高特异性碳纳米生物传感器快速检测沙门氏菌的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
食源性病原菌是当今世界最为普遍的问题之一。微生物食品中毒可以由细菌、病毒、真菌以及原生生物引起,其中绝大部分的细菌性感染都是由沙门氏菌引起的。目前,由沙门氏菌所引发的禽蛋肉产品的污染以及食物中毒事件已成为制约国民经济发展、危害人类健康的严重食品安全问题。随着人们对食品安全问题关注度的不断增长,对发展快速、准确、灵敏、高效的食品安全检测技术提出了更高的要求。然而目前的传统检测方法存在耗时耗力、价格昂贵、操作繁琐、灵敏度不高、特异性不强等局限性,已不能满足沙门氏菌快速检测技术发展的新要求。因此,建立一种简单、高效、快速、灵敏的检测手段来监控沙门氏菌就显得尤为重要。碳纳米管基于其独特的化学、电学、光学、力学性质在生物传感器以及药物传递等方面有着非常广泛的应用前景。尤其是近些年来,碳纳米管作为一种广谱性的荧光猝灭剂已经越来越受到人们的关注,成为最具发展前景的纳米材料之一。本论文在对碳纳米管性质研究的基础上,结合分子探针构建了基于生物功能化的碳纳米管生物传感器对沙门氏菌进行检测;此外,一种类似于碳纳米管的碳材料—石墨烯也被应用于检测沙门氏菌中ATP的含量。结果显示,所构建的传感器具有灵敏度高、特异性强、稳定性好等优势。最后,鉴于沙门氏菌形成生物菌膜后难以清除和难以治疗的现状,本论文筛选出一种抑制型适配体用以控制沙门氏菌菌膜形成,从而拓展了适配体的应用范围。基于以上情况,具体研究内容如下:
     (1)检测含毒力岛SSeC基因的鼠伤寒沙门氏菌。利用碳纳米管作为载体和荧光猝灭剂,分子信标作为识别元件,建立了一种全新的快速检测含毒力岛SSeC基因的鼠伤寒沙门氏菌的方法。在本检测方法中,羧基修饰的碳纳米管与一端氨基修饰的分子信标在EDC/NHS的作用下脱水结合形成生物功能化的碳纳米管。在没有靶标的情况下,由于DNA与碳纳米管的双重猝灭效应,荧光分子柔红霉素发生荧光猝灭;当加入靶标后,由于靶标与环状结构结合导致分子信标结构崩解,插入茎状结构中的柔红霉素释放出来,使得荧光值增强。而加入错配碱基序列,柔红霉素荧光值增强的信噪比远低于靶标。实验结果表明,通过检测柔红霉素荧光值的增强可以对含有SSeC基因的鼠伤寒沙门氏菌进行定量检测,而且此方法具有较高的灵敏性和特异性。在本检测体系中,靶标的浓度与柔红霉素荧光值的增强在0.2-0.7μM的范围内呈良好的线性关系,并且目标DNA的检测下限为50nM。
     (2)检测甲型副伤寒沙门氏菌的研究。通过酸水解法提取甲型副伤寒的鞭毛蛋白,并以其为靶标分子,经过14轮的SELEX筛选,筛选出能够高亲和性、高特异性结合鞭毛蛋白的适配体群。利用DNAMAN软件分析其一级结构的相似性并进行二级结构的预测,根据二级结构的相似性以及一级结构的重复性,将所选的适配体分为4个家族。从4个家族中各挑选出1条适配体并对其进行亲和力测试,通过比较Kd值,最终筛选出一条最佳的适配体。将该适配体截去部分引物序列并修饰上FITC,同时在另一端结合上一段DNA酶序列,并将该探针非共价结合到碳纳米管上,从而设计出一条能够通过双重信号检测甲型副伤寒沙门氏菌的功能化核酸探针。实验结果表明,通过检测荧光值的增加以及吸光度的增加可以对牛奶样品中的甲型副伤寒沙门氏菌进行定量检测,在本检测体系中,用荧光信号以及吸光度所测出的最低检测下限分别为105CFU/mL和106CFU/mL。该方法同时利用两种信号来检测靶标物质,极大的提高了检测的准确性和可靠性,降低了假阳性信号产生的可能性。这一检测方法不仅可以用于检测甲型副伤寒沙门氏菌,也为其它细菌以及其它物质的快速检测提供了一种新的思路。
     (3)基于氧化石墨烯的非标记性荧光适配体传感器快速检测ATP的研究。实验首先证明了该方法的可行性,结果表明,在只加入信号探针互补链的情况下,荧光信号并不会增强;只有在同时加入信号探针互补链和ATP的条件下荧光信号才会增强。由此证明,荧光信号的增强只与加入ATP的多少有关,因此该体系可以用来定量检测ATP。由检测结果可知,当ATP的浓度从1nM到800nM变化,对应的荧光强度随浓度的增加而增加,其检测下限可达1nM,而且F/FO在10nM到700nM之间呈良好的线性关系。体系还对检测ATP的特异性作出了探讨,将ATP的类似物UTP、GTP、CTP作为对照,由检测结果可知该适配体传感器对ATP分子的检测具有很强的特异性。相比于其它传统的检测方法,该分子识别技术对ATP的检测,不仅灵敏度高,特异性强,而且操作简单,成本低廉,稳定性好,为其它检测方法的开发和利用打下了坚实的基础。
     (4)适配体控制细菌菌膜形成的研究。以猪霍乱沙门氏菌为靶标,经过14轮的SELEX筛选,筛选出能够特异性识别猪霍乱沙门氏菌的适配体群,并在第十轮和第十一轮分别用甲型副伤寒沙门氏菌和鼠伤寒沙门氏菌进行反筛,以提高筛选的特异性。经亲和力检测后,确定一条最佳的适配体,将该适配体生物素修饰后并结合链酶亲和素修饰磁珠用以垂钓猪霍乱沙门氏菌表面标记分子。经质谱鉴定后,该适配体特异性结合的靶标为鞭毛蛋白。由鞭毛介导的趋向运动和起始粘附在早期细菌生物膜的形成中至关重要,基于以上事实,本研究开发出能抑制鞭毛运动进而控制细菌生物膜形成的功能化适配体。实验结果表明,经抑制性实验、荧光倒置显微镜和原子力显微镜观察,该适配体能很好的抑制早期生物菌膜的形成,更重要的是,它能提高抗生素清除生物菌膜的效率。因此,该方法不仅拓展了适配体应用的范围,而且在减少抗生素的使用,降低耐药性菌株产生方面也有着重要的意义。
Pathogenicity aroused by food-borne pathogen is one of the most common problems in the world today. Microbial food poisoning can be caused by bacteria, viruses, fungi and protists, in which most of bacterial infections are caused by Salmonella. Currently, eggs'and meat products' contaminations and food poisoning resulted from Salmonella have become a serious food safety issues that posed the adverse influence on economic development and human health. With the increasing attention to food safety problem, higher requirements were proposed for the development of food safety detective techniques that are fast, accurate, sensitive and efficient. However, the traditional detection methods have many limitations, such as time-consuming, expensive, complicated operation, low sensitivity and specificity, which can not satisfy the new requirement of rapid detection of Salmonella. Therefore, it is particularly important to establish simple, efficient, rapid and sensitive detection methods for Salmonella supervision. Carbon nanotubes have many application prospects in biosensors, drug delivery and other fields because of their unique chemical, electrical, and mechanical properties. Especially in recent years, they, as a broad-spectrum fluorescent quencher, have been gained more and more attention, becoming one of the most promising nano-materials. In this paper, upon studying their properties, biosensors were constructed for Salmonella detection based on the bio-functionalized carbon nanotubes. In addition, graphene, another carbon material similar to them, had been also applied in the detection of ATP in Salmonella. It was indicated that these sensors have high sensitivity, specificity, stability and other advantages. Finally, given the status that the Salmonella's biofilm is difficult to remove and treat after its formation, an aptamer was well screened out for controlling the biofilm. Based on the above descriptions, the main contents list as follows:
     (1) Detection of S. typhimurium carrying SSeC gene located in pathogenicity island. A novel method has been fabricated to detect the bacteria carrying SSeC gene by using carbon nanotubes as a carrier and fluorescent quencher, molecular beacon as recognition element. In this detection, amino modified molecular beacons were convalently coupled to carboxyl modified carbon nanotubes through EDC/Sulfo-NHS chemistry, generating bio-functionalized carbon nanotubes. In the absence of target, the fluorescence of daunorubicin was fairly week as result of dual fluorescence quenching. On the contrary, the daunorubicin was competed from the beacon due to the target-induced formation of rigid structure between the loop structure of the MB and the target sequence, which resulted in a decrease in the effect of dual fluorescence quenching, thereby the fluorescence intensity increased substantially. The quantity of the target was achieved by fluorescence increment. However, the signal to noise ratio was much lower than the target'when the mismatches were added. These results clearly demonstrated a high selectivity and specificity for the biosensor. The experimental results showed that the recovery of fluorescence of daunorubicin is proportion to the concentration of the target DNA with the range0.2-0.7μM and the low detection limit is50nM.
     (2) The research for S. paratyphi A. In this work, the flagellin protein were obtained from S. paratyphi A by acid hydrolysis, and then single-stranded DNA aptamers that are highly specific to enterotoxigenic Salmonella paratyphi A were obtained from an enriched oligonucleotide pool using14rounds'SELEX to target the flagellin protein. DNAMAN software was used to analyze the similarity of their primary structure and secondary structure prediction, the selected aptamers can be divided into four families according to the similarity of secondary structure and repeatability of primary structure. By comparing the Kd values of typical aptamers picked out of the four families, an optimal aptamer was ultimately screened out. A probe containing the DNAzyme sequence and FITC-labeled truncated aptamer sequence wrapped onto carbon nanotubes was employed as a dual probe for S. paratyphi A detection.The results displayed that the milk spiked with S. paratyphi A could be quantified by fluorescence and absorbance increment, and the low detection limits increasing to105CFU/mL by fluorescence and106CFU/mL by spectrophotometry. The combination of fluorescence and spectrophotometry offers an accurate, reliable and non false-positive way for detecting Salmonella paratyphi A and has potential for detecting other pathogens and materials.
     (3) Label-free fluorescent aptasensor based on a graphene oxide self-assembled probe for the determination of adenosine triphosphate. The feasibility of this approach was first demonstrated that the fluorescence intensity of probe/graphene oxide did not increase when the cDNA was mixed only, while the fluorescence enhancement occurred only under ATP present. Therefore, the enhancement of the fluorescence was only related to the number of added ATP, making it can be used to detect ATP quantitatively. The fluorescence intensity considerably increased with the increasing concentration of ATP from0to800nM, which enabled ATP to be detected in a linear range of10-700nM with a low limit of lnM. In addition, GTP, CTP and UTP, analogues of ATP, were selected to verify the selectivity of this approach. The results indicated that only ATP can induce substantial fluorescence enhancement rather than the analogues, which implied that this aptasensor could detect ATP with high specificity. Compared to other conventional detection methods, the molecular recognition technology used for ATP detection was not only high sensitivity and specificity, but also simple, low cost and good stability, which paved the way for the development and use of other detection methods.
     (4) The study of controlling the biofilm formation by aptamer. Single-stranded DNA aptamers with high specificity to S. choleraesuis were obtained from an enriched oligonucleotide pool using14rounds'SELEX procedures. During the SELEX, S. paratyphi A and S. typhimurium were used as counter-selection targets at round10and11to improve its affinity. After the Kd was measured, an optimal aptamer was ultimately screened out, and the selected biotinylated aptamer-conjugated with streptavidin-modified magnetic beads, were then used to capture their binding targets on the bacteria. After mass spectrometry, the flagellin was ultimately identified as target captured by the aptamer. As motility and initial attachment mediated by flagella plays a critical role in biofilm formation, a functionalized aptamer was developed to control their movement, reducing the biofilm formation. Inhibition experiments, inverted microscope and atomic force microscope observation demonstrated that the selected aptamer was able to control the biofilm formation, more importantly, it could promote inhibitory effect of antibiotic against biofilm formation. Consequently, this method not only expanded the application of aptamer, but also reduced the use of antibiotics, which made it sense in decreasing drug resistance strains.
