通过数值计算证明了设计思路的正确性,并在实际工程的应用中取得了满意效果。
     在详细分析各种常见小波的特性,深入研究选择小波基函数的七种测量标准基础之上,提出了一种优化方案,通过设计最大化能量-Shannon熵比和最小化极值信息测量指标,来用于评价最合适小波基函数的选择。在充分发挥原有七种选择标准的优点同时,也很好的解决了它们之间的冲突。数值实验表明,所设计的综合标准简单实用,易于理解,符合小波基函数的选择要求。
     通过详细分析小波变换去噪的机理,针对经典小波去噪技术的过程和特点展开讨论。鉴于小波阈值去噪法在最小均方误差意义下可达近似最优,且框架小波可借助相关信息来补偿因噪声干扰而丢失的某些含有重要信息的小波系数,提出了一种基于小波阈值去噪法的改进SURE- LET框架小波去噪技术,数值实验表明,该技术能自适应寻找全局最优,避免过早收敛,在保证恢复信号全貌的同时实现去噪。在实际工程中的应用也取得了较好效果。
     详细研究和分析各种基于小波变换模极大值的信号检测技术,发现了这类技术对于弱态信号检测能力很差,且对方向性的较高要求导致二维图像检测结果产生伪边界现象。通过对小波系数相关性去噪法的分析,将小波熵引入到信号检测技术领域,选择复Morlet小波作为小波基函数,提出了一种适用于检测微弱信号边缘特性的复Morlet小波熵检测技术,数值试验和工程应用均表明,对于微弱信号的检测效果明显好于小波变换模极大值信号检测法。
     通过详细研究和分析各种基于标准线性小波变换的图像信号融合技术,提出了一种基于无下采样极值提升方案的非线性离散小波变换的融合技术。首先基于小波变换模极大值去噪思想,设计了极值提升小波方案,在此基础上利用等效易位定理进行无下采样移不变扩展,最后确定了相应的融合规则。数值试验表明,该技术计算复杂度小、构造简单易实现、具有较好的去噪效果和融合稳定性,对系统测量精度的提高帮助更大。
     通过对各类图像信号质量评价标准的详细分析和研究,基于人类视觉系统的要求,提出一个基于小波系数的图像质量评价标准,即小波子带的加权归一化均方差,借助每个图像子带中小波系数的加权归一化均方差的总和来评价图像的质量。所选择的每一个图像子带的权重都反映了其在图像上的感知刺激,可自适应地测量图像的整体和局部变形。数值试验表明,该标准与HVS评价效果相一致,是一种较好的全参考客观质量评价标准。
To get an accurate and real-time process result is always a best target what people hope. The Wavelet analysis theory is gradually developing to become one of important technology in the dynamic measurement signal process field by its advantage of multiresolution and multidimension analysis on time-frequent.
     However, there are many problems which still limit the practice application of Wavelet analysis theory, such as the problem how choose the rightist Wavelet base function and the best threshold value, shortage of the directionality and the shift invariance due to classics DWT, and so on. How to solve these problems has been the key that ensure the Wavelet analysis theory to become utility in practical applications. It must show great academic value and practical importance.
     Through collecting and studying of many documents about Wavelet analysis theory, this thesis makes studies of the characteristic of Wavelet base function, the character of Wavelet Transform and the property of correlation dynamic measurement signal. Then, some effective resolving methods and the accurate real-time improvement algorithms are proposed, the correctness of this idea is testified by some numerical experiments.
     The basis properties of various wavelet families are first introduced. Seven measures are then studied for base wavelet selection. To resolve a conflict that the results obtained from these measures are not consistent, two comprehensive optimization index, namely the maximum energy-to-Shannon entropy ratio and the minimum minmax information measure, are developed and evaluated for appropriate base wavelet selection. Numerical experiment shows they properly meet with need of base wavelet selection.
     The denoising mechanism of Wavelet Transform is detailed analysis, process and characteristic of the classics Wavelet-based denoising technology is studied. Because the Wavelet-based Threshold value deniosing can reach similar optimum on minimum mean square error, and framelet transform can remedy some wavelet coefficients with vital information. So a framelet denoising technology with the improvement SURE-LET based on Wavelet-based Threshold value deniosing is proposed. Numerical experiment shows it can seek global optimum by self- adapting and imply denoising based on keep the signal completeness.
     The various maximum-modulus of Wavelet Transform-based signal detection technology are detailedly studied and found not to detect for faint signal. Following coefficient correlation of Wavelet Transform-based, Wavelet entropy is lead into signal detection technology field, and choosing complex Morlet as the rightest Wavelet base function. So a complex Morlet Wavelet-based Wavelet entropy detection technology for faint signal is proposed. Numerical experiment shows the effects of this algorithm obvious surpass over maximum-modulus of Wavelet Transform-based signal detection technology.
