融合通信参量的网络系统跟踪性能极限研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
跟踪性能是系统跟踪能力的一种定量描述,而跟踪性能极限是控制系统无论选取何种控制器,其跟踪性能无法逾越的一个极限值。在传统控制系统中,跟踪性能极限不仅与被控对象结构特征,如非最小相位零点和不稳定极点位置,以及他们的方向有关,同时还与跟踪信号特征和系统内部时延有着密切联系。该极限值对控制系统设计有着至关重要的参考价值。而由于实际应用中物理设备的限制,控制能量是有限的,于是跟踪误差能量与控制能量之间的权衡问题变的十分重要。跟踪性能极限与控制能量极限分别得到了较好的结果,而控制能量限制下的跟踪性能极限与控制系统本质特征之间的关系如何?网络无处不在,网络打破了传统控制系统点对点连接的格局,降低了控制系统复杂度和成本。在网络为控制系统带来便利的同时,也带来了新的挑战。网络的引入,不可避免地出现了网络诱导时延、信道噪声、数据丢包、量化噪声等影响因素。这些因素的存在甚至可能会导致控制系统失稳,从而使得性能极限值无法得到。那么如何建立跟踪性能极限值与网络通信参量和控制系统内部特征之间的联系,是一项十分有意义的课题。本论文在总结前人工作的基础上,融合通信参量系统研究了网络系统的跟踪性能极限,建立了跟踪性能极限与控制系统特征和网络通信参量之间的纽带。全文的研究内容概况如下:研究了上行通道和下行通道均存在脉冲扰动的跟踪性能极限。研究结果揭示了跟踪性能极限与被控对象内部特征如非最小相位零点,不稳定极点之间的关系。同时,新的非最小相位零点影响跟踪性能极限。这就意味着双通道噪声影响下的跟踪性能极限要大于仅仅在单通道噪声影响下的跟踪性能极限。在单通道噪声中,双自由度控制器能抵消不稳定极点对跟踪性能极限的影响,但在双通道噪声中,双自由度控制器却不能完全抵消不稳定极点的影响。研究了被控对象能量限制下的采样数据系统的跟踪性能极限。参考输入信号分别考虑了阶跃信号、实正弦信号、复正弦信号和斜坡信号。研究结果表明,跟踪性能极限不仅与连续被控对象的非最小相位零点和不稳定极点有关,同时,还与由采样器和保持器所产生的非最小相位零点有关。另外,与连续系统结论相比,被控对象离散化后所产生的非最小相位零点和不稳定极点造成了额外的性能极限。此外,跟踪性能极限还与参考输入信号的特征有关。研究了不确定性因素影响下的控制系统的跟踪性能极限。利用随机嵌入方法来描述不确定性,将实际系统与标称系统的传递函数误差的加权H2范数作为性能指标。不确定性的引入可能导致系统不稳定,原先的控制器不能满足稳定性要求。通过调整实际控制器参数来最小化加权性能指标,得到了加权跟踪性能极限,最后通过实例验证了重新设计的控制器加快收敛速度,减小跟踪误差幅值,且验证了控制器的鲁棒性和优越性。研究了单输入单输出连续被控对象在控制能量和信道输入能量限制下的跟踪性能下界。提出新的性能指标,基于不等式约束的最优化方法,得到了跟踪性能的下界以及保证反馈系统稳定的信噪比的最小值的表达式。研究结果揭示了他们与非最小相位零点和不稳定极点之间的内在联系。寻找一种特殊的内外分解形式便于应用,得到新的结果。研究了离散单输入单输出被控对象在控制能量和Erasure信道输入能量限制下的跟踪性能问题。Erasure信道模拟了离散信道的数据丢包,基于不等式约束的最优化方法求得了跟踪性能的下界,且获得了为保证系统稳定的信噪比的最小值。他们均与被控对象的非最小相位零点,不稳定极点和丢包率有关。同时,随着丢包率的增加,最优性能也会随之增加,这是由于丢包率的增加导致了被控对象越来越难以控制,甚至失稳。研究了单输入多输出被控对象的修正跟踪性能极限。针对某些静态跟踪误差不为零,跟踪性能指标无穷大缺点,通过引入修正因子,提出修正跟踪性能指标。采用内外分解方法求得修正跟踪性能极限,并给出修正因子的适当选取范围。结论表明,即使静态跟踪误差不为零,修正跟踪性能极限仍然为有限值。并且消除了被控对象必须含有积分器的严格假设和对参考输入信号方向的假设。最后对全文进行了归纳总结,并对网络系统的跟踪性能极限的研究和发展方向进行了展望。
The tracking performance is a quantitative description of the system tracking capability. The tracking performance limitation is the limiting value that the tracking error performance can not over-take no matter what controller adopting. In the classical control system, the tracking performance limitations depend on the structure features which include the location and direction information of the non-minimum phase zero and unstable pole. In addition, they are closely linked with the reference signal characteristics and the system inner delay. The limitations provide the important reference value for the system design. However, the control energy is limited due to the limit of the physical equipment in the practical application. The trade-off between the tracking error en-ergy and control energy becomes very important, The tracking performance and the control energy performance separately obtained better results. But what is the relationship between the essential characteristics of control system and the tracking performance limits with the finite control energy?Networks commonly exist in the real world. Networks break the traditional pattern of point to point connection and reduce system complexity and control costs. When the networks provided the facility for the control system, it brought new challenges. Introducing networks inevitably produces some effect factors such as network-induced delay, channel noise, data loss, quantization noise and so on. The existence of these effect factors may even cause the instability of control system. And some performance limitations can not be obtained. So how to establish the relationship between tracking performance limitations and internal features of control system and network communica-tion parameters is a very significant issue. Based on the previous works, the tracking performance limitations of network system integrating communication parameters have been systematically stud-ied. The relationship between the tracking performance limitations and the control system features and network communication parameters has been established. The research content of this disserta-tion is outlined as follows.The tracking performance limitation under the constraint of control energy with the impulse disturbances existing in the uplink channel and downlink channel has been studied. The results reveal the relationship between tracking performance limitations and internal characteristics and controlled object. New non-minimum phase zeros affect the tracking performance limitations. This implies that the tracking performance limitation of two-channel disturbance is larger than the case of single channel disturbance. In the case of single disturbance, the two-degree-of-freedom controller offsets the effect of unstable poles. But in the case of two-channel disturbance, the two-degree-of-freedom controller is not effective and can not completely offset the effect.This dissertation studies the tracking performance limitations of the sampled-data system under the control energy constraint. The reference input signals considered in this dissertation include step signal, real sinusoidal signal, complex sinusoidal signal and ramp signal. The results show that the tracking performance