两轴高速直驱伺服进给系统控制策略与实验平台
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高速加工使得传统机床行业出现了一次变革,原有的机床结构、主轴系统、伺服进给系统、数控系统以及加工工艺等都随之发生巨大变化,在这些变化中以伺服进给系统最为突出。直线电机直接驱动方式以其高速、高效、高精的特点被普遍认为是高速伺服进给系统的最佳选择。但是直线电机本身存在的端部效应和磁路开断现象使得其推力存在波动,同时,直线电机直接驱动系统由于缺少中间传动环节的缓冲作用,使得外界扰动信号的作用效果直接而明显,导致直线电机伺服系统控制困难。因此,研究直线电机伺服进给系统的控制策略具有重要的理论意义及工程实用价值。本文以两轴高速直驱伺服进给系统为研究对象,设计并搭建了永磁直线同步电机伺服进给实验平台,并以此为基础开展相应的控制理论与方法研究,并进行了实验验证。全文主要工作及成果如下:
     在系统分析永磁同步电机结构与工作原理的基础上,运用坐标变换法建立了同步电机数学模型,并基于此构建了两轴伺服进给系统传递函数模型。
     滑模变结构控制器设计与鲁棒性控制方法。在系统归纳连续系统和离散系统滑模控制器的工作原理及组成结构基础上,综合运用极点配置技术,系统研究了滑模控制器的切换面和趋近律,采用不连续控制策略,基于两轴伺服进给系统的数学模型设计了滑模变结构位置控制器;针对伺服控制系统存在的系统结构不确定性及外部扰动等问题,提出控制信号修正方法,通过增加补偿信号来应对结构不确定及输入信号的未知扰动。通过卡尔曼滤波有效抑制系统抖振;基于Matlab/Simulink进行了系统仿真实验,仿真实验结果验证了本文开发的滑模变结构控制器在直线电机伺服系统控制方面的有效性和鲁棒性。
     伺服进给系统自抗扰控制器设计与控制器参数整定。在系统分析自抗扰控制器的原理及结构组成基础上,将“基于误差消除误差”的策略用现代控制思想加以改进,针对两轴伺服进给系统,设计面向直线电机未知扰动的自抗扰控制器,采用试凑法对控制器参数进行了整定,通过仿真手段测试并验证了控制器的控制能力。
     基于永磁直线同步电机的伺服进给实验平台。运用高性能双边型永磁直线同步电机、高精度光栅尺、PMAC运动控制器、PLC控制系统、可控液压加载系统/可控电磁加载系统等为主要设备的两轴定位与加载实验平台。在上位控制层面,基于LabVIEW/G语言开发了实验平台总控模块;在运动控制层面,基于PMAC/PEWIN开发了2轴运动控制程序;在加载控制层面,开发了针对直线与圆周加载系统软件模块;上述实验平台除通常意义的伺服进给系统实验外,可完成控制策略的切换以及多种形式的变载荷加载实验。
     单轴电机特性、控制策略与综合加载实验。基于上述实验平台,开展了单轴直线电机特性实验和两轴进给系统综合实验,包括:单轴空载特性实验、单轴可变载荷实验、双轴变载实验等,通过实验结果的分析对直线电机单机特性和两轴进给特性进行讨论,并对全文提出的控制策略及具体方法进行了实验验证。
The concept of high-speed machining (HSM) has brought a revolution to thetraditional machine tool industry. Conventional machine tool structure, spindletechnology, servo system and processing techniques have been greatly evolved.Among the evolutions, that of the servo system is most prominent. Direct-drive linearmotor is considered as an optimal choice for high speed servo system due to its highspeed, high efficiency and high accuracy. Nevertheless linear motors also come withthe problem of force ripples produced by the end effect. Moreover direct-drive linearmotor system is more sensitive to external disturbances due to the lack of intermediatetransmission reducers. As a result, the control of a linear motor system is generallymore difficult. Hence, research on the control strategy for linear motor servo systemsis important from both theoretical aspect and practical aspect. This thesis investigatedthe control of a two-axis high-speed direct-drive servo feed system. A force loadingexperimental platform is developed and some control strategies are proposed anddemonstrated. The main content of the thesis includes:
     The structure and the work principle of a permanent magnet linearsynchronous motor (PMLSM) are firstly analyzed. Then, a mathematicmodel for the PMLSM and the two-axis servo feed system is produced usingthe method of coordinate system transformation.
