八肋游仆虫中心蛋白在溶液中的聚集性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中心蛋白(Centrin)是属于EF-hand钙结合蛋白超家族的分子量较小(约20kD)的酸性蛋白。最初中心蛋白是作为鞭毛单细胞生物中连接核和鞭毛器的纤维的主要成分被鉴定得到的,随后发现中心蛋白是中心粒,中心体和有丝分裂纺锤体极体中一种广泛存在的成分,与细胞的分裂,细胞中中心体的定位、定向,纺锤体极体分离,微管切除,纤维系统的收缩等有关。其中基于中心蛋白的纤维系统的收缩现象,与在Ca2+存在下,不论是酵母,藻类或是人类的中心蛋白都会形成多聚体密切相关。
     八肋游仆虫中心蛋白(EoCen)是从一种在进化上处于特殊地位的单细胞真核生物——八肋游仆虫中克隆得到的,将其作为研究金属离子(Ca2+、Ln3+)进入体内的靶蛋白模型,对于阐明稀土生物效应的分子基础具有重要的意义。EoCen共含有168个氨基酸残基,与人中心蛋白1(HsCen1),人中心蛋白2(HsCen2)和人中心蛋白3(HsCen3)的序列同源性分别为60%,62%和66%,与研究最为广泛的EF-hand结构蛋白钙调蛋白(CaM)的同源性为50%。最近,八肋游仆虫中心蛋白N端结构域的NMR结构刚刚被报道(2joj. pdb)。与CaM一样,EoCen由两个相互独立的结构域组成,中间由一段弹性螺旋相连。每个结构域都由一对螺旋—环—螺旋结构的EF-hand结构基元组成,每个结构基元能够结合一个Ca2+。与其他物种的中心蛋白一样,在Ca2+存在下,EoCen也会形成多聚体,这一点与CaM明显不同。本文将着重研究金属离子诱导下八肋游仆虫中心蛋白在溶液中的聚集性质。
     本文用定点突变的方法构建得到了九个酪氨酸突变体(Y46F, Y72F, Y79F, N-Y46F, N-Y72F, N-Y79F, N-Tyr46, N-Tyr72, N-Tyr79)重组质粒。通过DNA序列分析确定所得到的突变体只含有目的位点的突变基因,而不包含其它任何位点的随机突变。将重组质粒转入大肠杆菌BL21(DE3)细胞中,在诱导剂IPTG诱导下实现蛋白可溶性表达。融合蛋白经PPase酶切和GST亲和层析之后得到目的蛋白。另外,将野生型蛋白(EoCen)和本课题组之前构建完成的蛋白片段分子(N-EoCen, C-EoCen,Δ23EoCen,P23,P123)诱导表达纯化得到目的蛋白。经SDS-PAGE分析显示所有蛋白均不含杂蛋白条带,达到实验所需纯度。
     首先对金属离子诱导下的EoCen的聚集性质进行了系统的分析表征。含有不同结构域的蛋白片段分子(EoCen, N-EoCen, C-EoCen,Δ23EoCen,P23,P123)的化学交联实验表明蛋白的N末端是聚集发生的主要部位。天然胶电泳显示在Lu3+存在下,只有完整的野生型蛋白分子能够显示出多聚体条带。用共振光散射(RLS)的方法分析了多种理化因素,包括温度,蛋白浓度,离子强度,酸度对Lu3+诱导的EoCen聚集性质的影响。不同金属离子与蛋白结合的对照实验表明,Lu3+或Ca2+在EoCen N端的结合有利于蛋白的聚集,且Lu3+表现出更强的促进效应,而Mg2+的结合不能起到相同或相似的作用。2-ptoluidinylnaphthalene-6-sulfonate (TNS)结合实验以及离子强度实验证明Lu3+结合诱导的EoCen的聚集与蛋白疏水区的暴露密切相关。酸度效应实验中,不同片段分子蛋白的对照研究表明静电作用在EoCen的聚集过程中影响较小。
     酪氨酸残基是组成蛋白——蛋白相互作用的“热点”区域的主要氨基酸残基之一,且其具备发光性质。本课题组之前的工作以Tb3+作为荧光探针证明EoCen存在4个Ca2+结合位点,且Tb3+敏化荧光的增强主要来源于EoCen的N末端所含的三个酪氨酸残基(Tyr-46,Tyr-72,Tyr-79)与结合的Tb3+之间的能量转移。为了找到EoCen聚集时的蛋白——蛋白相互作用过程中,以及EoCen与Tb3+结合时的能量转移过程中起重要作用的酪氨酸残基,本文用定点突变的方法得到了九个分别含有一个或两个酪氨酸残基的EoCen突变体。实验结果显示79位酪氨酸的突变对荧光敏化的影响最为明显,使得Tb3+的荧光敏化强度降低达到50%之多。Forster能量转移机理得出79位酪氨酸与蛋白N端结合的两个Tb3+之间的距离最近(8.8±0.2A)。稳态荧光及时间分辨荧光参数的测定表明处于疏水环境中的Tyr-79量子产率最高(3.27×10-2),荧光寿命相对较长(2.20 ns),且平均寿命数据的标准偏差(σ=0.271 ns)最小。另外,分子模拟显示Tyr-79的酚羟基与Asn-39的侧链上的氧原子之间形成了重要的氢键。酪氨酸与Tb3+的荧光动力学实验证明酪氨酸荧光的猝灭绝大部分来源于EoCen在金属离子结合诱导下产生的聚集,研究发现不同酪氨酸突变体所表现出的荧光猝灭程度有所不同。以全分子单酪氨酸突变体(Y46F, Y72F, Y79F)为研究对象,经RLS和化学交联分析显示,Tyr-79是蛋白聚集过程中贡献最大的酪氨酸残基。
     细胞渗透型小分子抑制剂Monastrol通常被认为能够特异性地抑制驱动蛋白Eg5的活性,导致细胞有丝分裂停滞和单极纺锤体的形成,从而表现出明显的抗肿瘤活性。中心蛋白作为一种附着于中心体上的广泛存在的蛋白,在中心体复制过程中发挥着重要的作用。已有报道称中心体的大量增殖很可能与癌症有关。本文研究发现Monastrol在体内能够有效抑制转化有pGEX-6p-1-EoCen重组质粒的大肠杆菌细胞的生长,以及八肋游仆虫的增殖分裂;在体外能够抑制Lu3+诱导的EoCen的聚集。合成得到的两个Monastrol类似物(Compound 1和Compound 2)不能达到相同的抑制效果。荧光滴定实验表明1个EoCen蛋白分子能够结合4个Monastrol分子,并且得到不同温度下EoCen与Monastrol相互作用的结合常数。热力学数据分析显示EoCen与Monastrol结合的主导作用力为疏水作用力。Monastrol对蛋白聚集抑制的程度与金属离子结合所诱导的蛋白疏水区的暴露密切相关。
     蜂毒素(Melittin)是一种从蜂毒中提取出的由26个氨基酸残基构成的两亲性小分子肽,被广泛用作研究蛋白——蛋白相互作用或者蛋白——脂类相互作用的工具。本文研究表明EoCen与Melittin主要以静电力方式相互作用。初步证明Melittin在EoCen上的结合对Lu3+诱导的EoCen的聚集有抑制作用。中心蛋白的两大作用机制——纤维收缩和信号转导可能存在着共同的分子基础。
Centrin is an acidic, low molecular weight (Mr~20000) protein that belongs to the EF-hand superfamily of calcium binding proteins. This calcium-binding protein (centrin) was first identified as a major component of the fibers that link the nucleus to the flagellar apparatus in flagellated unicells, and later, it was shown to be a ubiquitous component of centrioles, centrosomes, and mitotic spindle poles. Cenrin is required for the cell division, centrosome positioning and orientation, mitotic spindle segregation, as well as microtubule severing, and plays an essential role in contraction of centrin-based fiber systems in eukaryotic cells. A distinguishing feature of centrin-based fiber systems is that they all show calcium-induced contractile behavior, which is closely related to the fact that centrins from yeast (Cdc31p), algae (Scherffelia dubia centrin (SdCen)), or humans (HsCen1, HsCen2) may form multimers in the presence of Ca2+.