limitations depend not only on the non-minimum phase zeros and unstable poles of the continuous system but also on the non-minimum phase zeros generated by the sampler and hold device. In addition, they depend on the non-minimum phase zeros and unstable poles generated by the discretization of the continuous system compared with the results of the continuous systems. Furthermore, the reference signal affects the optimal performance.The uncertainty influencing factor on the tracking performance limitations is discussed. The uncertainty is formulated by utilizing stochastic embedding of uncertainty. The weighted//2 norm for the transfer function error between the actual system and the nominal system is defined as the performance index. The introduction of uncertainty may lead to the instability of system, so the original controller can not meet the stability requirements. The weighted performance index is minimized by adjusting the actual controller parameter. The controller is redesigned to get the tracking performance limitations. Finally, one example verifies that the redesigned controller can improve the convergence speed and reduce the amplitude of the tracking error. Also the simulation can test the robustness and superiority of the controller.The lower bound of the tracking performance of the single-input single-output continuous sys-tem with the constraint of channel input energy and control input energy. A new performance index for the tracking performance is proposed. Based on the optimization method with the inequality constraints, the expressions of the lower bound of the tracking performance index and the minimum value of signal-to-noise ratio guaranteeing the stability of system are obtained. The results reveal the inherent relationship between these expressions and the non-minimum phase zeros and unstable poles. In addition, one special form of inner-outer factorization is found for easy application and the new result is derived. Erasure channel can model the data loss of the discrete channel. Thus this dissertation studies the tracking performance under the constraint of the Erasure channel input energy and control input energy for the single-input single-output discrete system. Based on the optimization method with the inequality constraints, the lower bound of tracking performance and the minimum value of signal-to-noise ratio guaranteeing the stability of system are derived. They are related to the non-minimum phase zeros, unstable poles and dropout rate. The tracking performance becomes bigger with the increasing of dropout rate because the increase of dropout causes that the system is more and more difficult to be controlled and the closed loop system may be unstable.The modified tracking performance limitation of single input multiple output system is dis-cussed. Since in some cases the static tracking error may not be zero, the tracking performance index may be infinite. Based on this disadvantage, by introducing a scaled factor, a new modified tracking performance index is proposed. By adopting inner outer factorization method, this perfor-mance index is minimized and the proper scaled factor is given. The results show that even if the static tracking error is not zero, the modified tracking performance limitation is finite. Also this performance index deletes that severe limit on the plant which must contain the integrator and on the reference input signal direction.Finally, a summary has been proposed for all discussions in this dissertation. The further study and research works are presented for the network systems.
引文
[1] Zhou K M, Doyle J C, Glover K. Robust and Optimal Control. Prentice Hall,1996.
    [2]周克敏,Doyle J C, Glover K.鲁棒与最优控制,毛剑琴,钟宜生,林岩等译.北京:国防工业出版社,2002.
    [3] Seron M M, Braslavsky J H, Goodwin G C. Fundamental Limitations in Filtering and Control. Berlin, Germanny:Springer Verlag,1997.
    [4] Darrell G. H∞ Performance Limitations for Problems with Sensor Time Delays:[Master Thesis]. Waterloo, Ontario, Canada:University of Waterloo,2008.
    [5]王后能.控制系统的性能分析优化分析与设计限制研究:[博士学位论文].武汉:华中科技大学,2009.
    [6] Bode, H W. Network Analysis and Feedback Amplifier Design. Princeton:NJ:Van Nostrand, 1945.
    [7] Freudenberg J, Looze D. Frequency Domain Properties of Scalar and Multivariable Feedback Systems. Berlin, Germanny:Springer-Verlag,1988.
    [8] Freudenberg J S, Looze D P. Right Half Plane Poles and Zeros and Design Tradeoffs in Feedback Systems. IEEE Transactions on Automatic Control,1985, AC-30(6):555-565.
    [9] Sung H K, Hara S. Properties of Sensitivity and Complementary Sensitivity Functions in Single-Input Single-Output Digital Control Systems. International Journal of Control,1988, 48(8):2429-2439.
    [10] Middleton R H. Trade-offs in Linear Control System Design. Automatica,1991,27(2):281-292.
    [11] Chen J. Sensitivity Integral Relations and Design Trade-offs in Linear Multivariable Feedback Systems. IEEE Transactions on Automatic Control,1995,40(10):1700-1716.