引文
[1]Crump JA, and Mintz EZ. Global trends in typhoid and paratyphoid fever [J]. Clinical Infectious Diseases,2010,50(2):241-246
    [2]Crump JA, Lubty SP, and Mintz EZ. The global burden of typhoid fever [J]. Bulletin of World Health Organization,2004,82(5): 346-353
    [3]Haragga A, Ohlson MB, and Miller SI. Salmonellae interplay with host cells[J]. Nature Reviews,2008,6(1):53-66
    [4]Guiney DG. The role of host cell death in Salmonella infections [J]. Current Topics in Microbiology and Immunology,2005,289(1): 131-150
    [5]Sheppard M, Webb C, Heath F, et al. Dynamics of bacterial growth and distribution within the liver during Salmonella infection [J]. Cellular Microbiology,2003,5(9):593-600
    [6]Clare S, Goldin R, Hale C, et al. Intracellular adhesion molecule 1 plays a key role in acquired immunity to Salmonellosis [J]. Infection and Immunity,2003,71(9):5881-5891
    [7]Tam MA, Rydstrom A, Sundquist M, et al. Early cellular responses to Salmonella infection: dendritic cells, monocytes and more [J]. Immunological Reviews,2008,225(2):140-162
    [8]Yrlid U, Svensson M, Hakansson A, et al. In vivo activation of dendritic cells and T cells during Salmonella enterica serovar Typhimurium infection [J]. Infection and Immunity,2001,69(9): 5726-5735
    [9]Chiu CH, Tang P, Chu C, et al. The genome sequence of Salmonella enterica serovar Choleraesuis, a highly invasive and resistant zoonotic pathogen [J]. Nucleic Acids Res,2005,33(5):1690-1698
    [10]Pfeifer CG, Marcus SL, Steele-Mortimer O, et al. Salmonella typhimurium virulence genes are induced upon bacterial invasion into phagocytic and nonphagocytic cells [J]. Infect Immun,1999,67(11): 5690-5698
    [11]Tartera C, and Metcalf ES, Osmolarity and growth phase overlap in regulation of Salmonella typhi adherence to and invasion of human intestinal cells [J]. Infect Immun,1993,61(7):3084-3089
    [12]Immerseel FV, Buck JD, Smet ID, et al. Interactions of butyric acid-and acetic acidtreated Salmonella with chicken primary cecal epithelial cells in vitro [J]. Avian Dis,2004,48(2):384-391
    [13]Ly KT, and Casanova JE, Mechanisms of Salmonella entry into host cells [J]. Cell Microbiol,2007,9(9):2103-2111
    [14]Bernheiden M, Heinrich JM, Minigo G, et al. LBP, CD 14, TLR4 and the murine innate immune response to a peritoneal Salmonella infection [J]. JEndotoxin Res,2001,7(6):447-450
    [15]Bueno SM, Tobar JA, Iruretagoyena MI, et al. Molecular interactions between dendritic cells and Salmonella: escape from adaptive immunity and implications on pathogenesis [J]. Crit Rev Immunol,2005, 25(5):389-403
    [16]Chang J, Myeni SK, Lin TL, et al. SipC multimerization promotes actin nucleation and contributes to Salmonella induced inflammation [J]. Mol Microbiol,2007,66(6):1548-1556
    [17]王高产,孙振钧,沙门氏菌的检测方法[J].猪业科学,2009,12(9):30-31
    [18]Gehring AG, Crawford, CG, Mazenko RS, et al.Enzyme-linked immunomagnetic electrochemical detection of Salmonella typhimurium [J]. J Immunol Methods,1996,195(1-2):15-25
    [19]Park IS, and Kim N, Thiolated Salmonella antibody immobilization onto the gold surface of piezoelectric quartz crystal [J]. Biosens Bloelectron,1998,13(10):1091-1097
    [20]Kishore AR, Erdei J, Kalfas S, et al. Detection of bacterial interaction with lactoferrin by an enzyme-linked ligand binding assay (ELBA)[J]. J Medical Microbiol,1992,37(5):341-345
    [21]Yang LJ, and Li YB, Simultaneous detection of Escherichia coli 0157: H7 and Salmonella Typhimurium using quantum dots as fluorescence labels [J]. Analyst,2006,131(3):394-401
    [22]Widjojoatmodjo MN, Fluit AC, Torensma R, et al. Evaluation of the Magnetic Immuno PCR assay for rapid detection of Salmonella [J]. Eur J Clin Microbiol Infect Dis,1991,10(11):935-938
    [23]Beal RK, wigley P, Powers C, et al. Age at primary infection with Salmonella enterica serovar Typhimurium in the chicken influences persistence of infection and subsequent immunity to re-challenge [J]. Vet Immunol Immunopathol,2004,100(3-4):151-164
    [24]Fitts R, Diamond M, Hamilton C, et al. DNA-DNA hybridization assay for detection of Salmonella spp. in foods [J]. Appl Environ Microbiol,1983,46(5):1146-1151
    [25]Malorny B, Paccacconi E, Fach P, et al. Diagnostic Real-Time PCR for Detection of Salmonella in Food [J]. Appl Environ Microbiol, 2004,70(12):7046-7052
    [26]Porwollik S, Wong RM, McClelland M, et al. Evolutionary genomics of Salmonella:Gene acquisitions revealed by microarray analysis [J]. Proc Natl Acad Sci USA,2002,99(13):8956-8961
    [27]Ning Y, Li ZJ, Duan YF, et al. A Novel Biosensor for Detection of Salmonella typhimurium Carrying SSeC Gene Based on the Secondary Quenching Effect of Carbon Nanotubes [J].J Nanomater Mol Nanotechnol,2013,2(5):1-6
    [28]Mao PD, Ning Y, Li WK, et al. Novel strategy combining SYBR Green Ⅰ with carbon nanotubes for highly sensitive detection of Salmonella typhimurium DNA [J]. Enzyme Microb Technol,2014,54(2): 15-19
    [29]Duan YF, Ning Y, Song Y, et al. Fluorescent aptasensor for the determination of Salmonella typhimurium based on a graphene oxide platform [J]. Microchim Acta,2014,181(5-6):647-653
    [30]Song Y, Li WK, Duan YF, et al.Nicking enzyme-assisted biosensor for Salmonella enteritidis detection based on fluorescence resonance energy transfer [J]. Biosens Bioelectron,2014,55(2):400-404