     Ciliate Euplotes octocarinatus centrin (EoCen) is first reported by our laboratory, which is cloned from Euplotes octocarinatus, a unicellular eukaryotic protozoon located in a special phylogenic degree. Using EoCen as a model of metal ion-binding target is significant for elucidating the molecular basis of biological effects of rare earth elements. EoCen is a protein of 168 residues, which shares about 60,62 and 66% sequence identity with human centrin 1, human centrin 2 and human centrin 3, respectively, and shares approximately 50% sequence identity with the well studied EF-hand protein calmodulin (CaM). Recently, the structure of the N-terminal domain of EoCen was obtained by NMR (2joj. pdb). Like CaM, centrin consists of two independent domains tethered by a flexible linker, each domain comprising a pair of EF-hand motifs of helix-loop-helix that can potentially bind two calcium ions. EoCen may form multimers in the presence of Ca2+ as same as centrins from other species, in clear contrast with CaM. This dissertation focuses on the metal ion-dependent self-assembly of EoCen.
     In the present study, nine mutants (Y46F, Y72F, Y79F, N-Y46F, N-Y72F, N-Y79F, N-Tyr46, N-Tyr72 and N-Tyr79) were first obtained by site-directed mutangenesis. In all cases, the presence of the specific mutation and the lack of random mutations were verified by DNA sequence analysis, which was conducted by a commercial company. Recombinant plasmids were transformed in E.coli BL21 (DE3), then the fusion expression of the mutants were performed by the induction of IPTG Fusion protein was cut by PPase and was purified by GST affinity chromatography. At the same time, the wild-type EoCen and the truncated form of it (EoCen, N-EoCen, C-EoCen,Δ23EoCen, P23, and P123), which are previously constructed by our group, were expressed and purified. The final product is examined by SDS-PAGE, and all of the protein products were of high purity.
     In order to systematically characterize the metal-ion dependent self-assembly of EoCen, we initiated a physicochemical study of the self-assembly properties of the purified protein (EoCen, N-EoCen, C-EoCen,Δ23EoCen, P23, and P123) in vitro. The critical role of the N-terminal domain of EoCen played in the self-assembly was exhibited by chemical cross-linking experiment. The native PAGE results indicate that only the integral protein shows multimers in the presence of Lu3+. The dependence of Lu3+-induced self-assembly of EoCen on various chemical and physical factors, including temperature, protein concentration, ionic strength and pH, was characterized using resonance light scattering (RLS). Control experiments with different metal ions suggest that Ca2+and Lu3+binding to the N-terminal domain of EoCen are all positive to the self-assembly of the protein, and Lu3+ exhibit the stronger effect, however, Mg2+ alone cannot take the same effect. The experiments of 2-ptoluidinylnaphthalene-6-sulfonate (TNS) binding and ionic strength effect demonstrate that the lutetium(Ⅲ)-dependent self-assembly is closely related to the exposure of hydrophobic cavity. Control experiment on pH value with EoCen and the fragments of it, N-terminal domain of EoCen (N-EoCen), indicates that the electrostatic effect is of small tendency to be served as the main driving force in the self-assembly of EoCen.