    [12] Chen J, Nett C N. Sensitivity Integrals for Multivariable Discrete-Time Systems. Automatica, 1995,31(8):1113-1124.
    [13] Havre K, Skogestad S. Achievable performance of multivariable systems with unstable zeros and poles. International Journal of Control,2001,74(11):1131-1139.
    [14] Chen J, Qiu L, Toker O. Limitations on Maximal Tracking Accuracy. IEEE Transactions on Automatic Control,2000,45(2):326-331.
    [15] Toker O, Chen J, Qiu L. Tracking Performance Limitations in LTT Multivariable Discrete-Time Systems. IEEE Transactions on Circuits and Systems I:Fundamental Theory and Ap-plications,2002,49(5):657-670.
    [16] Chen J, Qiu L, Toker O. Limitations on Maximal Tracking Accuracy, part 2:Tracking Si-nusoidal and Ramp Signals, in:Proceedings of Proceedings of the 1997 American Control Conference, Albuquerque, New Mexico,1997,1757-1761.
    [17] Okajima H, Asai T, Kawaji S. Unified Form of Performance Limitations in Reference Track-ing Control Problem for Discrete Time Systems, in:Proceedings of Joint 48th IEEE Confer-ence on Decision and Control and 28th Chinese Control Conference, Shanghai, China,2009, 4011-4017.
    [18] Aguiar A P, Hespanda J P, Kokoroivc P V. Path-Following for Nonminimum Phase Sys-tems Removes Performance Limitations. IEEE Transactions on Automatic Control,2005, 50(2):234-239.
    [19] Aguiar A P, Hespanha J P, Kokotovic P V. Performance Limitations in Reference Tracking and Path Following for Nonlinear Systems. Automatica,2008,44(3):598-610.
    [20] Su W Z, Qiu L, Chen J. Fundamental Performance Limitations in Tracking Sinusoidal Signals, in:Proceedings of Proceedings of the 2003 American Control Conference, Denver, Colorado, 2003,5335-5340.
    [21] Su W Z, Qiu L, Chen J. Fundamental Performance Limitations in Tracking Sinusoidal Signals. IEEE Transactions on Automatic Control,2003,48(8):1371-1380.
    [22] Su W Z, Qiu L, Chen J. Performance Limitations of Discrete-Time Systems in Tracking Si-nusoidal Signals, in:Proceedings of Proceedings of the 2003 American Control Conference, Denver, Colorado,2003,423-428.
    [23] Su W Z, Qiu L, Chen J. Fundamental Limit of Discrete-Time Systems in Tracking Multi-Tone Sinusoidal Signals. Automatica,2007,43(1):15-30.
    [24] Su W Z, Qiu L, Chen J. On Performance Limitation in Tracking Sinusoids, in:Proceedings of Proceeding of the 44th IEEE Conference on Decision & Control, and the European Control Conference, Seville, Spain,2005,6204-6209.
    [25] Su W Z, Qiu L, Chen J. On Performance Limitation in Tracking a Sinusoid. IEEE Transac-tions on Automatic Control,2006,51(8):1320-1325.
    [26] Su W Z, Zheng W X, Qiu L. Performance Limitation in Random Sinusoidal Signal Estima-tion, in:Proceedings of Proceedings of the 5th World Congress on Intelligent Control and Automation, Hangzhou, China,2004,172-176.
    [27] Su W Z, Qiu L, Chen J. An Average Performance Limit of MIMO Systems in Tracking Multi-Sinusoids with Partial Signal Information. IEEE Transtractions on Automatic Control,2009, 54(8):2001-2006.
    [28] Su W Z, Qiu L, Chen J. An Average Performance Limit of MIMO Systems in Tracking, in: Proceedings of Proceedings of the 6th World Congress on Intelligent Control and Automation, Dalian, China,2006,743-747.
    [29]丁李,关治洪,王后能.多变量离散系统随机信号跟踪性能极限.自动化学报,2010,36(3):446-449.
    [30] Ding L, Wang H N, Guan Z H, et al. Tracking under Additive White Gaussian Noise Effect. IET Control Theory & Applications,2010,4(11):2471-2478.
    [31] Eun Y, Kabamba P T, Meerkov S M. Tracking of Random References:Random Sensitivity Function and Tracking Quality Indicators. IEEE Transactions on Automatic Control,2003, 48(9):1666-1671.
    [32] Chen J, Hara S, Chen G. Best Tracking and Regulation Performance under Control Energy Constraint. IEEE Transactions on Automatic Control,2003,48(8):1320-1336.
    [33] Chen G. Fundamental Performance Limitations of Feedback Control Systems:[PhD Disser-tation]. New South Wales, Australia:University of California Riverside,2002.
    [34] Wang H N, Ding L, Guan Z H, et al. Limitations on Minimum Tracking Energy for SISO Plants, in:Proceedings of Proceedings of the 21th Chinese Control and Decision Conference, Guilin, China,2009,1432-1437.
    [35] Chen J, Hara S, Chen G. Best Tracking and Regulation Performance under Control En-ergy Constraint:Two-Parameter Controller Case, in:Proceedings of 15th Triennial World Congress, Barcelona, Spain,2002.
    [36] Wang B X, Guan Z H, Yuan F S. Optimal Tracking and Two-Channel Disturbance Rejection under Control Energy Constraint. Automatica,2011,47(4):733-738.
    [37]王后能,关治洪,丁李.脉冲干扰下网络反馈系统的性能极限.华中科技大学学报(自然科学版),2009,37(10):36-39.