    [31]Chiu CH, and Ou JT, Rapid identification of Salmonella serovars in feces by specific detection of virulence genes, invA and spvC, by an enrichment broth culture-multiplex PCR combination assay [J]./ Clin Microbiol,1996,34(10):2619-2922
    [32]Eyigor A, Carli KT, Unal CB, et al. Implementation of real-time PCR to tetrathionate broth enrichment step of Salmonella detection in poultry [J]. LettAppl Microblol,2002,34(1):37-41
    [33]Chen S, Xu R, Yee A, et al. An automated fluorescent PCR method for detection of shiga toxin-producing Escherichla coll in foods [J]. Appl Environ Microbiol,1998,64(11):4210-4216
    [34]Jacobsen CS, Holben WE, Quantification of mRNA in Salmonella sp. seeded soil and chicken manure using magnetic capture hybridization RT-PCR [J]. J Microbiol Methods,2007,69(2):315-321
    [35]Guo D, Liu B, Liu F, et al. Development of a DNA microarray for molecular identification of all 46 Salmonella O serogroups [J]. Appl Environ Microbiol,2013,79(11):3392-3399
    [36]Donhauser SC, Niessner R, Seidel M, et al. Sensitive quantification of Escherichia coli O157:H7, Salmonella enterica, and Campylobacter jejuni by combining stopped polymerase chain reaction with chemiluminescence flow-through DNA microarray analysis [J]. Anal Chem,2011,15,83(8):3153-60
    [37]Cao B, Li R, Xiong S, et al. Use of a DNA microarray for detection and identification of bacterial pathogens associated with fishery products [J]. Appl Environ Microbiol,2011,77(23):8219-8225
    [38]Mitterer G, Schmidt WM, Microarray-based detection of bacteria by on-chip PCR [J]. Methods Mol Biol,2006,345(2):37-51
    [39]Fu J, Park B, Siragusa G, et al. An Au/Si hetero-nanorod-based biosensor for Salmonella detection [J]. Nanotechnology,2008,19(15): 155502
    [40]Ko S, Grant SA, A novel FRET-based optical fiber biosensor for rapid detection of Salmonella typhimurium [J]. BiosensBioelectron,2006, 21(7):1283-1290
    [41]Bokken GC, Corbee RJ, Bergwerff AA, et al. Immunochemical detection of Salmonella group B, D and E using an optical surface plasmon resonance biosensor [J]. FEMS Microbiol Lett,2003,222(1): 75-82
    [42]Gehring AG, Crawford CG, Mazenko RS, et al. Enzyme-linked immunomagnetic electrochemical detection of Salmonella typhimurium [J]. J Immunol Methods,1996,195(1-2):15-25
    [43]Nandakumar V, La Belle JT, Reed J, et al. A methodology for rapid detection of Salmonella typhimurium using label-free electrochemical impedance spectroscopy [J]. Biosens Bioelectron,2008, 24(4):1045-1048
    [44]Ko S, and Grant SA, A novel FRET-based optical fiber biosensor for rapid detection of Salmonella typhimurium [J]. Biosens Bioelectron,2006,21(7):1283-1290
    [45]Barlen B, Mazumdar SD, Lezrich O, et al. Detection of Salmonella by Surface Plasmon Resonance[J]. Sensors,2007,7(8): 1427-1446
    [46]Shim WB, Song JE, Mun H, et al. Rapid colorimetric detection of Salmonella typhimurium using a selective filtration technique combined with antibody-magnetic nanoparticle nanocomposites [J]. Anal Bioanal Chem,2014,406(3):859-866
    [47]Tuerk C, and Gold L, Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophageT4 DNA polymerase [J]. Science,1990,249(4968):505-510
    [48]Ellington AD, and Szostak JW. In vitro selection of RNA molecules that bind specific ligands [J]. Nature,1990,346(4968): 818-822
    [49]Tang J, Xie J, Shao N, et al. The DNA aptamers that specifically recognize ricin toxin are selected by two in vitro selection methods [J]. Electrophoresis,2006,27(7):1303-1311
    [50]Li L, Li BX, Qi YY, et al. Label-free aptamer-based colorimetric detection of mercury ions in aqueous media using unmodified gold nanoparticles as colorimetric probe [J]. Anal. Bioanal.Chem,2009,393(8):2051-2057
    [51]Wang L, Liu X, Zhang Q, et al. Selection of DNA aptamers that bind to four organophosphorus pesticides [J]. Biotechnol Lett,2012, 34(5):869-874
    [52]Shangguan D, Li Y, Tang Z, et al. Aptamers evolved from live cells as effective molecular probes for cancer study [J]. Proc. Natl. Acad. Soc,2006,103(32):11838-11843
    [53]Zhou J, and Rossi JJ, Aptamer-targeted cell-specific RNA inteference [J]. Silence,2010,1(1):4
    [54]Choi JS, Kim SG, Lahousse M, et al. Screening and characterization of high-affinity ssDNA aptamers against anthrax protective antigen [J]. JBiomol Screen,2011,16(2):266-271
    [55]Liu J, Yang Y, Hu B, et al. Development of HBsAg-binding aptamers that bind HepG2.2.15 cells via HBV surface antigen [J]. Virol Sin,2010,25(1):27-35
    [56]Li H, Ding XH, Peng ZH, et al. Aptamer selection for the detection of Escherichia coli K88 [J]. Can J Microbiol,2011,57(6): 453-459
    [57]Wang C, Zhang M, Yang G, et al. Single-stranded DNA aptamers that bind differentiated but not parental cells:subtractive systematic evolution of ligands by exponential enrichment [J].J Biotechnol,2003,102 (1):15-22
    [58]邵宁生,李少华,黄燕苹,SELEX技术及Aptamer研究的新进展[J].生物化学与生物物理进展,2006,33(4):329-333
    [59]Mendonsa SD, and Bowser MT, In Vitro Evolution of Functional DNA Using Capillary Electrophoresis [J]. J Am Chem Soc, 2004,126(1):20-21
    [60]Mosing RK, Mendonsa SD, Bowser MT, et al. Capillary Electrophor-esis-SELEX selection of aptamers with affinity for HIV-1 reverse tr-anscriptase [J]. Anal Chem,2005,77(19):6107-6112
    [61]王聪艳,孙伟,李建国,等.SELEX技术应用研究进展[J].生物技术通报,2006,S1(2):232-238
    [62]Taghdisi SM, Lavaee P, Ramezani M, et al. Reversible targeting and controlled release delivery of daunorubicin to cancer cells by aptamer-wrapped carbon nanotubes [J]. Eur J Pharm Biopharm,2011, 77(2):200-206