     By studying and analysing the various standard linearity Wavelet-based image signal fusion technology detailedly, a maximum lifting scheme-based undecima- ted nonlinearity discrete wavelet transform signal fusion technology is proposed. First maximum lifting scheme is designed according to maximum-modulus of Wavelet Transform. Then the shift invariance expansion is carried out by Noble Identities theorem based on maximum lifting scheme. At last fusion rule is settled. The numerical experiment shows the merit of this algorithm is only involving in integer calculation, and better for the hardware realization.
     According to the concepts of Human Visual System(HVS), the weight for each subband is chosen to reflect its perceptual impact on the image, which measures the distortions in the global structure and local details of an image in a more balanced way automatically. So a Image Quality Metric(IQM)called Weighted Normalized Mean Square Error of wavelet subbands(WNMSE)is proposed. WNMSE uses the weighted sum of the normalized mean square errors of wavelet coefficients to assess the quality of an image, and can be calculated in the middle of compression without reconstructing the image. Numerical experiment shows that WNMSE has better performance than both the legacy Peak Signal-to- Noise Ratio(PSNR)and the well referenced Structural SIMilarity(SSIM).
引文
1于连栋.动态测量系统现代建模理论研究[D].合肥工业大学博士学位论文,合肥, 2003: 1-9
    2王德华.小波分析及其应用的几个问题[D].湖南大学博士学位论文,长沙, 2006: 1-7
    3丁兴号.基于小波分析的视觉检测技术研究[D].合肥工业大学博士学位论文,合肥, 2003: 1-10
    4汪学刚,张明友.现代信号理论[M].北京:电子工业出版社, 2005: 162-201
    5 J. Morlet. Wave Propagation and Sampling Theory and Complex Wave[J]. Geophysics, 1982, 47(2): 222-236
    6 Y. Meyer. Wavelet with Compact Support[M]. New York: Academic Press, 1986: 1-8
    7 S. Mallat. Multiresolution Approximations and Wavelet Orthonormal Bases of L~2(R)[J]. Trans. Amer. Math. Soc.,1989, 315: 69-87
    8 S. Mallat. Multiresolution Representation and Wavelets[D]. Ph. D. Thesis, Univ. of Pennsylvania, Philadelphia, 1998
    9 S. Mallat. A Theory of Multiresolution Signal Decomposion: The Wavelet Representation[J]. IEEE Trans. PAMI, 1989, 11: 674-693
    10 I. Daubechies. Orthonormal Bases of Compactly Supported Wavelets[J]. Comm. On Pure and Appl. Math,1988, 41(7): 909-996
    11 J. Lin, L. S. Qu. Feature Extraction Based on Morlet Wavelet and its Application for Mechanical Fault Diagnosis[J]. Journal of Sound and Vibration, 2000, 23(41): 135-148
    12 H. A. Garberson. Machinery Diagnostic Application of the Morlet Wavelet Distribution[C]. Proceeding of SPIE, 2001, 4389: 232-242
    13 I. Daubechies. Ten Lectures on Wavelet[C]. CBMS-NSF Regional Conference Series in Applied Mathematics, SIAM, Philadelphia, PA, 1992
    14 N. G. Nikolaou, I. A. Antoniadis. Demodulation of Vibration Signals Generated by Defects in Rolling Element Bearings Using Complex Shifted Morlet Wavelets[J]. Mechanical Systems and Signal Processing, 2005, 4: 1-24
    15 H. X. Chen, S. K. Chua,G. H. Lim. Adaptive Wavelet Transform for VibrationSignal Modeling and Application in Fault Diagnosis of Water Hydraulic Motor[J]. Mechanical Systems and Signal Processing, 2002, 16(4): 677-694
    16 G. P. Wu,W. Y. Huang,Z. Ren. New Method of the Generator Inter-Turn Fault Protection by Shifting–Phase Wavelet[J]. Proceedings of the Chinese Society of Electrical Engineering, 2001, 21(6): 15-18
    17 J. S. Chen, D. J. Yu, Y. Yang. Application of An Impulse Response Wavelet to Fault Diagnosis of Rolling Bearings[J]. Mechanical Systems and Signal Processing, 2005, 9: 1-10
    18 Z. K. Peng,F. L. Chu. Application of the Wavelet Transform in Machine Condition Monitoring and Fault Diagnostics: A Review with Bibliography[J]. Mechanical Systems and Signal Processing, 2004, 18: 199-211
    19 L. Jing. Feature Extraction Based on Morlet Wavelet and Its Application for Mechanical Fault Diagnosis[J]. Journal of Sound and Vibration, 2000, 234(1): 135-148