     Tyrosine is one of the most preferred residues in "hot spots" of protein-protein interactions. In addition, tyrosine is of fluorescence properties. It has been proven that EoCen has four calcium-binding sites by using Tb3+ as fluorescence probe. The sensitized emission arises from a nonradiative energy transfer between the three tyrosine residues (Tyr-46, Tyr-72, and Tyr-79) of N-terminal half and the bound Tb3+ions. In addition, To find the most critical one of the three tyrosine residues in the process of fluorescence resonance energy transfer (FRET) and in the protein self-assembly, nine mutants (Y46F, Y72F, Y79F, N-Y46F, N-Y72F, N-Y79F, N-Tyr46, N-Tyr72 and N-Tyr79) of EoCen, which contain one or two tyrosine residues were obtained by site-directed mutagenesis. The aromatic residue-sensitized Tb3+ fluorescence of N-Y79F was mostly affected, which displayed a 50% reduction compared with wild-type N-EoCen. Tyr-79 is of the nearest mean distance (8.8±0.2A) of protein bound Tb3+(at sitesⅠ/Ⅱ), which is calculated via the Forster mechanism. The steady-state and time-resolved fluorescence parameters of the wild-type N-EoCen and the three double mutants suggest that Tyr-79, which exists in a hydrophobic environment, has the highest quantum yield (3.27×10-2) and a relatively long average lifetime (2.20 ns). The standard deviation of the average lifetime of Tyr-79 (σ=0.271 ns) is the least among the three tyrosine residues. In addition, molecular modeling shows that a critical hydrogen bond is formed between the 4-hydroxyl group of Tyr-79 and the oxygen from the side chains of residue Asn-39. Kinetic experiments of tyrosine and Tb3+fluorescence demonstrate that the tyrosine fluorescence quenching is largely originated from the self-assembly of EoCen, and that the quenching degrees of the mutants differ from one another. Resonance light scattering (RLS) and cross-linking analysis carried out on the full-length single mutants (Y46F, Y72F, and Y79F) showed that Tyr-79 also plays the most important role in the Tb3+-dependent self-assembly of EoCen among the three tyrosines.
     Monastrol, a cell-permeable inhibitor, considered to specifically inhibit kinesin Eg5, can cause mitotic arrest and monopolar spindle formation, thus exhibit antitumor properties. Centrin, a ubiquitous protein associated with centrosome, plays a critical role in centrosome duplication. Moreover, a correlation between centrosome amplification and cancer has been reported. In this study, it is proposed for the first time that centrin may be another target of the anticancer drug monastrol since monastrol can effectively inhibit not only the growth of the transformed Escherichia coli cells (pGEX-6p-1-EoCen) and the division of the Euplotes octocarinatus cells in vivo, but also the Lu3+-dependent self-assembly of EoCen in vitro. The two closely related compounds (Compound 1 and 2) could not take the same effect. Fluorescence titration experiments suggest that four monastrols per protein is the optimum binding pattern, and the binding constants at different temperatures were obtained. Detailed thermodynamic analysis indicates that hydrophobic force is the main acting force between monastrol and centrin, and the extent of monastrol inhibition of centrin self-assembly is highly dependent upon the hydrophobic region of the protein, which is largely exposed by the binding of metal ions.
     Melittin, a basic 26-amino acid residue amphiphilic peptide from bee venom, is widely used as a tool for the study of protein-lipid and protein-protein interactions in artificial and biological membranes. In the present study, we proved that the main acting force in the binding of melittin to EoCen is the electrostastic force. Evidence that melittin binding of EoCen have inhibited the Lu3+-induced self-assembly of EoCen is preliminary. The two action mode of centrin may underlie the same molecular mechanism.
引文
[1]HUANG B, MENGERSEN A, LEE V. Molecular Cloning of cDNA for Caltractin, a Basal Body-associated Ca2+-Binding Protein:Homology in Its Protein Sequence with Calmodulin and the Yeast CDC31 Gene Product [J]. J Cell Biol,1988,107:133-140.
    [2]MONCRIEF N, KRETSINGER R, GOODMAN M. Evolution of EF-hand Calcium-Modulated Proteins. I. Relationships Based on Amino Acid Sequences [J]. J Mol Evol,1990,30:522-562.
    [3]SALISBURY J, BARON A, SUREK B, MELKONIAN M. Striated Flagellar Roots: Isolation and Partial Characterization of a Calcium-Modulated Contractile Organelle [J]. J Cell Biol,1984,99:962-970.
    [4]SALISBURY J. Centrin, Centrosomes, and Mitotic Spindle Poles [J]. Curr Opin Cell Biol,1995,7:39-45.
    [5]SALISBURY J, KELLY M, BUSBY R, SPRINGETT M. Centrin-2 is Required for Centriole Duplication in Mammalian Cells [J]. Curr Biol,2002,12:1287-1292.
    [6]SCHIEBLE E, BORNENS M. In search of function for centrins [J]. Trends Cell Biol, 1995,5:197-201.
    [7]WOLFRUM U, GEISL A, PULVERMULLER A. In Photoreceptors and Calcium [M], in:Baehr W, Palczewski K, (eds) New York,2002, pp.155-178.
    [8]TOURBEZ M, FIRANESCU C, YANG A, UNIPAN L, DUCHAMBON P, BLOUQUIT Y, CRAESCU C. Calcium-Dependent Self-Assembly of Human Centrin 2 [J]. J Biol Chem,2004,279:47672-47680.
    [9]SALISBURY J, FLOYD G. Calcium-Induced Contraction of the Rhizoplast of A Quadriflagellate Green Alga [J]. Science,1978,202:975-977.
    [10]SANDERS M, SALISBURY J. Centrin-Mediated Microtubule Severing during Flagellar Excision in Chlamydomonas reinhardtii [J]. J Cell Biol,1989,108: 1751-1760.