     A variable structure sliding mode control (SMC) method and robust controlmethods are presented and are applied to the two-axis servo feed system inclosed-loop. The theory of the sliding mode control is firstly briefly reviewedand is then studied for both the continuous-time system and the discrete-timesystem. The SMC utilizing reaching law method is presented in details. Thedesign method of reaching law is discussed in particular. An integrateddesign procedure based on the pole-placement method for determining thereaching law and the switching surface is proposed. And the procedure isapplied to the mathematical model of the two-axis servo feed system. Someextra control items for correcting control signals are introduced to enhancethe robustness of the tracking controller against the model uncertainty and external disturbance. The effectiveness and robustness properties of aproposed control system with SMC are discussed using Matlab/Simulinksimulations.
     A controller based on Active Disturbance Rejection Control (ADRC) for thetwo-axis servo feed system is presented. ADRC inherits the error-drivenapproach (or in principle “use error to eliminate the error”) from traditionalPID method but enhances the later with modern control theory. In theresearch, the ADRC structure is analyzed and designed first, and then tunedfor the two axis servo drive system in order to reject the unknowndisturbance. Finally, simulations validate the controllability of the newcontroller.
     An experimental platform is developed for the direct drive servo feed systemin order to verify and investigate the effect of different control strategies andthe load response of the servo system. The platform is constructed using highperformance double-side type PMLSM, high precision linear encoder,PMAC controller and PLC system, controllable hydraulic loading systemand magnetic loading system. A computer application for SCADA isdeveloped using LabVIEW/G lanuage, while PMAC/PEWIN are employedto control the two axis system. A most prominent feature of this platform isthat the control strategy can be switched online and a variety of load signalto the feed system can be applied.
     Comprehensive experiments are carried out for both the single-axis linearmotor system and the two-axis feed system. No-load experiments andvarying load experiments are applied for both cases. The characteristics ofthe linear motor and the two-axis feed system are discussed through theanalysis of experimental results. The experiments verify the proposed controlstrategies and implementations.
引文
[1] Herbert Schulz. The history of high-speed machining, Proceedings of5thInternational Scientific Conference on Production Engineering, Opatija,Croatia,1999.
    [2]陈循介.21JIMTOF展出的用直线电机驱动的展品41台,世界制造技术与装备市场, Vol.64No.1,2003,9
    [3]遇立基,杨春林.米兰EMO2003国际机床展综述,世界制造技术与装备市场, Vol.69, No.6,2003,27-28
    [4] King.R. Precision Laser Scribes Aircraft Skins, Design News, Vol.5,1994,66-67
    [5]张国梁.我国机床用直线电机规模开发前景分析,数控机床市场, Vol.11,2003,67-68