    [38] Sun S, Qi T, Su W Z. Two Degree of Freedom Controller Design for Leader-to-Formation. in: Proceedings of 2007 IEEE International Conference on Control and Automation, Guangzhou, China, May,2007,1180-1184.
    [39] Shannon C E. A Mathematical Theory of Communication. Bell System Technical Journal, 1948,27:379-423,623-656.
    [40] Shannon C E, Weaver W. The Mathematical Theory of Communication. Urbana:University of Illinois Press,1949.
    [41]章辉,孙优贤.线性多变量控制系统的干扰抑制性能极限:信息论方法.控制理论与应用,2004,21(3):357-361.
    [42]章辉.控制系统中的信息描述与方法:[博士学位论文].杭州:浙江大学,2003.
    [43]章辉,孙优贤.单变量线性时不变控制系统中的信息率.见:第二十一届中国控制会议论文集,杭州,2002,288-291.
    [44] Yu S, Mehta P G. Fundamental Performance Limitations via Entropy Estimates with Hidden Markov Models, in:Proceedings of Proceedings of the 46th IEEE Conference on Decision and Control, New Orleans, USA,2007,3982-3988.
    [45] Yu S, Mehta P G. Bode-Like Fundamental Performance Limitations in Control of Nonlinear Systems. IEEE Transactions on Automatic Control,2010,55(6):1390-1405.
    [46] Martins N C, Dahleh M A, Doyle J C. Fundamental Limitations of Disturbance Attenuation in the Presence of Side Information. IEEE Transactions on Automatic Control,2007,52(1):56-66.
    [47] Mehta P G, Vaidya U, Banaszuk A. Markov Chains, Entropy, and Fundamental Limitations in Nonlinear Stabilization. IEEE Transactions on Automatic Control,2008,53(3):784-791.
    [48] Martins N C, Dahleh M A. Feedback Control in the Presence of Noisy Channels:"Bode-Like" Fundamental Limitations of Performance. IEEE Transactions on Automatic Control, 2008,53(7):1604-1615.
    [49] Kariwala V. Fundamental Limitation on Achievable Decentralized Performance. Automatica, 2007,43(10):1849-1854.
    [50] Silva E I, Goodwin G C, Quevedo D E. On Networked Control Architectures for MIMO Plants, in:Proceedings of Proceedings of the 17th International Federation of Automatic Control World Congress, Seoul, Korea,2008,8044-8049.
    [51] Goodwin G C, Salgado M E, Silva E I. Time-domain Performance Limitations Arising from Decentralized Architectures and their Relationship to the RGA. International Journal of Con-trol,2005,78(13):1045-1062.
    [52] Su W Z, Wu J B. Performance Limitation in Output Regulation of a Nonlinear System under Disturbance, in:Proceedings of Proceeding of the 45th IEEE Conference on Decision & Control, San Diego, CA, USA,2006,3254-3259.
    [53]吴俊斌,毕庆琪,苏为洲.一类具有扰动输入的不确定性非线性系统的输出调节极限性能问题.见:Proceedings of 25th Chinese Control Conference, Heilongjiang, China,2006, 794-799.
    [54]吴俊斌,苏为洲.具有扰动输入的不确定性非线性系统的输出调节性能极限.控制理论与应用,2009,26(1):15-22.
    [55] Su W Z, Wu J B, Sun Z D. Performance Limitation in Output Regulation of an Uncertain Nonlinear System, in:Proceedings of 9th International Conference on Control, Automation, Robotics and Vision, Singapore,2006,1-6.
    [56]丁李.网络系统的性能分析与控制研究:[博士学位论文].武汉:华中科技大学,2010.
    [57] Goodwin G C, Silva E I, Quevedo D E. Analysis and Design of Networked Control Systems using the Additive Noise model Methodology. Asian Journal of Control,2010,12(4):443-459.
    [58]卢頔,范国梁,易建强.系统性能极限理论的回顾和展望.自动化学报,2011,37(1):1-10.
    [59] Rojas A J, Freudenberg J S, Braslavsky J H, et al. Optimal Signal to Noise Ratio in Feedback over Communication Channels with Memory, in:Proceedings of Proceedings of the 45th IEEE Conference on Decision & Control, San Diego, CA, USA,2006,1129-1134.
    [60] Rojas A J, Middleton R H, Braslvasky J H. Input Disturbance Rejection in Channel Signal-to-Noise Ratio Constrained Feedback Control, in:Proceedings of Proceedings of the 2008 American Control Conference, Westin Seattle Hotel, Seattle, Washington, USA,2008,3100-3105.
    [61] Rojas A J, Braslvasky J H, Middleton R H. Control over a Bandwidth Limited Signal to Noise Ratio Constrained Communication Channel, in:Proceedings of Proceedings of the 44th IEEE Conference on Decision and Control and the European Control Conference, Seville, Spain, 2005,197-202.
    [62] Rojas A J, Braslvasky J H, Middleton R H. Fundamental Limitations in Control over a Com-munication Channel. Automatica,2008,44(12):3147-3151.
    [63] Rojas A J. Signal-to-Noise Ratio Performance Limitations for Input Disturbance Rejection in Output Feedback Control. System & Control Letters,2009,58(5):353-358.
    [64] Rojas A J, Yuz J I. Repeated Poles in Feedback over a Class of Signal-to-Noise Ratio Con-strained Channels, in:Proceedings of Proceedings of the 17th International Federation of Automatic Control World Congress, Seoul, Korea,2008,5179-5184.
    [65] Rojas A J. Signal-to-Noise Ratio Fundamental Constraints in Discrete-Time Linear Output Feedback Control. Automatica,2011,47(2):376-380.