    [11]BARON A, SUMAN V, NEMETH E, SALISBURY J. The Pericentriolar Lattice of PtK2 Cells exhibits Temperature and Calcium-Modulated Behavior [J]. J Cell Sci, 1994,107:2993-3003.
    [12]KALT A, SCHLIWA, M. Molecular Components of the Centrosome [J]. Trends Cell Biol,1993,3:118-128.
    [13]BARON A, SALISBURY J. In the Centrosome (Kalnins, V. I., ed.),1992, pp.167-1 95, Academic Press
    [14]WRIGHT R, SALISBURY J, JARVIK J. A Nucleus-Basal Body Connector in Chlamydomonas reinhardtii that may Function in Basal Body Localization or Segregation [J]. J Cell Biol,1985,101:1903-1912.
    [15]SANDERS M, SALISBURY J. Centrin Plays an Essential Role in Microtubuli Severing During Flagellar Excision in Chlamydomonas reinhardtii[J].J Cell Biol, 1994,124:795-805.
    [16]BYERS B, COETSCH L. Behavior of Spindles and Spindle Plaques in the Cell Cycle and Conjugation of Saccharomyces cerevisiae [J]. J Bacteriol,1975,124:511-523.
    [17]ROUT M, KILMARTIN J. The 110-kD Component is Localized in the SPB to the Gap between the Central Plaque and the Sealed Ends of the Nuclear Microtubules Near the Inner Plaque [J]. J Cell Biol,1990,111:1913-1927.
    [18]BYERS B. In the Molecular Biology of the Yeast Saccharomyces:Life Cycle and Inheritonce [M] (Strathern J, Jones E, and Broach J, eds).1981, pp.59-96, Cold Spring Harbor Laboratoty Press.
    [19]BYERS B. In Molecular Genetics in Yeast [M] (Wettstein D, Stenderup A, Kielland-Brandt M, and Friis J, eds),1981, pp.119-133, Alfred Benzon Symp.
    [20]SPANC A, COURTNEY I, FACKLER U, MATZNER M, SCHIEBEL E. The Calcium-Binding Protein Cell Division Cycle 31 of Saccharomyces cerevisiae is a Component of the Half Bridge of the Spindle Pole Body [J]. J Cell Biol,1993,123: 405-416.
    [21]ERRABOLU R, SANDERS M, SALISBURY J, et al. Cloning of a cDNA Encoding Human Centrin, an EF-hand Protein of Centrosome and Mitotic Spindle Poles [J]. J. Cell Sci,1994,107:9-16.
    [22]LEE V AND HUANG B. Molecular Cloning and Centrosomal Localization of Human Caltractin [J]. Proc. Natl. Acad. Sci. USA,1993,90:11039-11043.
    [23]MIDDENDORP S, PAOLETTI A, SCHIEBEL E, et al. Identification of a New Mammalian Centrin Gene, More Closely Related to Saccharomyces cerevisiae CDC31 Gene [J]. Proc Natl Acad Sci USA,1997,94:9141-9146.
    [24]OGAWA K, SHIMIZU, T. cDNA Sequence for Mouse Caltractin [J]. Biochem BiophysActa,1993,1216:126-128.
    [25]GAVET O, ALVAREZ C, GASPAR P, BORNENS M. Centrin4p, a Novel Mammalian Centrin Specifically Expressed in Ciliated Cells [J]. Mol Biol Cell,2003, 14:1818-1834.
    [26]WOLFRUM U, SALISBURY J. Expression of Centrin Isoforms in the Mammalian Retina [J]. Exp Cell Res,1998,242:10-17.
    [27]PULVERMULLER A, GIEβL A, HECK M, et al. Calcium-Dependent Assembly of Centrin-G-protein Complex in Photoreceptor Cells [J]. Mol Cell Biol,2002,22: 2194-2203.
    [28]LAOUKILI J, PERRET E, MIDDENDORP S, et al. Differential Expression and Cellular Distribution of Centrin Isforms During Human Ciliated Cell Differentiation in Vitro [J]. J Cell Sci,2000,113:1355-1364.
    [29]HART P, PONTER G, WITEHEAD C, et al. Characterization of the X-linked Murine Centrin Cen2 Gene [J]. Gene,2001,264:205-213.
    [30]ARAKI M, MASUTANI C, TAKENZURA M, et al. Centrosome Protein Centrin2/Caltractinl is Part of the Xeroderma Pigmentosum Group C complex that Initiates Global Genome Nucleotide Excision Repair [J]. J Biol Chem,2001,276: 18665-18672.
    [31]WIECH H, GEIER B, PASCHKE T, SPANG A, GREIN K, STEINKOTTER J, MELKONIAN M, SCHIEBEL E. Characterization of Green Alga, Yeast, and Human Centrins [J]. J Biol Chem,1996,271:22453-22461.
    [32]DEL VECCHIO A, HARPER J, VAUGHN K, BARON A, SALISBURY J, OVERALL R. Centrin Homologues in Higher Plant Cells are Prominently Associated with the Developing Cell Plate [J]. Protoplasma,1997,196:224-234.
    [33]BLACKMAN L, HARPER J, OVERALL R. Localization of A Centrin-Like Protein to Higher Plant Plasmodesmata [J]. J Cell Biol,1999,78:297-304.
    [34]ZHU J, BREASSAN R, HASEGAWA P. An Atriplex Nummularia cDNA Sequence Relatedness to the Algal Caltractin Gene [J]. Plant Physiol,1992,99:1734-1735.
    [35]CORDEIRO M, PIQUERAS R, OLIVERIRA D, CASTRESANA C. Characterization of Early Induced Genes in Arabidopsis thaliana Responding to Bacterial Inoculation: Identification of Centrin and of a Novel Protein with Two Regions Related to Kinase Domains [J]. FEBS Lett,1998,434:387-393.