    [6]司纪凯,封海潮,许孝卓等.数值解析混合法分析永磁直线同步电机性能,电机与控制学报, Vol.14, No.10,2010,8-14,
    [7] ZeSheng Deng, Boldea, S.A.Nasar. Fields in Permanent Magnet LinearSynchronous Machines, IEEE Transactions on Magnetics, Vol.22, NO.2,1986,107-112
    [8] GuangYu Xiong, S.A.Nasar. Analysis of Fields and Forces in a PermanentMagnet Linear Synchronous Machine Based on the Concept of MagneticCharge, IEEE Transactions on Magnetics, vol.25, No.3,1989,2713-2719
    [9] David L.Trumper, Won jong Kim, Mark E.Williams. Design and AnalysisFramework for Linear Permanent-Magnet Machines, IEEE TRANSACTIONSON INDUSTRY APPLICATIONS, Vol.32, No.2,1996,371-379
    [10] Gyu Hong Kang, Jung-Pyo Hong, Gyu-Tak Kim. Design and Analysis ofSlotless-Type Permanent-Magnet Linear Brushless Motor by Using EquivalentMagnetizing Current, IEEE Transactions on Industry Application, Vol.37, No.5,2001,1241-1247
    [11] Gyu-Hong Kang, Jung-Pyo Hong, Gyu-Tak Kim. A Novel Design of anAir-Core Type Permanent Magnet Linear Brushless Motor by SpaceHarmonics Field Analysis, IEEE Transactions on Magnetics, Vol.37, No.5,2001,3732-3736
    [12] Chunting Mi, Gordon R. Slemon, Richard Bonert. Modeling of Iron Losses ofPermanent-Magnet Synchronous Motors, IEEE Transactions on IndustryApplication, Vol.39, No.3,2003,734-742
    [13] Aarsh Hassanpour Isfahani, Sadegh Vaez-Zadeh. Design optimization of alinear permanent magnet synchronous motor for extra low force pulsations,Energy Conversion and Management, Vol.48,2007,443–449
    [14]李庆雷,王先逵,吴丹,刘成颖,石忠东.永磁同步直线电机推力波动分析及改善措施,清华大学学报(自然科学版), Vol.40, No.5,2000,33-36
    [15]李庆雷,王先逵,吴丹,刘成颖,石忠东.永磁同步直线电机推力及垂直力的有限元计算,清华大学学报(自然科学版), Vol.40, No.5,2000,20-23
    [16]焦留成,袁世鹰.永磁直线同步电动机等效电路参数计算,中国电机工程学报, Vol.23, No.3,2002,12-16
    [17]汪旭东,王兆安,袁世鹰,焦留成,王福忠.基于场路结合的永磁直线同步电机的解析计算,微电机, Vol.34, No.1,2001,15-17,56
    [18]郭红,贾正春,詹琼华,马志云.永磁同步直线电机电磁推力的谐波分量,微电机, Vol.36, No.3,2003,14-17,23
    [19]郭红,贾正春,詹琼华,马志云.永磁同步直线电机电磁推力的分析,电机与控制学报, Vol.8, No.3,2004,1-4,89
    [20]陈定积,刘泉,王先逵,石忠东,刘成颖,赵彤.永磁同步直线电机空载反电势的分层有限元分析,清华大学学报(自然科学版), Vol.44, No.2,2004,212-214,218
    [21]赵彤,王先逵,刘成颖,吴丹,周天丰,林家春.机床进给用永磁同步直线伺服单元的设计与实验研究,中国机械工程, Vol44, No.2,2006,2421-2425
    [22]刘豪,上官璇峰,袁世鹰.无槽永磁直线同步电动机的磁场分析,煤矿机电, Vol.6,2006,36-38
    [23]刘豪,上官璇峰,袁世鹰.无槽永磁直线同步电动机磁场分析,微电机,Vol.40No.5,2007,8-20
    [24]刘豪,上官璇峰,袁世鹰.无槽永磁直线同步电动机的稳态分析,微特电机, Vol.5,2007,13-15
    [25]潘开林,傅建中,陈子辰.永磁直线同步电机的磁阻力分析及其最小化研究,中国电机工程学报, Vol.24No.4,2004,112-115
    [26]徐月同,傅建中,陈子辰.永磁直线同步电机推力波动优化及实验研究,中国电机工程学报, Vol.25No.12,2005,122-126
    [27]潘开林,傅建中,陈子辰.永磁直线同步电机的磁阻力分析及其优化,浙江大学学报(工学版), Vol.39No.10,2005,1627-1632
    [28] D.M.Alter, T.C.Tsao. Stability of turning processes with actively controlledlinear motor feed drives, ASME Journal for Engineering for Industry, Vol.116,1994,298–307
    [29] G.Pritschow. A comparison of linear and conventional electromechanical drives,Annals of CIRP, Vol.47, No.2,1998,541–548.
    [30] G.Pritschow, W.Phillip. Direct drives for high-dynamic machine tool axes,Annals of CIRP, Vol.39, No.1,1990,413–416.