    20 M. Haase,J. Widjajakusuma. Damage Identification Based on Ridges and Maxima Lines of the Wavelet Transform[J]. International Journal of Engineering Science, 2003, 41: 1423-1433
    21 B. T. Corona,M. D. Hind,J. N. Torry. Effects of Respiration on Heart Sounds Using Time-Frequency Analysis[C]. Conference of Computers in Cardiology, 2001: 457-460
    22 Shyu Hsuen-Chyun, Sun Yuh Sien. Construction of a Morlet Wavelet Power Spectrum[J]. Multidimensional Systems and Signal Processing, 2002, 13(1): 628-636
    23岳林.动态测试中信号预处理方法研究的虚拟仪器实现[D].南京航空航天大学博士学位论文,南京, 2003: 1-13
    24 L. Yue, Q. G. Fei, L. M. Zhang. Improvement Accuracy of System Dentification Based on Morlet Wavelet[J]. Transactions of Nanjing University of Aeronautics&Astronautics, 2005, 22(3): 206-211
    25 S. J. Huang, C. T. Hsieh. Application of Continuous Wavelet Transform for Study of Voltage Flicker-Generated Signals[J]. IEEE Transactions on Aerospace and Electronic Systems, 2000, 36(3): 925-932
    26 D. Labat,R. Ababou,A. Mangin. Rainfall-Runoff Relations for Karstic Springs, Part II: Continuous Wavelet and Discrete Orthogonal Multi- resolution Analyses[J]. Journal of Hydrology, 2000, 238(3-4): 149-157
    27 S. J. Huang,C. T. Hsieh. Visualizing Time-Varying Power System Harmonics Using a Morlet Wavelet Transform Approach[J]. Electric Power Systems Research, 2001, 58(2): 81-88
    28 S. Liu, T. Y. Li, Wostenkuhler. Detection and Prediction of Transformer Inrush Signal in Railway Applications[C]. Proceedings of the International Conference on Systems Science, 2001, 3: 168-175
    29 X. D. Li. Wavelet Transform for Detection of Partial Fringe Patterns Induced by Defects in Nondestructive Testing of Holographic Interferometry and Electronic Speckle Pattern Interferometry[J]. Optical Engineering, 2000, 39(10): 2821-2827
    30 A. Agneni. On the Use of the Gauss Filter in Modal Parameter Estimation[J]. Mechanical Systems and Signal Processing, 2000, 14(2): 193-204
    31 J. Kardies, M. N. Ta, M. Berthillier. Modal parameter estimation based on the wavelet transform of output data[J]. Archive of Applied Mechanics, 2004, 73: 718-733
    32任宜春,邓寿昌,仇一颗.基于小波分析的系统识别研究[J].湘潭大学自然科学学报, 2004, 26(2): 56-59
    33徐亚兰,陈建军,胡太彬.系统模态参数辨识的小波变换方法[J].西安电子科技大学学报(自然科学版), 2004, 31(2): 281-285
    34邹甲军,冯志华.基于小波脊的MDOF系统的模态参数识别[J].苏州大学学报(自然科学版), 2004, 20(3): 35-39
    35 J. R. Hartin. Application of a Wavelet Based FRF to the Analysis of a Bilinear Structure[C]. Proceedings of the International Modal Analysis Conference-IMAC, 2001, 2: 1414-1419
    36曹豫宁,李永丽,梅云.基于小波变换的频谱细化方法在电动机故障检测中的应用[J].继电器, 2002, 30(6): 1-3
    37卢新城,龚沈光,周骏.基于Morlet小波的高分辨率信号频谱估计[J].武汉理工大学学报, 2002, 26(5): 622-624
    38 I. Daubechies, W. Sweldens, Factoring Wavelet Transforms into Lifting Steps [J]. Fourier J. Anal. Appl, 1998, 4(3): 245-267
    39 E. J. Candes, D. L. Donoho. Curves and Surfaces[M]. Nashville, TN, Vanderbilt University Press, 2000: 105-120
    40 E. J. Candes, L. Demanet, D. L. Donoho. Fast Discrete Curvelet Transforms [J].Multiscale Model. Simul., 2006, 5(3): 861-899
    41 C. K. Chui. Wavelets: A Tutorial in Theory and Applications[M]. Academic Press, 1992: 603-654
    42 S. Oraintara, T. D. Tran, P. N. Heller. Lattice Structure for Regular Paraunitary Linear-Phase Filterbanks and M-Band Orthogonal Symmetric Wavelets[J]. IEEE Traps. On Signal Processing, 2001, 49: 2659-2672
    43 H. O. Kim, J. K. Lim. On Frame Wavelets Associated with Frame Multi- resolution Analysis[J]. Appl. Comput. Harmon. Anal., 2001, 10: 61-70
    44 D. Wei, T. D. Tran, S. Oraintara. Integer and Rational-Coefficient M-Band Wavelet[C]. IEEE International Symposium on Circuits and Systems, 2001, 3: 425-428
    45 M. Acharyya, R. K. De, M. K. Kundu. Segmentation of Remotely Sensed Images Using Wavelet Features and Their Evaluation in Soft Computing Framework[J]. IEEE Trans. on Geoscience and remote sensing, 2003, 41(12): 2900-2905