    [63]Zhan SB, and Zeng Y, Recently progress on SELEX and its applications [J]. Bing Du Xue Bao,2013,29(5):573-577
    [64]Liu X, Cao G, Ding H, et al. Screening of functional antidotes of RNA aptamers against bovine thrombin [J]. FEBS Lett,2004,562 (1-3):125-128
    [65]Ellington AD, and Szostak JW, Selection in virto of single stranded DNA molecules that fold into specific ligand binding structure [J]. Nature,1992,355(6363):850-852
    [66]Jenison RD, High resolution molecular discrimination by RNA [J]. Science,1994,263(5152):1425-1429
    [67]Tombelli S, Minunni M, Mascini M, et al. Analytical applications of aptamers [J]. Biosens Bioelectron,2005,20(12): 2424-2434
    [68]Chaloin L, Lehmann M J, Sczakiel G, et al. Endogenous expression of a high-affinity pseudoknot RNA aptamer suppresses replication of HIV-1 [J]. Nucleic Acids Res,2002,30 (18):4001-4008
    [69]Qiao G, Zhuo L, Gao Y, et al. A tumor mRNA-dependent gold nanoparticle molecular beacon carrier for controlled drug release and intracellularimaging [J]. Chem Commun,2011,47(26):7458-7460
    [70]Zhao, Q, Li, XF, Le XC, et al. Aptamer-Modified Monolithic Capillary Chromatography for Protein Separation and Detection [J]. Anal. Chem,2008,80(10):3915-3920
    [71]Zhou J, Battig MR, Wang Y, et al. Aptamer-based molecular recognition for biosensor development [J]. Anal Bioanal Chem,2010, 398(6):2471-2480
    [72]Gupta S, Thirstrup D, Jarvis TC, et al. Rapid histochemistry using slow off-rate modified aptamers with anionic competition [J]. Appl Immunohistochem Mol Morphol,2011,19(3):273-278
    [73]Shigdar S, Lin J, Yu Y, et al. RNA aptamer against a cancer stem cell marker epithelial cell adhesion molecule [J]. Cancer Sci,2011, 102(5):991-998
    [74]Butter F, Scheibe M, Morl M, et al. Unbiased RNA-protein interaction screen by quantitative proteomics [J]. Proc Natl Acad Sci U S A,2009,106(26):10626-10631
    [75]Huy GD, Jin N, Yin BC, et al. A novel separation and enrichment method of 17β-estradiol using aptamer-anchored microbeads [J]. BioprocessBiosyst Eng,2011,34(2):189-195
    [76]Soper SA, Dharmasiri U, Balamurugan S, et al. Highly efficient capture and enumeration of low abundance prostate cancer cells using prostate-specific membrane antigen aptamers immobilized to a polymeric microfluidic device [J]. Electrophoresis,2009,30(18):3289-3300
    [77]Nair BG, Nagaoka Y, Morimoto H, et al. Aptamer conjugated magnetic nanoparticles as nanosurgeons [J]. Nanotechnology,2010,1(45): 455102
    [78]Bagalkot V, Zhang L, Levy-Nissenbaum E, et al. Quantum dot-aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery basedon bi-fluorescence resonance energy transfer [J]. Nano Lett,2007,7(10):3065-3070
    [79]Dalgleish AG, Beverley PC, Clapham PR, et al. The CD4 (T4) antigen is an essential component of the receptor for the AIDS retrovirus [J]. Nature,1984,312(5996):763-767
    [80]Hussey RE, Richardson NE, Kowalski M, et al. A soluble CD4 protein selectively inhibits HIV replication and syncytium formation. Nature,1988,331(6151):78-81
    [81]Meyer HE, and Stiihler K, High-performance proteomics as a tool in biomarker discovery [J]. Proteomics,2007,1(1):18-26
    [82]Kelly DJ, and Ghosh S, RNA profiling for biomarker discovery: practical considerations for limiting sample sizes [J]. Dis Markers,2005, 21(1):43-48
    [83]Lescuyer P, Hochstrasser D, Rabilloud T, et al. How shall we use the proteomics toolbox for biomarker discovery [J]? J Proteome Res, 2007,6(9):3371-3376
    [84]Berezovski MV, Lechmann M, Musheev MU, et al. Aptamer facilitated biomarker discovery (AptaBiD) [J]. J Am Chem Soc,2008, 130(28):9137-9143
    [85]Shangguan D, Cao Z, Meng L, et al. Cell-specific aptamer probes for membrane protein elucidation in cancer cells [J]. J Proteome Res,2008,7(5):2133-2139
    [86]Kong J, Franklin NR, Zhou C, et al. Nanotube molecular wires as chemical sensors [J]. Science,2000,287(5453):622-625
    [87]Lin Y, Zhou B, Martin RB, et al. Visible Luminescence of Carbon Nanotubes and Dependence on Functionalization [J].J.Phys. Chem. B,2005,109(31):14779-14782
    [88]Qi PF, Vermesh O, Grecu M, et al. Toward large arrays of multiplex functionalized carbon nanotube sensors for highly sensitive and selective olecular detection [J]. Nano Lett,2003,3(1):347-351
    [89]Tombler TW, Zhou C, Alexseyev L, et al. Reversible electromechanical characteristics of carbon nanotubes under local-probe manipulation [J]. Nature,2000,405(6788):769-772
    [90]Yang RH, Jin JY, Chen Y, et al. Carbon Nanotube-Quenched Fluorescent Oligonucleotides:Probes that Fluoresce upon Hybridization [J]. JAm Chem Soc,2008,130 (26):8351-8358
    [91]Kurata S, Kanagawa T, Yamada K, et al. Fluorescent quenching-based quantitative detection of specific DNA/RNA using a BODIPY((R)) FL-labeled probeor primer [J]. Nucleic Acids Res,2001, 29(6):E34
    [92]Valcarcel M1, Cardenas S, Simonet BM, et al. Role of carbon nanotubes in analytical science [J]. Anal Chem,2007,79(13):4788-4797
    [93]Bottini M, Bruckner S, Nika K, et al. Multi-walled carbon nanotubes induce T lymphocyte apoptosis [J]. Toxicol Lett,2006,160(2): 121-126
    [94]Vardharajula S, Ali SZ, Tiwari PM, et al. Functionalized carbon nanotubes:biomedical applications [J]. Int J Nanomedicine,2012,7(2): 5361-5374