    [31] G.Pritschow, W.Phillip. Research on the efficiency of feedforward controllersin direct drives, Annals of CIRP, Vol.41, No.1,1992,411–415
    [32] P. Van Den Bramebussche, J.Swevers, H.Van Brussel, P.Vanherck. AccurateTracking Control of Linear Synchronous Motor Machine Tool Axes,Mechatronics, Vol.6, No.5,1996,507-521
    [33] Hidenori Shinno, Hitoshi Hashizume. Nanometer Positioning of a LinearMotor-Driven Ultraprecision Aerostatic Table System with ElectrorheologicalFluid Dampers, CIRP Annals-Manufacturing Technology, Vol.48, No.1,1999,289–292
    [34] H.Shinno, H.Hashizume. High Speed Nanometer Positioning Using a HybridLinear Motor, Manufacturing Technology, Vol.50, No.1,2001,243-246
    [35] K.K.Tan, T.H.Lee, H.Dou, S.Zhao. Force ripple suppression in iron-corepermanent magnet linear motors using an adaptive dither, Journal of theFranklin Institute Vol.341,2004,375–390
    [36] K.K. Tan, S.N. Huang, H.F.Dou, T.H.Lee, S.J.Chin, S.Y.Lim. Adaptive robustmotion control for precise trajectory tracking applications, ISA Transactions,Vol.40,2001,57-71
    [37] K.K.Tan, S.J.Chin, H.F.Dou, Feedforward suppression of force ripple based ona simplex-optimized dither signal, ISA Transactions, Vol.42,2003,19-27
    [38] S Zhao, K.K.Tan. Adaptive feedforward compensation of force ripples in linearmotors, Control Engineering Practice, Vol.13,2005,1081–1092
    [39] Kok Kiong Tan, Ser Yong Lim, Tong Heng Lee. Huifang Dou, High-precisioncontrol of linear actuators incorporating acceleration sensing, Robotics andComputer Integrated Manufacturing, Vol.16,2000,295-305
    [40] Mu-Tian Yan, Yau Jung Shiu. Theory and application of a combinedfeedback–feedforward control and disturbance observer in linear motor drivewire-EDM machines, International Journal of Machine Tools&Manufacture,Vol.48, No.2008,388–401
    [41] Hidenori Shinno, Hitoshi Hashizume. Nanometer Positioning of a LinearMotor-Driven Ultraprecision Aerostatic Table System with ElectrorheologicalFluid Dampers, CIRP Annals-Manufacturing Technology, Vol.48, No.1,1999,289–292
    [42] Chun Liang Lin, Horn Yong Jan, Niahn-Chung Shieh. GA-BasedMultiobjective PID Control for a Linear Brushless DC Motor, IEEE/ASMETransaction on Mechatronics, Vol.8, No.1,2003,56-65
    [43]郭庆鼎,王成元,周美文,孙廷玉.直线交流伺服系统的精密控制技术,北京:机械工业出版社,2000
    [44]朱肖强,陈三宝.电加热炉炉温控制系统设计与仿真,自动化与仪器仪表,Vol.3,2006,17-19
    [45] BahillA.T. A simple adaptive Smith-predictor for controlling time-delaysystems, IEEE Control Systems Magazine,1983,16-22
    [46] Yu Dongmei, Guo Qingding, Hu Qing. Study on Synchronous Drive Techniqueof Biaxial Linear Servo Motor Based on Decoupling Control and InternalModel Control with Two-Degree-of-Freedom, Sixth International Conferenceon Electrical Machines and Systems, Beijing,2003
    [47] Ching Huei Huang, Chun Liang Lin. Evolutionary neural networks and DNAcomputing algorithms for dual-axis motion control, Engineering Applicationsof Artificial Intelligence, Vol.24,2011,1263–1273
    [48]陈新海,李言俊,周军.自适应控制及应用,陕西:西北工业大学出版社,1998
    [49] K.J. str m, B.Wittenmark. Adaptive control. Addison-Wesly,1989
    [50] Li Xu, Bin Yao. Output feedback adaptive robust precision motion control oflinear motors, Automatica, Vol.37,2001,1029-1039
    [51] Tian Hua Liu, Yung Ching Lee, Yih-Hua Chang. Adaptive Controller Designfor a Linear Motor Control System, IEEE Transactions on Aerospace andElectronic System Vol.40, No.2,2004,601-616
    [52] Yun Hong, Bin Yao. A Globally Stable High-Performance Adaptive RobustControl Algorithm With Input Saturation for Precision Motion Control ofLinear Motor Drive Systems, IEEE/ASME Transactions on Mechatronics,Vol.12, No.2,2007,198-207
    [53]王娟,张涛,徐国凯.鲁棒控制理论及应用,北京:电子工业出版社,2011
    [54]黄曼磊.鲁棒控制理论及应用,哈尔滨:哈尔滨工业大学出版社,2007
    [55] D.M.Alter, T.C.Tsao. Control of linear motors for machine tool feed drives:experimental investigation of optimal feedforward tracking control, ASMEJournal of Dynamic Systems, Measurement and Control, Vol.118,1996,649–656.