    46 M. Acharyya, M. K. Kundu. Document Image Segmentation Using Wavelet Scale-Space Features[J]. IEEE Tran. On Circuits and Systems for Video Technology, 2002, 12(12): 1117-1127
    47 T. N. T. Goodman. Interpolatory Hermite Spline Wavelet[J]. J. Approx. Theory, 1994, 78: 174-189
    48 W. Sweldens. The Lifting Scheme: A Chustom-Design of Biothogonal Wavelets[J]. Applied and Computational Harmonic Analysis, 1996, 3(2): 186-200
    49 R. C. Alderbank, I. Daubechies, W. Sweldens. Wavelet Transform That Map Integers to Integers[J]. Applied and Computational Harmonic Analysis, 1998, 5(3): 332-369
    50 E. J. Candes. Ridgelets: Theory and Applications[D]. Ph. D. dissertation, Dept. Statistics, Stanford Univ., Stanford, CA, 1998
    51 E. J. Candes, D. L. Donoho. New Tight Frames of Curvelets and Optimal Representations of Objects with Piecewise-C2 Singularities[J]. Comm. on Pure and Applied Mathematics, 2004, 57: 219-266
    52 P. L. Shui, Z. Bao. M-Band Compactly Supported Orthogonal Symmetric Interpolating Sealing Functions[J]. IEEE Trans. on Signal Processing, 2001, 49: 1704-1733
    53戴亚平,刘征,郁光辉译著.多传感器数据融合理论及应用[M].北京:北京理工大学出版社, 2004
    54王海辉,彭嘉雄,吴巍.基于小波包变换的遥感图像融合[J].中国图象图形学报, 2002, 7(9): 932-937
    55 W. J. Zeng, S. Daly. An Overview of the Visual Optimization Tools in JPEG 2000[J]. ELSEVIER, Signal Processing: Image Communication, 2002, 17(1): 85-104
    56 S. Qian. Time-Frequency and Wavelet Transforms[M]. Prentice Hall PTR, New Jersey, 2002
    57 N. G. Kingsbury. A Dual-Tree Complex Wavelet Transform with Improved Orthogonal and Symmetry Properties[C]. Proc. ICIP, Vancouver, 2000: 11-13
    58冯象初,甘小冰,宋国乡.数值泛函与小波理论[M].西安:西安电子科技大学出版社, 2002: 15-50
    59陈武凡.小波分析及其在图像处理中的应用[M].北京:科学出版社, 2002: 34-67
    60冉启文.小波变换与分数傅立叶变换理论及应用[M].哈尔滨:哈尔滨工业大学出版社, 2003: 25-41
    61 X. Lou, K. A. Loparo. Bearing Fault Diagnosis Based on Wavelet Transform and Fuzzy Inference[J]. Mechanical Systems and Signal Processing, 2004, 18: 1077-1095
    62 N. G. Nikolaou, I. A. Antoniadis. Rolling Element Bearing Fault Diagnosis Using Wavelet Packets[J]. NDT&E International, 2002, 35: 197-205
    63 J. A. Leehan, J. F. Lerallut. Selection of Biorthogonal Filters for Image Compression of MR Images Using Wavelet Base[J]. Medical Engineering & Physics, 2000, (22): 335-343
    64 H. O. Kim, R. Y. Kim. Characterizations of Biorthogonal Wavelets which are Associated with Biorthogonal Multiresolution Analyses[J]. Applied and Computational Harmonic Analysis, 2001, (11): 263-272
    65 R. Yan, R. X. Gao. An Efficient Approach to Machine Health Diagnosis Based on Harmonic Wavelet Packet Transform[J]. Robotics and Computer- Integrated Manufacturing, 2005, 21: 291-301
    66 R. Yan, R. X. Gao. Generalized Harmonic Wavelet as an Adaptive Filter for Machine Health Diagnosis[C]. Proceedings of SPIE International Sym- posium on Sensors and Smart Structures Technologies for Civil, Mechanical and Aerospace Systems, San Diego, CA. 2005: 65-87
    67 Q. Sun, Y. Tang. Singularity Analysis Using Continuous Wavelet Transform for Bearing Fault Diagnosis[J]. Mechanical Systems and Signal Processing, 2002, 16: 1025-1041
    68 J. Lin, L. Qu. Feature Extraction Based on Morlet Wavelet and Its Applica- tion for Mechanical Fault Diagnosis[J]. Journal of Sound and Vibration, 2000, 234(1): 135-148
    69 R. Hochmuth. Wavelet Characterizations for Anisotropic Besov Spaces[J]. Applied and Computational Harmonic Analysis, 2002, (12): 179-208
    70 R. Q. Jin, J. Z. Wang, D. X. Zhang. Compactly Supported Wavelet Bases for Sobolev Spaces[J]. Applied and Computational Harmonic Analysis, 2003, (15): 224-241
    71 S. Mallat. A Wavelet Tour of Signal Processing, 2nd Edition[M]. Academic Press, Inc., New York, 1999
    72孙延奎.小波分析及其应用[M].北京:机械工业出版社, 2005: 19-43
    73 I. Daubechies. Orthogonal Bases of Compactly Supported Wavelets[J]. Comm. Pure Appl. Math., 1988, 41: 909-966