    [66] Rojas A J, Braslavsky J H, Middleton R H. Output Feedback Sensitivity Functions Under Signal to Noise Ratio Constraint, in:Proceedings of Proceedings of the 2007 American Control Conference, New York City, USA,2007,287-292.
    [67] Rojas A J, Braslavsky J H, Middleton R H. Channel Signal-to-Noise Ratio Constrained Feed-back Control:Performance and Robustness. IET Control Theory and Applications,2008, 2(7):595-605.
    [68] Rojas A J, Braslvasky J H, Middleton R H. Output Feedback Stabilization over Bandwidth Limited, Signal to Noise Ratio Constrained Communication Channels, in:Proceedings of Proceedings of the 2006 American Control Conference, Minneapolis, Minnesota, USA,2006, 2789-2794.
    [69] Braslavsky J H, Middleton R H, Freudenberg J S. Feedback Stabilization over Signal-to-Noise Ratio Constrained Channels. IEEE Transactions on Automatic Control,2007,52(8):1391-1403.
    [70] Freudenberg J S, Middleton R H, Solo V. The Minimal Signal-to-Noise Ratio Required to Stabilize over a Noisy Channel. in:Proceedings of Proceedings of the 2006 American Control Conference, Minneapolis, Minnesota USA,2006,650-655.
    [71] Silva E I, Salgado M E. Performance Bounds for Feedback Control of Non-minimum Phase MTMO Systems with Arbitrary Delay Structure. IEEE Proceeding of Control Theory and Applications,2005,152(2):211-219.
    [72] Silva E I, Goodwin G C, Quevedo D E, et al. Optimal Noise Shaping for Networked Control Systems, in:Proceedings of Proceedings of the European Control Conference, Kos, Greece, 2007.
    [73] Silva E I, Oyarzun D A, Salgado M E. On Structurally Constrained H2 Performance Bounds for Stable MIMO Plant Models. IET Control Theory & Applications,2007,1(4):1033-1045.
    [74] Li Y Q, Tuncel E, Chen J, et al. Optimal Tracking Performance of Discrete-Time Systems over an Additive White Noise Channel, in:Proceedings of Joint 48th IEEE Conference on Decision and Control and 28th Chinese Control Conference, Shanghai, China,2009,2070-2075.
    [75] Li Y Q, Tuncel E, Chen J. Optimal Tracking over an Additive White Noise Feedback Channel, in:Proceedings of Proceedings of the 7th Asian Control Conference, Hong Kong, China, 2009,501-506.
    [76] Li Y Q, Tuncel E, Chen J. Optimal Tracking and Power Allocation over an Additive White Noise Channel, in:Proceedings of 2009 IEEE International Conference on Control and Au-tomation, Christchurch, New Zealand,2009,1541-1546.
    [77] Li Y Q, Tuncel E, Chen J. Optimal Tracking over an Additive White Gaussian Noise Chan-nel. in:Proceedings of Proceedings of the 2009 American Control Conference, St. Louis, Missouri, USA,2009,4026-4031.
    [78] Li Y Q, Tuncel E, Chen J. Stabilization over Additive White Noise Forward and Feedback Channels. in:Proceedings of Proceedings of the 8th World Congress on Intelligent Control and Automation, Jinan, China,2010,1251-1256.
    [79] Kim Y H. Feedback Capacity of the First-Order Moving Average Gaussian Channel. IEEE Transactions on Information Theory,2006,52(7):3063-3079.
    [80] Middleton R H, Rojas A J, Freudenberg J S, et al. Feedback Stabilization over a First Order moving Average Gaussian Noise Channel. IEEE Transactions on Automatic Control,2009, 54(1):163-167.
    [81] Rojas A J. Feedback Control over Signal to Noise Ratio Constrained Communication Chan-nels:[PhD Dissertation]. Callaghan, NSW, Australia:The University of Newcastle,2006.
    [82] Marco D, Neuhoff D L. The Validity of the Additive Noise Model for Uniform Scalar Quan-tizers. IEEE Transactions on Information Theory,2005,51(5):1739-1755.
    [83] Rojas A J. Feedback Control over Signal-to-Noise Ratio Constrained Communication Chan-nels with Channel Input Quantisation. in:Proceedings of Proceedings of the 2010 American Control Conference, Marriott Waterfront, Baltimore, MD, USA,2010,265-270.
    [84] Rojas A J. Digital and Sampled-Data Output Feedback Control over Signal-to-Noise Ratio Constrained Communication Channels. in:Proceedings of Proceedings of the 2010 American Control Conference, Marriott Waterfront, Baltimore, MD, USA,2010,259-264.
    [85] Wu Y, Qi T, Yuan L, et al. Stability for Networked Control System with Quantization Con-straints. in:Proceedings of Proceedings of the 8th World Congress on Intelligent Control and Automation,2010,916-920.
    [86] Liu Y, Qi T, Su W Z. Optimal Tracking Performance of a Linear System with a Quan-tized Control Input. in:Proceedings of Proceeding of the 26th Chinese Control Conference, Zhangjiajie, China,2007,531-535.
    [87]祈恬,刘寅,苏为洲.基于量化控制信号的线性系统的跟踪性能极限.控制理论与应用,2009,26(7):745-750.
    [88] Qi T, Su W Z. Optimal Tracking Design for a Linear System with a Quantized Control Input. in:Proceedings of Proceeding of the 27th Chinese Control Conference, Kunming, China, 2008,437-441.