    [56] D.M.Alter, T.C.Tsao. Control of linear motors for machine tool feed drives:design and implementation of h∞optimal feedback control, ASME Journal ofDynamic Systems, Measurement, and Control, Vol.118,1996,649–656
    [57] H.Van Brussel, P.Van den Braembussche. Robust Control of Feed Drives withLinear Motors, CIRP Annals-Manufacturing Technology, Vol.47, No.1,1998,325-328
    [58] Zuo Zong Liu, Fang Lin Luo, M. Azizur Rahman. Robust and PrecisionMotion Control System of Linear-Motor Direct Drive for High-Speed X–YTable Positioning Mechanism, IEEE Transactions on Industrial Electronics,Vol.52, No.5,2005,1357-1363
    [59] P.Van den Braembussche, J.Swevers, H.Van Brussel. Design and experimentalvalidation of robust controllers for machine tool drives with linear motor,Mechatronics, Vol.11,2001,545-562
    [60] G. Bartolini, A.Ferrara, V.I.Utkin. Adaptive Sliding Mode Control inDiscrete-time Systems, Automatica, Vol.31, No.5,1995,769-713
    [61] Yu Feng Li, Jan Wikander. Model reference discrete-time sliding mode controlof linear motor precision servo systems, Mechatronics, Vol.14,2004,835–851
    [62] Jianhua Wu, Donglin Pu, Han Ding. Adaptive robust motion control of SISOnonlinear systems with implementation on linear motors, Mechatronics, Vol.17,2007,263–270
    [63] Yi Sheng Huang, Cheng Chung Sung. Function-Based Controller for LinearMotor Control Systems, IEEE Transactions on Industrial Electronics, Vol.57,No.3,2010,1096-1105
    [64] Y. Altintas, B. Sencer. High speed contouring control strategy for five-axismachine tools, CIRP Annals-Manufacturing Technology, Vol.59,2010,417–420
    [65]韩京清,自抗扰控制技术-估计补偿不确定因素的控制技术,北京:国防工业出版社,2008
    [66]刘德君,郭庆鼎,翁秀华.基于自抗扰控制器的交流直线永磁同步伺服电机速度控制系统,电气传动, Vol.35, No.9,2003,36-35
    [67]刘希喆,吴捷.永磁直线同步电动机速度环自抗扰控制器的设计.电工技术学报, Vol.19, No.4,2004,6-11
    [68] Zhiqiang Gao, Shaohua Hu, Fangjun Jiang. A Novel Motion Control DesignApproach Based On Active Disturbance Rejection, Proceedingsof the40thIEEE Conference on Decision and Control, Orlando, Florida USA,2001
    [69]王顺晃,舒迪前.智能控制系统第2版,北京:机械工业出版社,2005
    [70] G.Otten, T.A.J.DeVries, J.V.Amerongen, A.M.Rankers, E.W.Gaal. Linearmotor motion control using a learning feedforward controller, IEEE/ASMETransactions on Mechatronics, Vol.2,1997,179–187.
    [71] T.H.Lee, K.K.Tan, S.Y.Lim, H.F.Dou. Iterative learning control of permanentmagnet linear motor with relay automatic tuning, Mechatronics, Vol.10,2000,169-190
    [72] T.H.Lee, K.K.Tan, S.N.Huang, H.F.Dou. Intelligent control of precision linearactuators, Engineering Applications of Artificial Intelligence, Vol.13,2000,671–684
    [73] Ching-Huei Huang, Chun-Liang Lin, Evolutionary neural networks and DNAcomputing algorithms for dual-axis motion control, Engineering Applicationsof Artificial Intelligence, Vol.24,2011,1263–1273
    [74] T.J.E.Miller. Brushless Permanent-Magnet and Reluctance Motor Drives.NY:Oxford University Press,1989.
    [75] D.C.Hanselman. Brushless Permanent-Magnet Motor Design. NY:McGraw-Hill,1994.
