变换域通信系统的研究与仿真分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为一种认知无线电(Cognitive Radio,CR)技术的收发信机候选方案,变换域通信系统(Transform Domain Communication System, TDCS)能够通过频谱估计与标记主动避开干扰,在变换域完成TDCS信号的设计,以此适应快速变化的无线通信环境;生成的伪随机相位矢量可以为TDCS系统各频谱分量信号提供伪随机相位,使其具有类似噪声的低截获(Low Probability of Intercept,LPI)特性;与此同时,基于变换域设计的基函数可以实现TDCS系统码分多址通信,使其具有较强的抗干扰通信能力。TDCS的提出为解决不断增长的无线通信应用需求与日益紧张的无线频谱资源之间的矛盾提供了一种有效的途径。
     首先,对常用的TDCS频谱估计方法进行了研究分析,基于TDCS信号的特点设计了一种TDCS空间电磁频谱环境模拟仿真模型,并通过Matlab进行了建模、仿真和分析评估。
     其次,在介绍TDCS伪随机相位矢量和基函数生成基本原理的基础之上,完成了对其特性的分析,并由此展开了对TDCS系统参数选择、系统多址能力以及基函数在用户数据调制中的应用探讨和研究,给出了最小公倍数相位映射和等间隔相位映射两种有效的、适合TDCS系统多址通信基函数生成的基本方法,并通过Matlab进行了仿真分析。
     最后,在介绍TDCS信号同步检测方法和数据相关接收方法的基础之上,完成了对TDCS系统的阻塞干扰和跳频干扰信号及其特性的分析,给出了TDCS阻塞干扰信号和跳频干扰信号产生模型,并从数学模型的角度,对TDCS系统多址信号的接收进行了解析,对其抗阻塞干扰和跳频干扰的能力进行了分析。基于Matlab,构建了高斯白噪声和多径传输两种无线信道环境,对TDCS系统抗阻塞干扰和跳频干扰的性能进行了仿真分析。
     仿真结果表明:①在部分频谱可用时,TDCS频谱估计适合采用ARMA谱估计方法,在全部频谱可用时,适合采用AR谱估计方法;②无论是最小公倍数相位映射,还是等间隔相位映射生成的TDCS基函数都具有良好的自相关特性、弱的互相关特性以及伪随机特性,都适用于TDCS多址通信基函数的生成;③只要TDCS频谱数量足够多,系统就具有较强的抗多径衰落、抗阻塞干扰和抗跳频干扰的能力。总而言之,TDCS是一种具有频谱自适应能力的宽带码分多址系统。
Being one of the Cognitive Radio (CR) transceiver technologies, the Transform Domain Communication System (TDCS) is an interference-avoiding technology which is suitable for the variety of the electromagnetic environment, because it can actively avoid the jammed frequencies by environmental sampling, spectral estimation, thresholding and notching, and design the communicating signal in transform domain. Basing on the random phase mapping, the pseudorandom (PR) phase vector can respectively give a random phase to every spectrum component in TDCS, and the Basis Function (BF) can make TDCS to communicate with each other in Multiple Access Environment (MAE). TDCS has the characteristic of Low Probability of Intercept (LPI) and the capability of anti-jamming. It gives an available method of solving current spectrum resource scarcity.
     Firstly, we investigate the spectral estimation methods of TDCS in this paper, which are modeled, simulated and evaluated in Matlab after we propose a model which can simulate the TDCS electromagnetic environment.
     Secondly, we analyse the characteristic of the PR phase vector and the BF after their basic theories are introduced. Ulteriorly, we discuss the parameter choice, the Multiple Access Capability (MAC) and the symbol demodulation of TDCS, and propose the Least Common Multiple Phase Mapping (LCMPM) and the Equal Interval Phase Mapping (EIPM), which all can generate the BF of TDCS and are simulated in Matlab.
     Thirdly, we analyse the characteristic of the narrowband block interference, broadband block interference and frequency hopping interference in TDCS after the synchronization detection and symbol demodulation methods are introduced, and we propose two models which can generate the corresponding jamming signal. Ulteriorly, we give the mathematical description of obtaining some or other user signal from the TDCS multiple access signals and analyse the anti-jamming capability of TDCS. In Matlab, we simulate the the anti-jamming performance in Additive White Gaussian Noise (AWGN) and multi-path fading channels.
     Computer simulation results show that the Autoregressive Moving Average (ARMA) spectral estimation is more suitable for part spectrum available case, whenas the Autoregressive (AR) spectral estimation is more suitable for all spectrum available case, both the LCMPM and the EIPM can generate the BFs in TDCS, and TDCS can effectively combat the narrowband block interference, the broadband block interference and the frequency hopping interference in AWGN and multi-path fading channels as long as it can obtain sufficient spectrum. In a word, TDCS is a spectrum agile and broadband Code Division Multiple Access (CDMA) technology.