    74 L. W. Lowell, N. Anastasios, Venetsanopoulos. Biorthogonal Nearly Coiflet Wavelet for Image Compression[J], Signal Processing: Image Commutation, 2001, (16): 859-869
    75 T. X. Huang. Biorthogonal Wavelets with Certain Regularities[J]. Applied and Computational Harmonic Analysis, 2001, (11): 227-242
    76 A. Cohen, I. Daubechies, J. C. Feauveau. Biorthogonal Bases of Compactly Supported Wavelets[J]. Commun. Pure Appl. Math., 1992, 45: 485-560
    77 A. Z. Averbuch, V. A. Zheludev. Lifting Scheme for Biorthogonal Multi- wavelets Originated from Hermite Splines[J]. IEEE Trans. Signal Processing, 2002, 50(3): 487-500
    78 Wickerhauser, V. Mladen. Progress in Wavelet Algorithms and Applications [J]. SPIE, 2002, 4738: 157-168
    79 W. X. Yang, X. M. Ren. Detecting Impulses in Mechanical Signals by Wave- lets[J]. EURASIP Journal on Applied Signal Processing, 2004, 8: 1156-1162
    80 E. L. Schukin, R. U. Zamaraev, L. I. Schukin. The Optimization of Wavelet Transform for The Impulsive Analysis in Vibration Signals[J]. Mechanical Systems and Signal Processing, 2004, 18(6): 1315-1333
    81 D. Ho, R. B. Randall. Optimization of Bearing Diagnostic Techniques Using Simulated and Actual Bearing Fault Signals[J]. Mechanical Systems andSignal Processing, 2000, 14(5): 763-788
    82蒋鹏.小波理论在信号去噪和数据压缩中的应用研究[D].浙江大学博士学位论文,杭州, 2004: 23-56
    83 S. Mallat. A Theory for Multiresolution Signal Decomposition: the Wavelet Representation[J]. IEEE Trans. Pattern Analysis and Machine Intelligence 1989, 11: 674-693
    84 S. Mallat, S. Zhong. Characterization of Signal from Multiscale Edges[J]. IEEE Trans. Pattern Analysis and Machine Intelligence, 1992, 14: 710-732
    85 S. Mallat, W. L. Hwang. Singularity Detection and Processing with Wave- lets[J]. IEEE Trans. Information Theory, 1992, 38(2): 617-643
    86 D. L. Donoho, I. M. Johnstone, G. Kerkyacharian. Wavelet Shrinkage: Asymptotical[J]. J. Roy. Stat. Soc., Ser B, 1995, 57: 301-369
    87 D. L. Donoho, I. M. Johnstone. Adapting to Unknown Smoothness via Wavelet Shrinkage[J]. Journal of the American Statistical Association, 1995, 90(432): 1200-1224
    88 H. Gao, A. Bruce. Waveshrink with Firm Shrinkage[J]. Statistic Sinica, l997, (7): 855-875
    89 M. Bertero, P. Boccacci, A. Custo. A Fourier-Based Method for the Restoration of Chopped and Nodded Images[J]. Astronomy and Astrophysics, 2003, 406: 765-772
    90 L. Bar, N. Sochen, N. Kiryati. Image Deblurring in the Presence of Salt-and-Pepper Noise[C]. In Proceeding of 5th International Conference on Scale Space and PDE Method in Computer Vision, Lecture Notes in Comput. Sci., Springer, Berlin, 2005, 3439: 107-118
    91 M. Bertero, P. Boccacci, M. Robberto. Inversion of Second-Difference Operators with Application to Infrared Astronomy[J]. Inverse Problem, 2003, 19: 1427-1443
    92 A. Bortoletti, C. Di Fiore, S. Fanelli. A New Class of Quasi-Newtonian Method for Optimal Learning in MLP-Networks[J]. IEEE Trans. on Neural Networks, 2003, 14: 263-273
    93 L. Borup, R. Gribonval, M. Nielsen. Bi-Framelet Systems with Few Vanishing Moments Characterize Besov Spaces[J]. Appl. Comput. Harmon. Anal., 2004, 17: 3-28
    94 J. F. Cai, R. H. Chan, B. Morini. Minimization of An Edge-PreservingRegularization Functional by Conjugate Gradient Type Methods[C]. Mathematics and Visualization in Image Processing Based on Partial Differential Equations, Springer-Verlag, Berlin, 2007: 109-122
    95 R. H. Chan, T. F. Chen, L. Shen. Wavelet Algorithms for High-Resolution Image Reconstruction[J]. SIAM J. Sci. Comput., 2003, 24: 1408-1432
    96 R. H. Chan, C. W. Ho, C. Y. Leung. Minimization of Detail-Preserving Regularization Functional by Newton’s Method with Continuation[C]. In Proceedings of IEEE International Conference on Image Processing, Genova, Italy, 2005: 125-128