    [36]STOPPIN-MELLET V, CANADAY J, LAMBERT A. Characterization of Microsome-Associated Tobacco BY-2 Centrins [J]. Eur J Cell Biol,1999,78: 842-848.
    [37]HART P, WOLNIAK S. Molecular Cloning of a Centrin Homolog from Marsilea Vestita and Evidence for Its Translational Control during Spermiogenesis [J]. Biochem Cell Biol,1999,77:101-108.
    [38]MOLINIER J, RAMOS C, FRITSCH O, HOHN B. Centrin2 Modulates Homologous Recombination and Nucleotide Excision Repair in Arabidopsis [J]. The Plant Cell, 2004,16:1633-1643.
    [39]GONDA K, YOSHIDA A, OAMI K, TAKAHASHI M. Centrin is Essential for the Activity of the Ciliary Reversal-Coupled Voltage-Gated Ca2+Channels [J]. Biochem Biophy Res Comm,2004,323:891-897.
    [40]VIGUES B, BLANCHARD M, BOUCHARD P. Centrin-Like Filaments in the Cytopharyngeal Apparatus of the Ciliates Nassula and Furgasonia:Evidence for a Relationship with Microtubular Structures [J]. Cell Motil Cytoskel,1999,43:72-81.
    [41]GUERRA C, WAD A Y, LEICK V, et al. Cloning, Localization, and Axonemal Function of Tetrahymena Centrin [J]. Mol Biol Cell,2003,14:251-261.
    [42]BHATTACHARYA D, STEINKOTTER J, MELKONIAN N. Molecular Cloning and Evolutionary Analysis of the Calciummodulated Contractile Protein. Centrin, in Green Algae and Land Plants [J]. Plant Mol Biol,1993,23:1243-1254.
    [43]生命的化学.1991,11(3).封面
    [44]YE Y, LEE H, YANG W, SHEALY S, YANG J. Probing Site-Specific Calmodulin Calcium and Lanthanide Affinity by Grafting [J]. J Am Chem Soc,2005,127: 3743-3750.
    [45]VOGEL J, BROKX R, OUYANG H. Calcium-Binding Proteins [J]. Methods in mol biol,2002,172:3-20.
    [46]DAUNDERER C, SCHLIWA M, GRAF R, Dictyostelium Centrin-Related Protein (DdCrp), the Most Divergent Memner of the Centrin Family, Possesses only Two EF Hands and Dissociates from the Centrosome During Mitosis [J]. Eur J Cell Biol, 2001,80:621-630.
    [47]BABU S, SACK J, GREENHOUGH T, BUGG C, MEANS A, COOK W. Three-Dimensional Structure of Calmodulin [J]. Nature,1985,315:37-40.
    [48]王志军.八肋游仆虫中心蛋白性质和功能的研究,山西大学博士学位论文,2007.
    [49]赵亚琴.八肋游仆虫中心蛋白性质及功能的研究,山西大学博士学位论文,2008.
    [50]SALISBURY J. Root [J]. J Eukaryot Microbiol,1998,45:28-32.
    [51]SALISBURY J, SANDERS M, HARPST L. Flagellar Root Contraction and Nuclear Movement During Flagellar Regeneration in Chlamydomonas reinhardtii [J]. J Cell Biol,1987,105:1799-1805.
    [52]KILMARTIN J. Sfilp Has Conserved Centrin-Binding Sites and An Essential Function in Budding Yeast Spindle Pole Body Duplication. J Cell Biol,2003,162: 1211-1221.
    [53]COLING D, SALISBURY J. Characterization of the Calcium-Binding Contractile Protein Centrin from Tetraselmis Striata (Pleurastrophyceae) [J]. Protozoology,1992, 39:385-391.
    [54]WEBER C, LEE V, CHAZIN W, HUANG B. High Level Expression in Escherichia coil and Characterization of the EF-hand Calcium-Binding Protein Caltractin [J]. J Biol Chem,1994,269:15795-15802.
    [55]BOGAN A, THORN K. Anatomy of Hot Spots in Protein Interfaces. J Mol Biol, 1998,280:1-9
    [56]WANG Z, ZHAO Y, REN L, LI G, LIANG A, YANG B. Spectral Study on the Interaction of Euplotes octocarinatus Centrin and Metal Ions. J Photochem Photobiol A,2007,186:178-186.
    [57]ZHAO Y, FENG J, LIANG A, YANG B. The Characterization for the Binding of Terbium and Calcium to Euplotes octocarinatus Centrin. Spectrochim Acta A: Molecular and Biomolecular Spectroscopy,2009,71:1756-1761.
    [58]卢圣栋主编.现代分子生物学实验技术[M],高等教育出版社,1993.
    [59]贺晓静.八肋游仆虫中心蛋白的研究,山西大学博士学位论文,2005.
    [60]BEISSON J, CLEROT, J, FLEURY-AUBUSSON, A, GARREAU DE LOUBRESSE N, RUIZ F, KLOTZ C. Basal Body-Associated Nucleation Center for the Centrin-Based Cortical Cytoskeletal Network in Paramecium [J]. Protist,2001,152: 339-354.
    [61]WIGGE P, JENSEN O, HOLMES S, SOUES S, MANN M, KILMARTIN J. Analysis of the Saccharomyces Spindle Pole by Matrix-Assisted Laser Desorption/Ionization (MALDI) Mass Spectrometry [J]. J Cell Biol,1998,141:967-977.
    [62]HU H, SHEEHAN J, CHAZIN W. The Mode of Action of Centrin:Binding of Ca2+ and a Peptide Fragment of Karlp to the C-terminal Domain [J]. Biol Chem,2004,279: 50895-50903.
    [63]PATRICK J, ERICH K, WILLIAM D. Spectroscopic Studies of Metal Ion Binding to a Tryptophan-Containing Parvalbumin [J]. Biochemistry,1985,24:4991-4997.