引文
[1] P. Kolodzy. Spectrum Policy Task Force: Findings and Recommendations[C]. International Symposium on Advanced Radio Technologies (ISART), March 2003.
    [2] M. McHenry. Report on Spectrum Occupancy Measurements. Shared Spectrum Company. [Online]. Available: http://www.sharedspectrum.com/?section=nsf_summary.
    [3] J. Mitola et al. Cognitive Radios: Making Software Radios more Personal[J]. IEEE Personal Communications, vol. 6, no. 4, August 1999.
    [4] J. Mitola. Cognitive radio: An integrated agent architecture for software defined radio[D]. PhD Dissertation, Royal Inst. Technol.(KTH), Stockholm, Sweden, 2000.
    [5] S. Haykin. Cognitive Radio: Brain-Empowered Wireless Communications[J]. IEEE JSAC, vol. 23, no. 2, February 2005.
    [6]谢显中编著.感知无线电技术及其应用[M].北京:电子工业出版社, 2008.
    [7] C. J. Riese. Biologically Inspired Cognitive Radio Engine Model Utilizing Distributed Genetic Algorithms for Secure and Robust Wireless Communications and Networking[D]. Ph.D. Dissertation, Virginia Tech, Blacksburg, VA, August 2004.
    [8] FCC, Facilitating Opportunities for Flexible, Efficient, and Reliable Spectrum Use Employing Cognitive Radio Technologies[R]. ET Docket No.03-322,2003.
    [9] IEEE 802.22 Working Group of the LAN/MAN Standards Committee, IEEE P802.22/D0.1Draft Standard for Wireless Regional Area Networks Part 22: Cognitive Wireless RAN Medium Access Control (MAC) and Physical Layer (PHY) specifications: Policies and Procedures for Operation in the TV Bands[S], document No.: 22-06-0068-00-0000, May 2006.
    [10] http://www.wireless.kth.se[EB/OL].
    [11] Project Summary, NeTS-ProWIN: High Performance Cognitive Radio Platform with Integrated Physical and Network Layer Capabilities[R], WINLAB, Rutgers University.
    [12] Project Summary, NeTS-ProWIN: Cognitive Radios for Open Access to Spectrum[R], WINLAB, Rutgers University.
    [13] DARPA XG WG, The XG Architectural Framework V1.0[R]. 2003.
    [14] DARPA XG WG, The XG Vision RFC V1.0[R]. 2003.
    [15] L. Xu, R. Tonjes, T. Paila, and et al, DRiVE-ing to the Internet: Dynamic Radio for ip Services in Vehicular Environments[C]. in Proceeding of 25th Annual IEEE Conference on LocalComputer Networks, November 2000.
    [16] http://www.ist-oracle.org[EB/OL].
    [17] http://e2r2.motlabs.com/, 2007[EB/OL].
    [18] http://www.cs.ucsb.edu/htzheng/cognitive/nautilus.html[EB/OL].
    [19] M.M. Buddhikot, P.Kolody, S.Miller, K.Ryan, J.Evans, DIMSUMNet: new direction in wireless networking using coordinated dynamic spectrum access[C]. Proc.IEEE WoWMoM 2005, June2005, 78-85.
    [20] TIMOA. WEISS AND FRIEDRICH K.JIONDRAL, Spectrum Pooling: an Innovative Strategy for the Enhancement of Spectrum Efficiency[C].IEEE Radio Communications, March 2004, S8-S14.
    [21] http://www.intuni-karlsruhe.de[EB/OL].
    [22] J.Hillenbrand F.Jondral T.Weiss, A Kroho.Efficient signaling of spectral resource in spectrum pooling system..proceedings[C]. 10th Symposium on Communications and Vehicular Technology,2003.
    [23] Zhang Honggang, Cognitive radio combined with Ultra-wideband for wireless and mobile innovation[C]. IST event 2004, Europe’s information Society, Hague, 16 November, 2004.
    [24] Zhang Honggang, Zhou Xiaofei, K.Y.Yazdandoost and I.Chlamtac, Multiple signal waveforms adaptation in cognitive Ultra-wideband Radio evolution[J]. IEEE J. on Selected Areas in Communications,2006, Vol.24(4):878-884.
    [25] Zhang Honggang and Zhou Xiaofei, CURE: cognitive Ultra-wideband Radio evolution for innovation and dynamic spectrum access network[R]. Specific targeted report, FET full proposal submission, FP6-2005-FET, EU IST, 2006.