    97 X. P. Zhang, D. Desaim. Adaptive Denoising Based on Sure Risk[J]. IEEE signal processing letters, 1998, 5(10): 265~267
    98 F. Luisier, T. Blu, M. Unser. A New SURE Approach to Image Denoising: Interscale Orthonormal Wavelet Thresholding[J]. IEEE Trans. on Image Processing, 2007, 16(3): 593-606
    99 R. H. Chan, C. W. Ho, M. Nikolova. Convergence of Newton’s Method for A Minimization Problem in Impulse Noise Removal[J]. J. Comput. Math., 2004, 22: 168-177
    100 R. H. Chan, C. W. Ho, M. Nikolova. Salt-and Pepper Noise Removal by Median-Type Noise Detector and Edge-preserving Regularization[J]. IEEE Trans. on Image Process, 2005, 14: 1479-1485
    101 R. H. Chan, C. Hu, M. Nikolova. An Iterative Procedure for Removing Random-Valued Impulse Noise[J]. IEEE Signal Proc. Letters, 2004, 11: 921-924
    102 R. H. Chan, S. D. Riemenschneider, L. Shen. Tight Frame: An Efficient Way for High-Resolution Image Reconstruction[J]. Appl. Comput. Harmon. Anal., 2004, 17: 91-115
    103 I. Daubechies, M. Defrise, C. De Mol. An Iterative Thresholding Algorithm for Linear Inverse Problems with A Sparsity Constraint[J]. Comput. Pure Appl. Math., 2004, 57: 1413-1457
    104 I. Daubechies, B. Han, A. Ron. Framelets: MRA-Based Constructions of Wavelet Frames[J]. Appl. Comput. Harmon. Anal., 2003, 14: 1-46
    105 L. Shen, I. Kakadiaris, M. Papadakis. Image Denoising Using A Tight Frame[J]. IEEE Trans. on Image Process., 2006, 15: 1254-1263
    106 S. S. Capizzano. A Note on Antireflective Boundary Conditions and Fast Deblurring Models[J]. SIAM J. Sci. Comput., 2004, 25: 1307-1325
    107 T. Blu, F. Luisier. The SURE-LET Approach to Image Denoising[J]. IEEE Trans. on Image Processing, 2007, 16(11): 2778-2786
    108 C. Stein. Estimation of the Mean of A Multivariate Normal Distribution[J]. The Annals of Statistics, 1981, 9: 1135-1151
    109 D. L. Donoho. De-Noising via Soft-Thresholding[J]. IEEE Trans. Inform. Theory, 1995, 41(4): 613~627
    110 M. Bertero, P. Boccacci. Introduction to Inverse Problem in Imaging[M]. Institute of Physics Publishing, Bristol, 1998: 125~150
    111 F. Ykhlef, Arezkim. A Wavelet Denoising Method to Improve Detection with Ultrasonic Signal[J]. IEEE ICIT, 2004: 1422~1425
    112 F. Luisier, T. Blu, M. Unser. A New SURE Approach to Image Denoising: Interscale Orthonormal Wavelet Thresholding[J], IEEE Trans. Image Process., 2007, 16(3): 593–606
    113何正友,刘志刚.小波熵理论及其在电力系统中应用的可行性探讨[J].电网技术, 2004, 28(21): 17~21
    114 S. Mallat, L. Hwangw. Singularity Detection and Processing with Wavelets[J]. IEEE Transactions on Information Theory, 1992, 38(2): 617~643
    115 T. C. Hsung, P. K. Lund. Denoising by Singularity Detection[J]. IEEE Transaction on Signal Processing, 1999, 47(11): 3139~3144
    116章毓晋.图像处理和分析[M].北京:清华大学出版社, 2002: 181-187
    117孙兆林. MATLAB6.x图像处理[M].北京:清华大学出版社, 2005: 240-245
    118叶枫.基于灰度图像的边缘检测方法研究[D].西安:西北工业大学硕士学位论文,西安, 2003: 16-24
    119印欣运,何永勇.小波熵及其在状态趋势分析中的应用[J].振动工程学报, 2004, 17(2): 165~169
    120 H. A. Alnashash, J. S. Paul. Wavelet Entropy Method for EEG Analysis: Application to Global Brain Injury[C]. IEEE EMBS Conference on Neural Engineering, 2003, 3(20~22): 348~351
    121 Z. Y. He, Y. M. Cai. A Study of Wavelet Entropy Theory and Its Application in Power System[J]. IEEE International Conference on Intelligent Mechatronics and Automation, 2004, 8: 847~851
    122 R. L. Findeisen, F. Allgower, B. A. Foss. State and Output Feedback Nonlinear Model Predictive Control: An Overview[J]. European Journal of Control, 2003, (9): 190-206
    123 D. L. Hall, J. Llinas. Handbook of Multisensor Data Fusion[M]. New York: CRC Press, 2001: 37-65
    124戴亚平,刘征,郁光辉译著.多传感器数据融合理论及应用[M].北京:北京理工大学出版社, 2004: 59-82
    125钱永兰,杨邦杰,雷延武.数据融合及其在农情遥感监测中的应用与展望[J].农业工程学报, 2004, 20(4): 286-290
    126 P. J. Burt, E. H. Adelson. The Laplacian Pyramid as A Compact Image Code[J]. IEEE Transactions on Communications, 1983, COM-31: 532–540