    [64]SONG Y, XU Y, WENG S, et al. Biological Effects of a Rare Earth Protein Complexes:Influence of Lanthanide Ions Eu3+, Tb3+on Secondary Structure of Calmodulins [J]. Biospectroscopy,1999,5:371-377.
    [65]DICKESON S, MAITRAYEE B, NANCY L, et.al. Ligand Binding Results in Divalent Cation Displacement from the α2β1 Integrin I domain:Evidence from Terbium Luminescence Spectroscopy [J]. Biochemistry,1998,37:11280-11288.
    [66]杨斌盛,刘文,任列香,段炼,赵亚琴,王志军.八肋游仆虫中心蛋白N-端半分子金属离子结合性质的光谱研究[J].山西大学学报(自然科学版),2009,32(4):572-576.
    [67]MACH H, MIDDAUGH C, LEWIS R. Statistical Determination of the Average Values of the Extinction Coefficients of Tryptophan and Tyrosine in Native Proteins [J]. Anal Biochem,1992,200:74-80.
    [68]周海梦,王洪睿.蛋白质化学修饰[M].北京:清华大学出版社,1998,118.
    [69]李临生,张淑娟.戊二醛与蛋白质反应的影响因素和反应机理[J].中国皮革,1997,26(12):8-12.
    [70]YANG A, MIRON S, DUCHAMBON P, ASSAIRI L, BLOUQUIT Y, CRAESCU C. The N-terminal Domain of Human Centrin 2 Has a Closed Structure, Binds Calcium with a Very Low Affinity, and Plays a Role in the Protein Self-Assembly [J]. Biochemistry,2006,45:880-889.
    [71]MALLAMACE F, MICALI N, ROMEO A, SCOLARO L. Fractal Aggregation of Dyes such as Porphyrins and Related Compounds under Stacking [J]. Curr Opin Coll Interf Sci,2000,5:49-55.
    [72]CATES M, TEODORO M, PHILLIPS G, JR. Molecular Mechanisms of Calcium and Magnesium Binding to Parvalbumin [J]. Biophys J,2002,82:1133-1146.
    [73]MCCLURE W, EDELMAN G. Fluorescent Probes for Conformational States of Proteins. I. Mechanism of Fluorescence of 2-p-Toluidinylnaphthalene-6-sulfonatea, Hydrophobic Probe [J]. Biochemistry,1966,5:1908-1919.
    [74]DURUSSELA I, BLOUQUITB Y, MIDDENDORPC S, CRAESCUB C, COX J. Cation-and Peptide-Binding Properties of Human Centrin 2 [J]. FEBS Lett,2000, 472:208-212.
    [75]CHIANG H C, LUKTON A. Interaction of Sodium Dodecyl Sulfate with the Hydrophobic Fluorescent Probe,2-p-toluidinylnaphthalene-6-sulfonate [J]. The Journal of Physical Chemistry,1975,79:1935-1939.
    [76]任列香.八肋游仆虫中心蛋白片段分子与金属离子作用的光谱研究,山西大学硕士学位论文,2006.
    [77]SALISBURY J. Contractile Flagellar Roots:the Role of Calcium [J]. J Submicrosc Cytol,1983,15:105-110.
    [78]NICHOLSON J. The Chemistry of Polymers [M]. Second Ed. The Royal Society of Chemistry, Cambridge, UK,1997.
    [79]DUAN L, ZHAO Y, WANG Z, LI G, LIANG A, YANG B. Lutetium(Ⅲ)-Dependent Self-Assembly Study of Ciliate Euplotes octocarinatus Centrin [J]. J Inorg Biochem, 2008,102:268-277.
    [80]LIU X, WANG B, SHU S, ZHANG, Y, YEN L. Thermodynamic Analysis of K+-and Mg2+-Induced Polymerization of Actin at the Temperature of 298.15 K [J]. Thermochim Acta,1998,308:63-68.
    [81]COOKE R. Role of the Bound Nucleotide in the Polymerization of Actin [J]. Biochemistry,1975,14:3250-3256.
    [82]HORROCKS W. DEW, JR.,& SUDNICK D. R. Lanthanide Luminance Probe of the Structure of Biological Macromolecules [J]. Acc Chem Res,1981,14:384-392.
    [83]KILHOFFER M, DEMAILLE J, GERARD D. Tyrosine Fluorescence of Ram testis and Octopus Calmodulin. Effects of Calcium, Magnesium and Ionic Strength [J]. Biochemistry,1981,20:4407-4414.
    [84]BRUNO J, HORROCKS W, ZAUHAR R. Europium (Ⅲ) Luminescence and Tyrosine to Terbium (Ⅲ) Energy-Transfer Studies of Invertebrate (Octopus) Calmodlin [J]. Biochemistry,1992,31:7016-7026.
    [85]BLOUQUIT Y, DUCHAMBON P, BRUN E, MARCO S, RUSCONI F, SICARD-ROSELLI C. High Sensitivity of Human Centrin 2 toward Radiolytical Oxidation:C-terminal Tyrosinyl Residue as the Main Target [J]. Free Radical Bio Med,2007,43:216-228.
    [86]EISINGER J. Avariable Temperature, U.V. Luminescence Spectrograph for Small Samples [J]. Photochem Photobiol,1969,9:247-258.
    [87]CHEN R Fluorescence Quantum Yields of Tryptophan and Tyrosine [J]. Anal Lett, 1967,1:35-42.
    [88]FOSTER T, Zwischenmolekulare Energiewanderung und Fluoreszenz [J]. Ann Phys (Leipzig),1948,2:55-75.