    [89] Qi T, Su W Z. Tracking Performance Limitation of a Linear MISO Unstable System with Quantized Control Signals, in:Proceedings of International Conference on Control, Automa-tion, Robotics and Vision, Hanoi, Vietnam,2008,1424-1429.
    [90] Fu M Y, Xie L H. The Sector Bound Approach to Quantized Feedback Control. IEEE Trans-actions on Automatic Control,2005,50(11):1698-1711.
    [91] Qi T, Su W Z, Chen J. Optimal Tracking Design and Performance Analysis for LTT Systems with Quantization Effects, in:Proceedings of Joint 48th IEEE Conference on Decision and Control and 28th Chinese Control Conference, Shanghai, China,2009,4945-4950.
    [92] Qi T, Su W Z. Optimal Tracking and Tracking Performance Constraints from Quantization, in:Proceedings of Proceedings of the 7th Asian Control Conference, Hong Kong, China, 2009,447-452.
    [93] Musa M S D. Optimal Source Coding with Signal Transfer Function Constraints:[PhD Dissertation]. Callaghan, Australia:University of Newcastle,2009.
    [94] Goodwin G C, Quevedo D E, Silva E I. Architectures and Coder Design for Networked Control Systems. Automatica,2008,44(1):248-257.
    [95] Silva E I. A Unified Framework for the Analysis and Design of Networked Control Systems: [PhD Dissertation]. Callaghan, Australia:The University of Newcastle,2009.
    [96] Silva E I, Quevedo D E, Goodwin G C. Optimal Coding for Bit-Rate Limited Networked Control Systems in the Presence of Data Loss, in:Proceedings of Proceedings of the 46th IEEE Conference on Decision and Control, New Orleans, Louisiana USA,2007,665-670.
    [97] Silva E I, Quevedo D E, Goodwin G C. Optimal Controller Design for Networked Control Systems, in:Proceedings of Proceedings of the 17th International Federation of Automatic Control World Cogress, Seoul, Korea,2008,5167-5172.
    [98] Silva E I, Derpich M S,φstergaard J, et al. Simple Coding for Achieving Mean Square Stability over Bit-rate Limited Channels, in:Proceedings of Proceedings of the 47th IEEE Conference on Decision and Control, Cancun, Mexico,2008,2698-2703.
    [99] Quevedo D E, Silva E I, Goodwin G C. Subband Coding for Networked Control Systems. International Journal of Robust and Nonlinear Control,2009,19(16):1817-1836.
    [100] Silva E I, Quevedo D E, Derpich M S, et al. Design of Feedback Quantizers for Networked Control Systems. Technical report, School of Electrical Engineering and Computer Science, The University of Newcastle, Australia,2008.
    [101]严怀成.网络控制系统的分析与综合:[博士学位论文].武汉:华中科技大学,2007.
    [102]黄剑.网络化控制系统的建模、稳定与控制研究:[博士学位论文].武汉:华中科技大学,2005.
    [103] Yu M, Wang L, Chu T G, et al. Stabilization of Networked Control Systems with Data Packet Dropout and Transmission Delays:Continuous-Time Case. European Journal of Control, 2005,11:40-49.
    [104] Wu J, Chen T W, Edmonton A U. Design of Networked Control Systems with Packet Dropouts. IEEE Transactions on Automatic Control,2007,52(7):1314-1319.
    [105] Nicola E. Remote Stabilization over Fading Channels. Systems & Control Letters,2005, 54(3):237-249.
    [106] Quevedo D E,φstergaard J. Quantized Predictive Control over Erasure Channels, in:Pro-ceedings of Joint 48th IEEE Conference on Decision and Control and 28th Chinese Control Conference, Shanghai, China,2009,2076-2081.
    [107] You K Y, Su W Z, Fu M Y, et al. Optimality of the Logarithmic Quantizer for Stabilization of Linear Systems:Achieving the Minimum Data Rate, in:Proceedings of Joint 48th IEEE Conference on Decision and Control and 28th Chinese Control Conference,2009,4075-4080.
    [108] You K Y, Xie L H. Minimum Data Rate for Mean Square Stabilization of Discrete LTI Systems over Lossy Channels. IEEE Transactions on Automatic Control,2010,55(10):2373-2378.
    [109] Silva E I, Goodwin G C, Quevedo D E. On the Design of Control Systems over Unreliable Channels, in:Proceedings of Proceedings of the European Control Conference, Budapest, Hungary,2009.
    [110] Goodwin G C, Salgado M E, Yuz J I. Performance Limitations for Linear Feedback Sys-tems in the Presence of Plant Uncertainty. IEEE Transactions on Automatic Control,2003, 48(8):1312-1319.
    [111] Zhou J, Wang J G, Cao G Y. Performance Limitations in the Simultaneous Presence of Plant Uncertainty and Control Energy Constraint, in:Proceedings of Proceedings of the 6th World Congress on Intelligent Control and Automation, Dalian, China,2006,681-684.
    [112] Sun J Q, Djouadi S M. Robust Stabilization over Communication Channels in the Presence of Unstructured Uncertainty. IEEE Transtractions on Automatic control,2009,54(4):830-834.
    [113] Xie L L, Guo L. How much Uncertainty can be Dealt with by Feedback? IEEE Transactions on Automatic Control,2000,45(12):2203-2217.
    [114]王建国,曹广益,朱新坚.一类模型不确定系统的最优跟踪性能.信息与控制,2007,36(2):176-186.
    [115]王建国,曹广益,朱新坚.一类不确定时滞系统的最优控制.控制与决策,2007,22(6):618-621,625.