    [26] V.D. Chakravarthy, A.K. Shaw, M.A. Temple, and et al, Cognitive Radio - an Adaptive Waveform with Spectral Sharing Capability[J]. WCNC 2005, Mar. 13-17, 2005, Vol.2:724-729.
    [27] E. H. German, Transform Domain Signal Processing Study Final Report[R]. Tech. rep., Reisterstown, MD: Contract: Air Force F30602-86-C-0133, DTIC: ADB132635, Aug. 1988.
    [28] Andren, Carl F., Lucas, and et al., Low Probability of Intercept Communication System[P]. U.S. Patent 5029184, Harris Corp., July 2, 1991.
    [29] R. Radcliffe, A. Rodney, and Gerald C. Gerace, Design and Simulation of Transform Domain Communication system[C]. MILCOM’97, Oct. 1997.
    [30] VASU CHAKRAVARTH ABEL S NUNEZ,JAMES PSTEPHENS. TDCS,OFDM and MC-CDMA: A Brief Tutorial[C]//IEEE Radio Communications. September 2005: 5l1,5l6.
    [31] ROBERTS M L,TEMPLE M A, RA INES R A. Transform domain communications: interference avoidance and acquisition capabilities[C]//NAECON 2000.Proceedings of the IEEE 2000 1 0-1 2 Oct.2000:6l0-6l7.
    [32] W KLEIN R, TEMPLE M A, et a1.Performance characterization of a proposed wavelet domain communication (WDCS)[C]//5th World Multi-Conference on Systemics, Cybernetics and Informatics, SCI’01, 2001.
    [33] SWACKHAMMER J. Performance Simulation of a Transform Domain Communication System for Multiple Access Application[C]//MILCOM’99, Nov.1999:1-5.
    [34] Roberts M L et al.. Initial acquisition performance of a transform domain communication system : modeling and simulation result[C]. MILCOM 2000, Los Angeles California USA, 2000(2): 1119-1123.
    [35]何智青,任辉.变换域通信系统动态仿真平台设计与系统研究[J].系统仿真学报, 2004, Vol.16(4):692-695.
    [36] HAN Chuan,WANG Jun,GONG Shuping,et a1.Detection and performance of the OFDM-based transform domain communication systern[C]//International Conference on Communications,Circuitsand Systems.2006(2):1332-1336.
    [37] Chuan Han, Jun Wang, Shuping Gong and Shaoqian Li.Performance of the OFDM-based Transform Doain Commiunication Systemn in Cognitive Radilo contexts[C] //International Conference on Communications,Circuitsand Systems.2006(2):1233-1236.
    [38] WANG Chuandan,ZHANG Zhongpei,LI Shaoqian.Interference avoidance using fractional Fourier transform in transform domain communication system[C]∥The 9th International Conference on Advanced Communication Technology. 2007(3):1756-1764.
    [39]韩川.认知无线电场景中的变换域通信系统研究[D].成都:电子科技大学, 2007.
    [40]王传丹,张忠培,李少谦.变换域通信系统中干扰信号的逐次消除[J].电子与信息学报, 2008, Vol.30(10).
    [41]王军,李少谦,龚树平,韩川.变换域通信系统中的信道估计技术[J].电子科技大学学报, 2009, Vol.38(1)
    [42]何智青.变换域通信系统设计、建模与仿真研究[D].西安:西北工业大学, 2003.
    [43] James P. Stephens, Sr. and Maj Robert S., http://www.afrlhorizons.com/Briefs/Dec01 /SN0009.html, March, 2006.
    [44] G.M. Dillard, M. Reuter, J. Zeidler, and et al, Cyclic Code Shift Keying: a Low Probability of Intercept Communication Technique[J]. IEEE Transactions on Aerospace and ElectronicSystems,July 2003, Vol.39:786-798.
    [45]张磊,向德全,胥杰.军用信息系统安全效能灰色评估模型和算法[J].空军工程大学学报(自然科学版), 2007, Vol.8(1):77-80.
    [46]吴仁彪,韩萍,冯青等译.现代信号谱分析[M].电子工业出版社, 2007.
    [47]丁玉美,阔永红,高新波等编著.数字信号处理—时域离散随机信号处理[M].西安电子科技大学出版社, 2002.
    [48]曾犯鑫编著.现代编码技术[M].西安:西安电子科技大学出版社, 2008.
    [49]季烨.认知无线电中TDCS技术研究[D].重庆:重庆通信学院, 2009.
    [50]姚富强著.通信抗干扰工程与实践[M].北京:电子工业出版社, 2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700