    [76] P.C.Krause, O.Wasynczuk, S.D.Sudho, Analysis of Electric Machinery,2ndedition. New York, NY: IEEE Press,2002.
    [77] Brian Armstrong Helouvry. Pierre Dupont, Carlos Canudas De Wi, A Survey ofModels, Analysis Tools and Compensation Methods for the Control ofMachines with Friction, Automatic, Vol.30, No.7,1994,1083-1138
    [78] Vadim I.Utkin. Variable structure systems with sliding modes, IEEE Trans.Automatic Control, Vol.22, No.2,1977,212-222
    [79] Katsuhisa Furuta. Sliding mode control of a discrete system, System&ControlLetters, Vol.14,1990,145-152
    [80] Gao W B, Wang Y F, Homaifa. A Discrete-time variable structure controlsystem, IEEE Transactions on Industrial Electronics, Vol.42, No.2,1995,117-122
    [81]刘金琨.滑模变结构控制MATLAB仿真,北京:清华大学出版社,2005
    [82]杨明.矩阵论(第二版),武汉:华中科技大学出版社,2005
    [83]宋金来.自抗扰控制技术及其在高速、高精度武器系统中的应用,博士论文,中国科学院,2002
    [84] Zhu Faguo, Chen Xueyun. Analysis and Improvement of the NonlinearTracking Differentiator, Control Theory and Applications, Vol.16, No.6,1999,898-902
    [85]韩京清,王伟.非线性跟踪微分器,系统科学与数学, Vol.14, No.2,1994,177-183
    [86]韩京清.一类不确定对象的扩张状态观测器,控制与决策, Vol.10, No.1,1995,85-88
    [87]韩京清.非线性PID控制器,自动化学报, Vol.20, No.4,1994,487-490
    [88]韩京清.一种新型控制器-NLPID,控制与决策, Vol.9, No.6,1994,401-407
    [89]韩京清.非线性状态误差反馈控制律——NLSEF,控制与决策, Vol.10,No.3,1995,221-225
    [90]魏佩敏.基于非线性状态误差反馈控制律的解耦控制器设计,机床与液压,No.2,2003,41-42229
    [91] J.Q.Han. From PID to Active Disturbance Rejection Control.IEEETransactions on Industrial Electronics, Vol.56, No.3,2009,900-906
    [92]张奕群,董德发.非线性跟踪微分器噪声抑制能力的改进,中国控制与决策学术年会论文集,1996,109-111
    [93]韩京清,袁露林.跟踪微分器的离散形式,系统科学与数学, Vol.19, No.3,1999,268-273
    [94]宋金来,韩京清.自抗扰控制技术的滤波性质及其应用研究,中国控制与决策学术年会,郑州,2002
    [95]宋金来,甘作新,韩京清.自抗扰控制技术滤波特性的研究,控制与决策,Vol.18, No.1,2003,110-112119
    [96]薛定宇.控制系统仿真与计算机辅助设计,.北京:机械工业出版社,2005
    [97]吴猛,朱喜林,鄂世举,孙明革,童少为.自抗扰控制器参数整定方法的研究,北京理工大学学报, Vol.29, No.2,2009,121-127
    [98] Sun Li-Ming, Jiang Xue-Zhi, Li Dong-Hai. Tuning of Auto-disturbance-rejection Controller for a Class of Noliner Plants, ACTA AUTOMATICASINICA, Vol.30, No.2,2004,251-254
    [99] PMAC2USER MANUAL. Delta Tau Data Systems lnc,2004
    [100] PMAC Catalog. Delta Tau Data Systems lnc,2004
    [101] PRODUCT GUIDE Universal PMAC Lite. Delta Tau Data Systems lnc.2004
    [102]牛怀新,高大智.美国MicroE微光栅编码器在直线电机及直接驱动领域的应用,电子工业专用设备, Vol.166,2008,53-56
    [103]曲丽荣,胡荣,范寿康. LabVIEW、MATLAB及其混合编程技术,北京机械工业出版社,2011
    [104]杨乐平,李海涛,赵勇. LabVIEW高级程序设计,北京:清华大学出版社,2002
    [105] OPC Foundation. Data Access Custom Interface Standard Specification2.0(Release Candidate5),1998
    [106] OPC Foundation. Data Access Automation Interface Standard Specification2.02,1999

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700