    127 P. J. Burt, E. H. Adelson. Merging Images Through Pattern Decomposi- tion[C]. In Proc. of SPIE, 1985, 575: 173-181
    128 A. Toet. Image Fusion by A Ratio of Low-Pass Pyramid[J]. Pattern Recognition Letters, 1989, 9(4): 245-253
    129 A. Toet, L. J. Ruyven, J. M. Valeton. Merging Thermal and Visual Images by A Contrast Pyramid[J]. Optical Engineering, 1989, 28(7): 789-792
    130 A. Toet, J. K. Ijspeert, A. M. Waxman. Fusion of Visible and Thermal Imagery Improves Situational Awareness[C]. In Proc. of SPIE on Enhanced and Synthetic Vision, 1997, 3088: 177-188
    131 P. J. Burt. A Gradient Pyramid Basis for Pattern Selective Image Fusion[C]. In Proc. of Society for Information Display Symposium. San Jose, USA: SID Press, 1992: 467-470
    132 P. J. Burt, R. J. Kolczynski. Enhanced Image Capture Through Fusion[C]. In Proc. of Int. Conf. on Computer Vision, Berlin, Germany, 1993: 173-182
    133 A. Toet. A Morphological Pyramidal Image Decomposition[J]. Pattern Recognition Letters, 1989, 9(4): 255-261
    134 J. Nùňez, X. Otazu, O. Fors. Multiresolution-Based Image Fusion with Additive Wavelet Decomposition[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(3): 1204-1211
    135 X. Yang, W. H. Yang, J. H. Pei. Different Focus Points Images Fusion Based On Wavelet Decomposition[J]. Acta Electronica Sinica, 2001, 29(6): 846-848
    136 H. Y. Quan, Y. Yang, N. H. Song. An Image Fusion Approach Based On Second Generation Wavelet Transform[J]. System Engineering and Electronics, 2001, 23(5): 74-79
    137 J. H. Park, K. K. Kim, Y. K. Yang. Image Fusion Using Multiresilution Analysis[J]. Geoscience and Remote Sensing Symposium, 2001, 2: 709-711
    138 D. C. Tseng, Y. L. Chen, M. S. C. Liu. Wavelet-Based Multispectral Image Fusion[J]. Geoscience and Remote Sensing Symposium, 2001, 4: 1956-1958
    139 D. M. Yan, Z. M. Zhao. Wavelet Decomposition Applied to Image Fusion[C]. In Proc. Int. Conf. on Info-tech and Info-net, 2001: 291-295
    140 G. Pajares, J. M. de la Cruz. A wavelet-Based Image Fusion Tutorial[J]. Pattern Recognition. 2004, 37(9): 1855-1872
    141 K. Amolins, Y. Zhang, D. Peter. Wavelet Based Image Fusion Techniques - An Introduction, Review and Comparison[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2007, 62(4): 249-263
    142 S. G. Mallat. A Theory for Multiresolution Signal Decomposition: the Wavelet Representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989, 11(7): 674-693
    143 H. Li, B.S. Manjunath, S. Mitra. Multisensor Image Fusion Using the Wavelet Transform[J]. Graphical Models and Image Process, 1995, 57 (3): 235-245
    144 E. P. Simoncelli, W. T. Freeman, E. H. Adelson. Shiftable Multiscale Transforms[J]. IEEE Transactions on Information Theory, 1992, 38(2): 587-607
    145 M. J. Shensa. The Discrete Wavelet Transform: Wedding theàTrous and Mallat Algorithms [J]. IEEE Transactions on Signal Processing, 1992, 40(10): 2464-2482
    146 P. Hill, N. Canagarajah, D. Bull. Image Fusion Using Complex Wavelets[C]. In Proc. of British Machine Vision Conference, 2002: 487-496
    147 N. G. Kingsbury. Image Processing with Complex Wavelets[J]. Philosophi- cal Transactions of the Royal Society of London A, 1999, 357: 2543-2560
    148 N. G. Kingsbury. Complex Wavelets for Shift Invariant Analysis and Filtering of Signals[J]. Applied and Computational Harmonic Analysis, 2001, 10(3): 234-253
    149 I. W. Selesnick, R. G. Baraniuk, N. G. Kingsbury. The Dual-Tree Complex Wavelet Transform: A Coherent Framework for Multiscale Signal and Image Processing[J]. IEEE Signal Processing Magazine, 2005, 22(6): 123-151
    150 W. Sweldens. The Lifting Scheme: A Construction of Second Generation Wavelets[J]. SIAM Journal on Mathematical Analysis archive, 1998, 29(2): 511-546
    151 I. Daubechies, W. Sweldens. Factoring Wavelet Transform into Lifting Steps [J]. Journal of Fourier Analysis and Applications, 1998, 4(3): 245-267