    [95]Liu Z, Tabakman S, Li XL, et al. Multiplexed five-color molecular imaging of cancer cells and tumor tissues with carbon nanotube Raman tags in the near-infrared [J]. Nano Res,2010,3(3): 222-233
    [96]Liu Z, Winters M, Holodniy M, et al. siRNA delivery into human T cells and primary cells with carbon-nanotube transporters [J]. Angew Chem Int Ed Engl,2007,46(12):2023-2027
    [97]Liang F, and Chen B, A review on biomedical applications of single-walled carbon nanotubes [J]. Curr Med Chem,2010,17(1):10-24
    [98]Ge C, Du J, Zhao L, et al. Binding of blood proteins to carbon nanotubes reduces cytotoxicity [J]. Proc Natl Acad Sci USA,2011, 108(41):16968-16973
    [99]Bhirde AA, Patel S, Sousa AA, et al. Distribution and clearance of PEG-single-walled carbon nanotube cancer drug delivery vehicles in mice [J]. Nanomedicine,2010,5(10):1535-1546
    [100]Pantarotto D, Singh R, McCarthy D, et al. Functionalized carbon nanotubes for plasmid DNA gene delivery [J]. Angew Chem Int Ed Eng1,2004,43(39):5242-5246
    [101]Foldvari M, and Bagonluri M, Carbon nanotubes as functional excipients for nanomedicines:Ⅱ. Drug delivery and biocompatibility issues [J]. Nanomedicine,2008,4(3):183-200
    [102]Ahmed M, Jiang X, Deng Z, et al. Cationic glyco-functionalized single-walled carbon nanotubes as efficient gene delivery vehicles [J]. Bioconjug Chem,2009,20(11):2017-22
    [103]Elhissi AM, Ahmed W, Hassan IU, et al. Carbon nanotubes in cancer therapy and drug delivery [J].J Drug Deliv,2012,2012(1):837327
    [104]Wang X, Song Y, Ren J, et al. Knocking-down cyclin A(2) by siRNA suppresses apoptosis and switches differentiation pathways in K562 cells upon administration with doxorubicin [J]. PLoS One,2009, 4(8):e6665
    [105]Mocan L, Tabaran FA, Mocan T, et al. Selective ex-vivo photothermal ablation of human pancreatic cancer with albumin functionalized multiwalledcarbon nanotubes [J]. Int J Nanomedicine, 2011,6(2):915-928
    [106]Zhang LB, Wei H, Li J, et al. A carbon nanotubes based ATP apta-sensing platform and its application in cellular assay [J]. Biosens Bioelectron,2010,25(8):1897-1901
    [107]Liu Y, Wang Y, Jin J, et al. Fluorescent assay of DNA hybridization with label-free molecular switch: reducing background-signal and improving specificity by using carbon nanotubes [J]. Chem Commun,2009,1(6):665-667
    [108]Cho ES, Hong SW, Jo WH, et al. A New pH Sensor Using the Fluorescence Quenching of Carbon Nanotubes [J]. Macromol Rapid Commun,2008,29(2):1798-1803
    [109]Shao YY, Wang J, Wu H, et al. Graphene Based Electrochemical Sensors and Biosensors:A Review [J]. Electroanalysis, 2010,22(10):1027-1036
    [110]Kim J, Piao Y, Hyeon T, et al. Multifunctional nano-structured materials for multimodal imaging, and simultaneous imaging and therapy [J]. Chem. Soc. Rev,2009,38(2):372-390
    [111]Han TH, Lee WJ, Lee DH, et al. Peptide/graphene hybrid assembly into core/shell nanowires [J]. Adv. Mater,2010,22(18): 2060-2064
    [112]Lu Y, and Liu JW, Functional DNA nanotechnology:emerging applications of DNAzymes and aptamers [J]. Curr. Opin. Biotechnol, 2006,17(6):580-588
    [113]Chen ML, He YJ, Chen XY, et al. Quantum-Dot-Conjugated Graphene as a Probe for Simultaneous Cancer-Targeted Fluorescent Imaging, Tracking, and Monitoring Drug Delivery [J]. Bioconjugate Chem,2013,24(3):387-397
    [114]Tang J, Chen Q, Xu JG, et al. Graphene Oxide-Silver Nanocomposite As a Highly Effective Antibacterial Agent with Species-Specific Mechanisms [J]. Appl. Mater. Interfaces,2013,5(9): 3867-3874
    [115]Wang Y, Li ZH, Wang J, et al. Graphene and graphene oxide: biofunctionalization and applications in biotechnology [J]. Cell,2011, 29(5):205-212
    [116]Abdel-Nour M, Duncan C, E. Low D, et al. Biofilms:The Stronghold of Legionell apneumophila [J]. Int. J. Mol. Sci,2013,14(11): 21660-21675
    [117]Yu VL, Plouffe JF, Pastoris MC, et al. Distribution of Legionella species and serogroups isolated by culture in patients with sporadic community-acquired Legionellosis:An international collaborative survey [J].J.Infect. Dis,2002,186(1):127-128
    [118]Feazel LM, Baumgartner LK, Peterson KL, et al. Opportunistic pathogens enriched in showerhead biofilms [J]. Proc. Natl. Acad Sci USA,2009,106(38):16393-16398
    [119]Murga R, Forster TS, Brown E, et al. Role of biofilms in the survival of Legionella pneumophila in a model potable water system [J]. Microbiology,2001,147(Pt11):3121-3126
    [120]Donlan RM, Forster T, Murga R, et al. Legionella pneumophila associated with the protozoan Hartmannella vermiformis in a model multi-species biofilm has reduced susceptibility to disinfectants [J]. Biofouling,2005,21(1):1-7
    [121]Thomas V, Bouchez T, Nicolas V, et al. Amoebae in domestic water systems:Resistance to disinfection treatments and implication in Legionella persistence[J].J.Appl. Microbiol,2004,97(5):950-963
    [122]Storey MV, Winiecka-Krusnell J, Ashbolt NJ, et al. The efficacy of heat and chlorine treatment against thermotolerant Acanthamoebae and Legionellae [J]. Scand.J.Infect. Dis,2004,36:(9) 656-662
    [123]Rogers J, Dowsett AB, Dennis PJ, et al. Influence of plumbing materials on biofilm formation and growth of Legionella pneumophila in potable water systems [J]. Appl. Environ. Microbiol,1994,60(6): 1842-1851
    [124]Moritz MM, Flemming H, Wingender J, et al. Integration of Pseudomonas aeruginosa and Legionella pneumophila in drinking water bio films grown on domestic plumbing materials [J]. Int. J. Hyg. Environ.Health,2010,213(3):190-197