    [89]HORROCKS W, COLLIER W. Lanthanide Ion Luminescence Probes. Measurement of Distance between Intrinsic Protein Fluorophores and Bound Metal Ions: Quantitation of Energy Transfer between Tryptophan and Terbium (Ⅲ) in the Calcium-Binding Protein Parvalbumin [J]. J Am Chem Soc,1981,103:2856-2862.
    [90]LUKOMSKA J, RZESKA A, MALICKA J, WICZK W. Influence of A Substituent on Amide Nitrogen Atom on Fluorescence Efficiency Quenching of Tyr(Me) by Amide Group[J]. J Photochem Photobiol A:Chemistry,2001,143:135-139.
    [91]WILSON M, BRUNGER A. The 1.0 A Crystal Structure of Ca2+-Bound Calmodulin: an Analysis of Disorder and Implications for Functionally Relevant Plasticity [J]. J Mol Biol,2000,301:1237-1256.
    [92]BIEKOFSKY R, TURJANSKI A, ESTRIN D, FEENEY J, PASTORE A. Ab Initio Study of NMR 15N Chemical Shift Differences Induced by Ca2+Binding to EF-Hand Proteins [J]. Biochemistry,2004,43:6554-6564.
    [93]YAN Y, SARDANA V, XU B, HOMNICK C, HALCZENKO W, BUSER C, SCHABER M, HARTMAN G, HUBER H, KUO L. Inhibition of a Mitotic Motor Protein:Where, How, and Conformational Consequences [J]. J Mol Biol,2004,335: 547—554.
    [94]MAYER T, KAPOOR T, HAGGARTY S, KING R, SCHREIBER S & MITCHISON T. Small Molecule Inhibitor of Mitotic Spindle Bipolarity Identified in a Phenotype-Based Screen [J]. Science,1999,286:971-974.
    [95]KAPOOR T, MAYER T, COUGHLIN M & MITCHISON T. Probing Spindle Assembly Mechanism with Monastrol, A Small Molecule Inhibitor of the Mitotic Kinesin, Eg5 [J]. J Cell Biol,2000,150:975-988.
    [96]WALCZAK C, VERNOS I, MITCHISON T, KARSENTIE, HEALD R. A Model for the Proposed Roles of Different Microtubule-Based Motor Proteins in Establishing Spindle Bipolarity [J]. Curr Biol,1998,8:903-913.
    [97]SRSEN V, MERDES A. The Centrosome and Cell Proliferation [J]. Cell Div,2006,1: 26-30.
    [98]SALISBURY J, BARON A, COLING D, MARTINDALE V, SNADERS M. Calcium-Modulated Contractile Proteins Associated with the Eukaryotic Centrosome [J]. Cell Motil Cytoskeleton,1986,6:193-197.
    [99]SCHULZE D, ROBENEK H, MCFADDEN G, MELKONIAN M. Immunolocalization of a Ca2+-modulated Contractile Protein in the Flagella Apparatus of Green Algae:the Nucleus-Basal Body Connector [J]. Eur J Cell Biol, 1987,45:51-61.
    [100]BARON A, SALISBURY J. Identification and Localization of a Novel, Cytoskeletal, Centrosome-Associated Protein in PtK2 cells [J]. J Cell Biol,1988,107:2669— 2678.
    [101]HOHFELD I, OTTEN J, MELKONIAN M. Contractile Eukaryotic Flagella:Centrin is Involved [J]. Protoplasma,1988,147:16—24.
    [102]KOUTOULIS A, MCFADDEN G, WETHERBEE R. Spine-Scale Reorientation in Apedinella Radians:the Microarchitecture and Immunocytochemistry of Associated Cyloskeleton [J]. Protoplasma,1988,147:25—41.
    [103]MELKONIAN M, SCHULZE D, MCFADDEN G, ROBENEK H. A Polyclonal Antibody Distinguishes Between Two Types of Fibrous Flagella Roots in Green Algae [J]. Protoplasma,1988,144:56—61.
    [104]HIRAOKA L, GOLDEN W, MAGNUSON T. Spindle Pole Development During Early Mouse Development [J]. Dev Biol,1989,133:24—36.
    [105]WICK S. Localization of Calcium-Binding Proteins in Dividing Plant Cells. In Calcium in Plant Growth and Development, Edited by R. Leonard, Hepler P. Bethesda, The American Society of Plant Physiologists,1990,137—142.
    [106]KATSAROS C, KREIMER G, MELKONIAN M. Localization of Tubulin and A Centrin-Homologue in Vegetative Cells and Developing Gametangia of Ectocarpus Siliculosus Lyngb [J]. Botanica Acta,1991,104:87—92.
    [107]WOLFRUM U. Centrin and α-actinin-like Immunoreactivity in the Ciliary Rootlets of Insect Sensilla [J]. Cell Tissue Res,1991,266:231—238.
    [108]WOLFRUM U. Cytoskeletal Elements in Arthropod Sensilla and Mammalian Photoreceptors [J]. Biol Cell,1992,76:373—381.
    [109]KOUTOULIS A, WETHERBEE R. Cytoskeletal Dynamics of Apedinella Radians II. Cell Division and Maintenance of Cell Polarity and Symmetry [J]. Protoplasma, 1993,175:29—42.
    [110]KOUTOULIS A, WETHERBEE R. Cytoskeletal Dynamics of Apedinella Radians Ⅲ. Post-Division Development, Maintenance of Cell Symmetry, and the Reestablishment of Interphase Morphology [J]. Protoplasma,1993,175:43—57.
    [111]VAUGHN K, SHERMAN T, RENZAGLIA K. A Centrin Homologue is a Component of the Multilayered Structure in Bryophytes and Pteridophytes [J]. Protoplasma,1993,175:58—66.
    [112]LEE V, HUANG B. Molecular Cloning and Centrosomal Localization of Human Caltractin [J]. Proc Natl Acad Sci, USA,1993,90:11039—11043.