    [116]王建国,曹广益,朱新坚.控制能量约束条件下时滞系统最优控制与仿真.计算机仿真,2007,24(11):172-175.
    [117]王建国,曹广益,朱新坚.一类不确定系统的最优鲁棒控制.控制工程,2008,15(1):53-56.
    [118]王建国,马世伟.控制能量约束时不稳定过程最优控制与仿真.计算机仿真,2010,27(1):193-196.
    [119] Kong Y G, Wang Z X, Wang J G. Best Tracking Performance under Plant Uncertainty and Control Energy Constraint. Journal of Donghua University (English Edition),2007, 24(4):529-532,538.
    [120] Salgado M E, Silva E I. Robustness Issues in H2 Optimal Control of Unstable Plants. Systems & Control Letters,2006,55(2):124-131.
    [121] Braslavsky J H. Frequency Domain Analysis of Sampled-Data Control Systems:[PhD Dis-sertation]. New South Wales, Australia:The University of Newcastle,1995.
    [122] Freudenberg J S, Middleton R H, Braslavsky J H. Inherent Design Limitations for Linear Sampled-Data Feedback Systems. International Journal of Control,1995,61(6):1387-1421.
    [123] Chen J, Hara S, Qiu L, et al. Best Achievable Tracking Performance in Sampled-Data Control Systems, in:Proceedings of Proceedings of the 41st IEEE Conference on Decision and Control, Las Vegas, NV,2002,3889-3894.
    [124] Chen J, Hara S, Qiu L, et al. Best Achievable Tracking Performance in Sampled-Data Systems via LTI Controllers. IEEE Transactions on Automatic Control,2008,53(11):2467-2479.
    [125] Toker O, Chen J. Asymptotic Tracking Performance of Sampled-Data Systems, in:Proceed-ings of Proceedings of the 2002 American Control Conference, Anchorage, AK, May,2002, 2967-2972.
    [126]马杰,姚郁,李书训,等.采样控制系统混合灵敏度设计及应用.哈尔滨工业大学学报,2000,32(6):12-17.
    [127] Salt J, Albertos P. Model-Based Multirate Controllers Design. IEEE Transactions on Control Systems Technology,2005,13(6):988-997.
    [128] Cimino M, Pagilla P R. Design of Linear Time-Invariant Controllers for Multirate Systems. Automatica,2010,46(8):1315-1319.
    [129]唐斌,章云,刘国平,等.面向网络诱导时延和数据包丢失补偿的网络化广义预测控制.控制理论与应用,2010,27(7):880-890.
    [130]马卫国.具有时延和丢包的鲁棒网络控制系统研究:[博士学位论文].沈阳:大连理工大学,2008.
    [131]姜翀.网络控制系统的建模、分析与控制:[博士学位论文].沈阳¨:东北大学,2005.
    [132] Gu K, Kharitonov V L, Chen J. Stability of Time-Delay Systems. Berlin, Germanny: Springer-Verlag,2005.
    [133] Kwok W W F. Parameterizations of Sensor Time Delay Compensators and the Separation Principle:[Master Thesis]. Ontario, Canada:University of Waterloo,2006.
    [134] Gaudette D, Davison D E. Performance Limitations Imposed by Sensor Time Delays in a General 2-DOF Control Scheme, in:Proceedings of Proceedings of the 2006 American Control Conference, Minneapolis, Minnesota, USA.
    [135] Chen T, Francis B A. Optimal Sampled-Data Control Systems. Secaucus, NJ, USA:Springer-Verlag New York, Inc.,1995.
    [136] Francis B A. A Course in H∞ Control Theory. Berlin, Germanny:Springer-Verlag,1987.
    [137]王伦.内外分解和谱分解问题的解析计算及其MATLAB仿真:[硕士学位论文].上海:上海交通大学,2007.
    [138] Havre K. Studies on Controllability Analysis and Control Structure Design:[PhD Disserta-tion]. Saint Petersburg, Russia:Norwegian University of Science and Technology,1998.
    [139]郑君里,应启珩,杨为理.信号与系统(上册).北京:高等教育出版社,2000.
    [140]西安交通大学高等数学教研室.复变函数.北京:高等教育出版社,1996.
    [141]钟玉泉.复变函数论.北京:高等教育出版社,2003.
    [142] Bakhtiar T, Hara S. H2 Regulation Performance Limitations for SIMO Linear Time-Invariant Feedback Control Systems. Automatica,2008,44(3):659-670.
    [143] Conway J B. Functions of One Complex Variable, Second ed. New York:Springer-Verlag, 1996.
    [144] Hara S, Bakhtiar T, Kanno M. The Best Achievable H2 Tracking Performances for SIMO Feedback Control Systems. Journal of Control Science and Engineering,2007, Article ID 93904:12 pages.
    [145] Bakhtiar T, Hara S. Tracking Performance Limits for SIMO Discrete-Time Feedback Control Systems, in:Proceedings of SICE Annual Conference, Sapporo, Japan,2004,1825-1830.
    [146] Gasparyan O N. Linear and Nonlinear Multivariable Feedback Control:a Classical Approach. New York:Wiley,2008.
    [147] Smith S W. The Scientist and Engineer's Guide to Digital Signal Processing. San Diego, California:California Technical Publishing,1999.
    [148] Wang H N, Guan Z H, Ding L. Tracking and Disturbance Rejection for Networked Feedback Systems under Control Energy Constraint. in:Proceedings of Proceedings of the 27th Chinese Control Conference, Kunming, Yunnan, China,2008,578-581.