    [125]Koubar M, Rodier MH, Frere J, et al. Involvement of minerals in adherence of Legionella pneumophila to surfaces [J]. Curr. Microbiol, 2013,66(5):437-442
    [126]Storey MV, Langmark J, Ashbolt NJ, et al. The fate of Legionellae within distribution pipe biofilms:Measurement of their persistence, inactivation and detachment [J]. Water Sci. Technol,2004, 49(11-12):269-275
    [127]Vandersmissen L, de Buck E, Saels V, et al. A Legionella pneumophila collagen-like protein encoded by a gene with a variable number of tandem repeats is involved in the adherence and invasion of host cells [J]. FEMSMicrobiol Lett,2010,306(2):168-176
    [128]Mack D, Becker P, Chatterjee I, et al. Mechanisms of biofilm formation in Staphylococcus epidermidis and Staphylococcus aureus: Functional molecules, regulatory circuits, and adaptive responses [J]. Int J Med Microbiol,2004,294(2):203-212
    [129]Lewis K, Multidrug tolerance of biofilms and persister cells [J]. Curr Top Microbiol Immunol,2008,322(1):107-131
    [130]Hoiby N, Bjarnsholt T, Givskov M, et al. Antibiotic resistance of bacterial biofilms [J]. Int JAntimicrob Agents,2010,35(4):322-332
    [131]Secinti KD, Ozalp H, Attar A, et al. Nanoparticle silver ion coatings inhibit biofilm formation on titanium implants [J].J.Clin Neurosci,2011,18(3):391-395
    [132]Kostakioti M, Hadjifrangiskou M, J. Hultgren S, et al. Bacterial Biofilms:Development, Dispersal,and Therapeutic Strategies in the Dawnof the Postantibiotic Era [J]. Cold Spring Harb Perspect Med, 2013,3(4):a010306
    [133]Donlan RM. Biofilm elimination on intravascular catheters: Important considerations for the infectious disease practitioner [J]. Clin Infect Dis,2011,52(8):1038-1045
    [134]Burrowes B, Harper DR, Anderson J, et al. Bacteriophage therapy:Potential uses in the control of antibiotic-resistant pathogens. Expert RevAnti Infect Ther,2011,9(9):775-785
    [135]Sutherland IW, Hughes KA, Skillman LC, et al.The interaction of phage and biofilms [J]. FEMS Microbiol Lett,2004,232(1):1-6
    [136]Kalishwaralal K, BarathManiKanth S, Pandian SR,et al. Silver nanoparticles impede the biofilm formation by Pseudomonas aeruginosa and Staphylococcus epidermidis [J]. Colloids SurfB Biointerfaces,2010, 79(2):340-344
    [137]Burton E, Gawande PV, Yakandawala N, et al. Antibiofilm activity of GlmU enzyme inhibitors against catheter-associated uropathogens [J]. Antimicrob Agents Chemother,2006,50(5):1835-1840
    [138]Guiton PS, Hung CS, Kline KA, et al. Contribution of autolysin and Sortase A during Enterococcus faecalis DNA-dependent biofilm development [J]. Infect Immun,2009,77(9):3626-3638
    [139]Lu TK, and Collins JJ, Dispersing biofilms with engineered enzymatic bacteriophage [J]. Proc Natl Acad Sci,2007,104(27): 11197-11202
    [140]Schaeffer AJ, Amundsen SK, Jones JM, et al. Effect of carbohydrateson adherence of Escherichica coli to human urinary tract epithelial cells [J]. Infect Immun,1980,30(2):531-537
    [141]Pinkner JS, Remaut H, Buelens F, et al. Rationally designed small compounds inhibit pilus biogenesis in uropathogenic bacteria [J]. Proc Natl Acad Sci,2006,103(47):17897-17902
    [142]Pang T, Levine MM, Ivanoff B, et al. Typhoid fever--mportant issues still remain. [J]. Trends Microbiol,1998,6(4):131-133
    [143]Anderson JC, Pascuzzi PE, Xiao F, et al. Host-mediated phosphorylation of type III effector AvrPto promotes Pseudomonas virulence and avirulence intomato [J]. Plant Cell,2006,18(2):502-514
    [144]Rychlik I, Karasova D, Sebkoval Alena, et al. Virulence potential of five major pathogenicity islands (SPI-1 to SPI-5) of Salmonella enterica serovar Enteritidis forchickens [J]. BMC. Microbiol, 2009,9(1):268
    [145]Holzer SU, and Hensel M, Functional dissection of translocon proteins of the Salmonella Pathogenicity Island 2-encoded type III secretion system [J]. BMC. Microbiol,2010,10(2):104
    [146]Srikanth CV, Mercado-Lubo R, Hallstrom K, et al. Salmonella effector proteins and host-cell responses [J]. Cell Mol. Life Sci,2011, 68(22):3687-3697
    [147]Tracz DM, Tabor H, Jerome M, et al. Genetic Determinants and Polymorphisms Specific for Human-Adapted Serovars of Salmonella enterica That Cause Enteric Fever [J].J.Clin. Microbiol,2006,44(6): 2007-2018
    [148]Chunglok W, Wuragil DK, Oaew S, et al. Immunoassay based on carbon nanotubes-enhanced ELISA for Salmonella enterica serovar Typhimurium [J]. Biosensors and Bioelectron,2011,26(8):3584-3589
    [149]Cohen HJ, Mechanda SM, Lin W, et al. PCR amplification of the fimA gene sequence of Salmonella typhimurium, a specific method for detection of Salmonella spp [J]. Appl Environ Microbiol,1996, 62(12):4303-4308
    [150]Dupray E, Caprais MP, Derrien A, et al. Salmonella DNA persistence in natural seawaters using PCR analysis [J]. J. Appl. Microbiol,1997,82(4):507-510
    [151]Ding X, Li H, Deng L, et al. A novel homogenous detection method based on the self-assembled DNAzyme labeled DNA probes with SWNT conjugates and its application in detecting pathogen [J]. Biosensors.Bioelectron,2011,26(11):4596-4600
    [152]Culha M, Stokes D L, Griffin G D, et al. Application of a miniature biochip using the molecular beacon probe in breast cancer gene BRCA1 detection [J]. Biosensors. Bioelectron,2004,19(9):1007-1012