    152 B. Claypooler, K. R. Nowa. Nonlinear Wavelet Transforms for Image Cod- ing via Lifting[J]. IEEE Transactions on Image Processing, 2003, 12(12): 1449-1458
    153 I. Daubechies, M. Sweldens. Factoring Wavelet Transforms into Lifting Steps[J]. The Journal of Fourier Analysis and Applications, 1998, 4(3): 247-269
    154修吉宏.基于图像功率谱的航空图像质量判别技术研究[D].中国科学院长春光学精密机械与物理研究所博士论文,长春, 2005: 1-12
    155 T. Betchaku, N. Sato, H. Murakami. Subjective Evaluation Methods of Facsimile Image Quality[C]. In Proceedings of IEEE International Conference on Communications, 1993, 2: 966-970
    156 H. R. Sheikh, M. F. Sabir, A. C. Bovik. A Statistical Evaluation of Recent Full Reference Image Quality Assessment Algorithms[J]. IEEE Transactions on Image Processing, 2006, 15: 3441-3452
    157 B. Girod. Digital Images and Human Vision[M]. The MIT press, 1993: 207-220
    158 N. Damera-Venkata, T. D. Kite, W. S. Geisler. Image Quality Assessment Based on A Degradation Model[J]. IEEE Transactions on Image Processing, 2000, 9: 636-650
    159 A. M. Eskicioglu, P. S. Fisher. Image Quality Measures and Their Perfor- mance[J]. IEEE Transactions on Communication, 1995, 43: 2959-2965
    160 Z. Wang, A. C. Bovik, H. R. Sheikh. Image Quality Assessment: From Error Visibility to Structural Similarity[J]. IEEE Transactions on Image Processing, 2004, 13: 600-612
    161 A. Shnayderman, A. Gusev, A. M. Eskicioglu. An SVD-Based Grayscale Image Quality Measure for Local and Global Assessment[J]. IEEE Transactions on Image Processing, 2006, 15: 422-429
    162 A. B. Watson, J. Hu, J. F. McGowan III. DVQ: A Digital Video Quality Metric Based on Human Vision[J]. Journal of Electric Imaging, 2001, 10: 20-29
    163 M. Sendashonga, F. Labeau. Low Complexity Image Quality Assessment Using Frequency Domain Transforms[C]. In Proceeding of IEEE International Conference on Image Processing, 2006: 385-388
    164 R. L. De Valois, K. K. De Valois, Spatial Vision[M]. Oxford University Press, 1988: 34-67
    165 A. B. Watson, G. Y. Yang, J. A. Solomon. Visibility of Wavelet Quantization Noise[J]. IEEE Transactions on Image Processing, 1997, 6: 1164-1175
    166 Z. Liu, L. J. Karam, A. B. Watson. JPEG2000 Encoding With Perceptual Distortion Control[J]. IEEE Transactions on Image Processing, 2006, 15: 1763-1778
    167 M. J. Nadenau, J. Reichel, M. Kunt. Wavelet-based Color Image Compression: Exploiting the Contrast Sensitivity Function[J]. IEEE Transactions on Image Processing, 2003, 12: 58-70
    168 W. J. Zeng, S. Daly. An Overview of the Visual Optimization Tools in JPEG 2000[J]. ELSEVIER, Signal Processing: Image Communication, 2002, 17(1): 85-104
    169王青海.基于视觉特性的小波变换编码及图像质量评价方法的研究[D].上海大学博士论文,上海, 2004: 76-82
    170 A. B. Watson. Digital Images and Human Vision[M]. Cambridge, MA, USA: MITPress, 1993: 179~206
    171 E. Peli. Contrast in Complex Images[J]. Journal of the Optical Society of America, 1990, 7: 2032-2040
    172 J. Lubin. Vision Models for Target Detection and Recognition[M]. World Scientific Publishing, 1995: 245-283
    173 R. F. Hess, R. J. Snowden. Temporal Properties of Human Visual Filters: Number, Shapes and Spatial Covariation[J]. Vision Research, 1992, 32: 47-59
    174 R. E. Fredericksen, R. F. Hess. Estimating Multiple Temporal Mechanisms in Human Vision[J]. Vision Research, 1998, 38: 1023-1040
    175 J. W. Woods, S. D. O'Neil. Subband Coding of Images[J]. IEEE Transactions on Communication, 1983, COM-31: 532-540
    176 H. Guo, C. Burrus. Wavelet Transform Based Fast Approximate Fourier Transform[C]. In Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, 1997, 3: 1973-1976
    177 Z. Xiong, K. Ramchandran, M. T. Orchard. A Comparative Study of DCT- Based and Wavelet-Based Image Coding[J]. IEEE Transactions on Circuits and Systems for Video Technology, 1999, 9: 692-695

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700