    [149] Vidyasagar M. Control System Synthesis:A Factorization Approach. Cambridge, MA:MIT Press,1985.
    [150] Rosenwasser Y N, Polyakov K Y, Lampe B P. Frequency-domain Method for H2 Optimization of Time-Delayed Sampled-Data Systems. Automatica,1997,33(7):1387-1392.
    [151] Goodwin G C, Salgado M. Frequency Domain Sensitivity Functions for Continuous Time Systems under Sampled Data Control. Automatica,1994,30(8):1263-1270.
    [152] Araki M, Ito Y, Hagiwara T. Frequency Response of Sampled-Data Systems. Automatica, 1996,32(4):483-497.
    [153] Braslavsky J H, Middleton R H, Freudenberg J S. L2-induced Norms and Frequency Gains of Sampled-Data Sensitivity Operators. IEEE Transactions on Automatic Control,1998, 43(2):252-258.
    [154] Peters A A, Salgado E, Silva E I. Performance Bounds in Linear Control of Unstable MIMO Systems with Pole Location Constraint. Systems & Control Letters,2008,57(5):392-399.
    [155] Ding L, Wang H N, Guan Z H, et al. Tracking under Additive White Gaussian Noise Effect. in:Proceedings of Proceedings of 7th Asian Control Conference, Hong Kong, China,2009, 477-482.
    [156] Guan Z H, Zhan X S, Feng G. Optimal Tracking Performance of MIMO Discrete-Time Systems with Communication Constraints. International Journal of Robust and Nonlinear Control,2011, page DOI:10.1002/rnc.1755.
    [157] Goodwin G C, Graebe S F, Salgado M E. Control System Design. New Jersey, America: Prentice Hall,2000.
    [158] Feuer A, Goodwin G C. Generalized Sample Hold Functions-Frequency Domain Analysis of Robustness, Sensitivity, and Intersample Difficulties. IEEE Transactions on Automatic Control,1994,39(5):1042-1047.
    [159] Fu M Y, Barmish R B. Robust Output Feedback Stabilization for Two New Uncertainty Structures. IEEE Transactions on Automatic Control,2010,55(1):253-258.
    [160] Jemaa L B, Davison E J. Performance Limitations in the Robust Servomechanism Problem for Discrete-Time LTI Systems. IEEE Transactions on Automatic Control,2003,48(8):1299-1311.
    [161] Vilanova R. Tracking Performance and Uncertainty:Performance Degradation Equivalence between 1-DOF and 2-DOF Control Configurations, in:Proceedings of 2007 IEEE Interna-tional Conference on Control and Automation, Guangzhou, China, May,2007,3147-3151.
    [162] Wang L Y, Zhang J F. Fundamental Limitations and Differences of Robust and Adaptive Con-trol, in:Proceedings of Proceedings of the 2001 American Control Conference, Arlington, VA, USA,2001,4802-4807.
    [163] Sun J Q, Djouadi S M. Robust Stabilization over Communication Channels in the Presence of Unstructured Uncertainty. IEEE Transactions on Automatic Control,2009,54(4):830-834.
    [164] Ding L, Guan Z H, Wang H N. Tracking Performance Limitations of Random Signal in Multivariable Discrete-Time Systems. Acta Automatica Sinica,2010,36(3):446-449.
    [165] Brinsmead T S, Goodwin G C. Fundamental Limits in Sensitivity Minimization:Multiple-Input-Multiple-Output MIMO Plants. IEEE Transactions on Automatic Control,2001, 46(9):1486-1489.
    [166] Silva E I, Goodwin G C, Quevedo D E. Control System Design Subject to SNR Constraints. Automatica,2010,46(2):428-436.
    [167] Ren Z Y, Qiu L, Chen J. On Performance Limitations in Estimation. Robustness in Identifi-cation and Control,1999,245:147-158.
    [168] Stephen B, Lieven V. Convex Optimization. Cambridge, New York, UK:Cambridge Univer-sity Press,2004.
    [169] Jin Z, Gupta V, Murray R M. State Estimation over Packet Dropping Networks using Multiple Description Coding. Automatica,2006,42:1441-1452.
    [170] Bakhtiar T, Hara S.H2 Control Performance Limitations for SIMO Systems:a Unified Ap-proach, in:Proceedings of Proceedings of the 6th Asian Control Conference (ASCC'06), Bali, Indonesia,2006,555-563.
    [171] Chen G, Chen J, Middleton R H. Optimal Tracking Performance for SIMO Systems. IEEE Transactions on Automatic Control,2002,47(10):1770-1775.
    [172] Bakhtiar T, Hara S. H2 Regulation Performance Limits for SIMO Feedback Control Sys-tems, in:Proceedings of Proceedings of The 17th International Symposium on Mathematical Theory of Networks and Systems, Kyoto, Japan,2006,1966-1973.
    [173] Hara S, Bakhtiar T.H2 Control Performance Limitations for SIMO Linear Discrete-Time Systems. Transactions of the Institute of Systems, Control and Information Engineers,2006, 19(10):391-399.
    [174] Valenzuela P E, Salgado M E, Silva E I. Performance Bounds for SIMO and Squared-up Plant Models, in:Proceedings of 19th Mediterranean Conference on Control and Automation, Aquis Corfu Holiday Palace, Corfu, Greece,2011,102-107.
    [175] Garcia M A, Salgado M E, Silva E I. Achievable Performance Bounds for Tall MIMO Sys-tems. IET Control Theory and Applications,2011,5(5):736-743.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700