    [153]Lu CH, Li J, Liu JJ, et al. Increasing the sensitivity and single-base mismatch selectivity of the molecular beacon using Graphene Oxide as the "Nanoquencher" [J]. Chemistry A European Journal,2010, 16(16):4889-4894
    [154]Chalkias A, Anastasopoulos D, Tsiaglis S, et al. Enteric fever due to Salmonella Paratyphi A in Greece:a case report [J]. Cases. J,2008, 1(1):403
    [155]Tracz DM, Tabor H, Jerome M, et al. Genetic Determinants and Polymorphisms Specific for Human-Adapted Serovars of Salmonella enterica That Cause Enteric Fever [J].J.Clin. Microbiol,2006,44(6): 2007-2018
    [156]Toley BJ, and Forbes NS, Motility is critical for effective distribution and accumulation of bacteria in tumor tissue [J]. Integr. Biol, 2011,4(2):165-176
    [157]Treanor JJ, Taylor DN, Tussey L, et al. Safety and immunogenicity of a recombinant hemagglutinin influenza-flagellin fusion vaccine (VAX125) in healthy young adults [J].Vaccine,2010, 28(52):8268-8274
    [158]Oh BK, Lee W, Kim YK, et al. Surface plasmon resonance immunosensor using self-assembled protein G for the detection of Salmonella paratyphi [J]. JBiotechnol,2004,111(1):1-8
    [159]Calvo L, Martinez-Planells A, Pardos-Bosch J, et al. A New Real-Time PCR Assay for the Specific Detection of Salmonella spp. Targeting the bipA Gene [J]. Food Anal Method,2008,1(1):236-242
    [160]胡明冬,徐剑铖,周长喜,等.甲型副伤寒沙门菌鞭毛蛋白的分离、纯化和鉴定[J].中华微生物学和免疫学杂志,2005,25(7): 599-603
    [161]Robison BJ, Pretzman CI, Mattingly JA, Enzyme immunoassay in which a myeloma protein is used for detection of Salmonellae[J]. Appl Environ Microbiol,1983,45(6):1816-1821
    [162]Teh CS, Chua KH, Puthucheary SD, et al. Further evaluation of a multiplex PCR for differentiation of Salmonella paratyphi A from other salmonellae [J]. Jpn J InfectDis,2008,61(4):313-314
    [163]Si SH, Ren FL, Cheng W, et al. Preparation of a piezoelectric immunosensor for the detection of Salmonella paratyphi A by immobilization of antibodies on electropolymerized films [J]. Fresenius J Anal Chem,1997,357(1):1101D1105
    [164]Slocinska M, Lubawy J, Jarmuszkiewicz W, et al. Evidences for an ATP-sensitive potassium channel (KATP) in muscle and fat body mitochondria of insect [J]. J Insect Physiol,2013,59(11):1125-1132
    [165]Rangan G, Role of extracellular ATP and P2 receptor signaling in regulating renal cyst growth and interstitial inflammation in polycystic kidney disease [J]. Front Physiol,2013,4(2):218
    [166]Bush KT, Keller SH, Nigam SK, et al. Genesis and reversal of the ischemic phenotype in epithelial cells [J]. J Clin Invest,2000,106(5): 621-626
    [167]Harkness RA, and Saugstad, OD, The importance of the measurement of ATP depletion and subsequent cell damage with an estimate of size and nature of the market for a practicable method:a review designed for technology transfer [J]. Scand J Clin Lab Invest, 1997,57(8):655-672
    [168]He Y, Tian J, Hu K, et al. An ultrasensitive quantum dots fluorescent polarization immunoassay based on the antibody modified Au nanoparticles amplifying for the detection of adenosine triphosphate [J]. Anal Chim Acta,2013,802(2):67-73
    [169]Leung KH, Lu L, Wang M, et al. A Label-Free Luminescent Switch-On Assay for ATP Using a G-Quadruplex-Selective Iridium(Ⅲ) Complex [J]. PLoS One,2013,8(10):e77021
    [170]Liu S, Wang Y, Zhang C, et al. Homogeneous electrochemical aptamer-based ATP assay with signal amplification by exonuclease Ⅲ assisted target recycling [J]. Chem Commun,2013,49(23):2335-2337
    [171]Yang H, Zheng K, Zhang Z, et al. Adsorption and protection of plasmid DNA on mesoporous silica nanoparticles modified with various amounts of organosilane [J].J.Colloid Interface Sci,2012,369(1): 317-322
    [172]Weizmann Y, Chenoweth DM, Swager TM, et al. DNA-CNT Nanowire Networks for DNA Detection [J].J. Am Chem. Soc,2011, 133(10):3238-3241
    [173]Liu J, Cao Z, Lu Y, et al. Functional nucleic acid sensors [J]. Chem Rev,2009,109(5):1948-1998
    [174]Thompson FL, Abreu PC, Wasielesky W, et al. Importance of biofilm for water quality and nourishment in intensive shrimp culture [J]. Aquaculture,2002,203(3-4):263-278
    [175]Liu Y, and Capdeville B, Specific activity of nitrifying biofilm in water nitrification process [J]. Water Research,1996,30(7):1645-1650
    [176]Kobayashi H, Biofilm disease:Its clinical manifestation and therapeutic possibilities of macrolides [J]. Am J Med,1995,99(6A): 26S-30S
    [177]Kobayashi H, Airway biofilm disease:clinical manifestations and therapeutic possibilities using macrolides [J]. J Infect Chemother, 1995,1(1):1-15
    [178]Marsh PD, Dental plaque as a biofilm and a microbial community-implications for health and disease [J]. BMC Oral Health, 2006,6(1):S14
    [179]Hadi R, Vickery K, Deva A, et al. Biofilm removal by medical device cleaners:comparison of two bioreactor detection assays [J]./ Hosp Infect,2010,74(2):160-167
    [180]Romeo U, Del Vecchio A, Palaia G, et al. Bone damage induced by different cutting instruments--an in vitro study [J]. Braz Dent J, 2009,20(2):162-168
    [181]Wood TK, Gonzalez Barrios AF, Herzberg M, et al. Motility influences biofilm architecture in Escherichia coli [J]. Appl Microbiol Biotechnol,2006,72(2):361-367
    [182]O'Toole GA, and Kolter R, Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development [J]. Mol Microbiol,1998,30(2):295-304

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700