    [113]ERRABOLU R, SANDERS M, SALISBURY J, Cloning of A cDNA Encoding Human-Centrin, An EF-Hand Protein of Centrosomes and Mitotic Spindle Poles [J]. J Cell Sci,1994,107:9—16.
    [114]STEARNS T, KIRSCHNER M. In Vitro Reconstitution of Centrosome Assembly and Function:the Role of y-Tubulin [J]. Cell,1994,76:623—637.
    [115]LEWANDOWSKI K, MURER P, SVEC F, FRECHET J. A Combinatorial Approach to Recognition of Chirality:Preparation of Highly Enantioselective Aryl-Dihydropyrimidine Selectors for Chiral HPLC [J]. J Comb Chem,1999,1:105-112.
    [116]LIU B, ZHANG M, CUI N, ZHU J, CUI J. Ethyl 4-(4-hydroxyphenyl)-6-methyl-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate monohydrate [J]. Acta Cryst,2008, E64:o261.
    [117]ROSS D, SUBRAMANIAN S. Thermodynamics of Protein Association Reactions: Forces Contributing to Stability [J]. Biochemistry,1981,20:3096-3102.
    [118]李顺子,阎虎生,刘国栋,何炳林,姜鹭.蜂毒肽类似物的合成及活性研究[J].高等化学学报,2003,24:449-453.
    [119]DEMPSEY C. The Actions of Melittin on Membranes [J]. Biochim Biophys Acta, 1990,1031:143-161.
    [120]FLETCHER J, JIANG M. Possible Mechanisms of Action of Cobra Snake Venom Cardiotoxins and Bee Venom Melittin [J]. Toxicon,1993,31:669-695.
    [121]RAYNOR R, ZHENG B, KUO J. Membrane Interactions of Amphiphilic Polypeptides Mastoparan, Melittin, Polymyxin B, and Cardiotoxin. Differential Inhibition of Protein Kinase C, Ca2+/Calmodulin-Dependent Protein Kinase Ⅱ and Synaptosomal Membrane Na, K-ATPase, and Na+Pump and Differentiation of HL60 cells [J]. J Biol Chem,1991,266:2753-2758.
    [122]KATAOKA M, HEAD J, SEATON B, ENGELMAN D. Melittin Binding Causes a Large Calcium-Dependent Conformational Change in Calmodulin [J]. Proc Natl Acad Sci,1989,86:6944-6948.
    [123]MALENCIK D, ANDERSON S. Association of Melittin with the Isolated Myosin Lightchain [J]. Biochemistry,1988,27:1941-1949.
    [124]HE Z, DUNKER A, WESSON C, TRUMBLE W. Ca (2+)-Induced Folding and Aggregation of Skeletal Muscle Sarcoplasmic Reticulum Calsequestrin. The Involvement of the Trifluoperazine-Binding Site [J]. J Biol Chem,1993,268: 24635-24641.
    [125]CUPPOLETTI J, BLUMENTHAL K, MALINOWSKA D. Melittin Inhibition of the Gastric (H++K+) ATPase and Photoaffinity Labeling with [125I] Azidosalicylyl Melittin. Arch Biochem Biophys,1989,275:263-270.
    [126]CUPPOLETTI J. [125I] azidosalicylyl Melittin Binding Domains:Evidence for a Polypeptide Receptor on the Gastric (H++K+) ATPase. Arch Biochem Biophys, 1990,278:409-415.
    [127]CUPPOLETTI J, ABBOT A. Interaction of melittin with the (Na++K+)ATPase: Evidence for a Melittin-Induced Conformational Change [J]. Arch Biochem Biophys, 1990,283:249-257.
    [128]JAMES P, MAEDA M, FISHER R, VERMA A, KREBS J, PENNISTON J, CARAFOLI E. Identification and Primary Structure of a Calmodulin Binding Domain of the Ca2+Pump of Human Erythrocytes [J]. J Biol Chem,1988,263: 2905-2910.
    [129]VOSS J, BIRMACHU W, HUSSEY D, THOMAS D. Effects of Melittin on Molecular Dynamics and Calcium-ATPase Activity in Sarcoplasmic Reticulum Membranes:Time-resolved Optical Anisotropy [J]. Biochemistry,1991,30: 7498-7506.
    [130]MAHANEY J, THOMAS D. Effects of Melittin on Molecular Dynamics and Ca-ATPase Activity in Sarcoplasmic Reticulum Membranes:Electron Paramagnetic Resonance [J]. Biochemistry,1991,30:7171-7180.
    [131]VOSS J, MAHANEY J, THOMAS D. Mechanism of Ca-ATPase Inhibition by Melittin in Skeletal Sarcoplasmic Reticulum [J]. Biochemistry,1995,34:930-939.
    [132]BAKER K, EAST J, LEE A. Mechanism of Inhibition of the Ca2+-ATPase by Melittin [J]. Biochemistry,1995,34:3596-3604.
    [133]COX J, TIRONE F, DURUSSEL I, FIRANESCU C, BLOUQUIT Y, DUCHAMBON P, CRAESCU C. Calcium and Magnesium Binding to Human Centrin 3 and Interaction with Target Peptides [J]. Biochemistry,2005,44:840-850.
    [134]ZHAO Y, FENG J, LIANG A, YANG B. The Binding of Euplotes octocarinaturs Centrin with Taget Peptide Melittin [J]. Chin Sci Bull,2007,52:3216-3220.
    [135]ITAKURA M, IIO T. Static and Kinetic Studies of Calmodulin and Melittin Complex [J]. JBiochem,1992,112(2):183-191.
    [136]MAULET Y, COX J. Structural Changes in Melittin and Calmodulin upon Complex Formation and Their Modulation by Calcium [J]. Biochemistry,1983,22: 5680-5686.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700