冷镱原子钟跃迁谱的精密测量
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
六十多年以来,原子频率标准在很多领域起着非常重要的作用,诸如精密测量、基础物理研究和技术应用等方而。激光冷却与囚禁技术的飞速发展使得原子或离子的操控变得灵活和方便。从2000年开始,人们已经可以利用光学频率梳将光学频率与微波频率联系起来,对光频进行直接和可靠的测量。另外,作为本地振荡的超稳激光器已经可以实现超窄的激光线宽。所有这些都使得光学原子钟的研制成为可能,光学原子钟与微波原子钟相比优势在于,它具有更小的频率不确定度和更优的稳定度。目前,国际单位制中的时间单位“秒”由铯微波频率标准实现,也许在不久的将来,将会用原子的光跃迁频率对它重新定义。
     用于研制光钟的原子有很多,镱原子是其中很有潜力的候选者之一。在华东师范大学精密光谱科学与技术国家重点实验室,目前正在研制的有两台冷镱原子光钟。多年来我们一直致力于此,已经实现了镱原子的一级冷却、二级冷却以及初步的光晶格装载,本小组的先前论文已经详细介绍了这些工作。
     本文将介绍各个实验部分的改进和优化,重点研究镱原子钟跃迁谱线的精密测量。一级冷却399nm激光可通过Digilock110模块进行远程操控。我们采用的是调制转移光谱进行激光稳频,对比两种连线方式后选择有利的一种,充分利用了Digilock110的优势,最后获得了高信噪比的误差信号。对于二级冷却,借助PDH技术将556nm激光器频率锁定在高精细度的光学谐振腔(FP腔)上,激光线宽被压窄至约3kHz,获得了低噪声的556nm二级冷却光。同时,我们优化了556nm磁光阱的相关参数,比如激光频率失谐量、激光功率以及磁场,获得了典型温度为20μK的冷171Yb原子团。通过小心地调节光路,在三维方向上搭建了“(1,1,1)”激光组态的光晶格。实验上实现了各种光晶格结构的原子装载,在一维、二维以及三维魔术波长光晶格中都可以观察到171Yb原子的荧光信号。在一维光晶格中,我们测量了17Yb原子的温度、数目和寿命。优化参数后,一维光晶格中的171Yb原子将被用于钟跃迁探询。
     为消除原子数日起伏带来的影响,我们采用电子搁置法探测镱原子钟跃迁谱。对一个双次通过的声光调制器进行总共几百kHz的频率扫描,可以获得171Yb的钟跃迁谱,包含载波,红边带和蓝边带三种成分。一维光晶格的非谐振特性使得纵向与横向的自由度发生混杂,导致边带结构频谱的展宽和不对称:背对着载波的一面十分陡峭,而面朝载波的一面下降平缓。对典型的边带谱进行拟合,可以得知光晶格阱深和原子温度等参数。我们在实验上证明了,对不同的晶格阱深,纵向的晶格振动能级间隔频率与晶格光功率的开平方成正比,这与光晶格谐振近似理论完全符合。当晶格光处于魔术波长时,载波跃迁是纯电子能级跃迁,非零的振动能级激发或者晶格横向囚禁势都不会对载波跃迁产生影响。最大的问题可能就是边带对载波会造成谱线牵引频移。实际上,几kHz的钟跃迁载波谱已经可以用于钟激光的频率锁定。谱线的展宽主要是因为还存在剩余磁场,使得钟跃迁磁子能级的四条特征跃迁谱线简并解除,发生塞曼增宽。如果我们放大载波跃迁区域,可以清楚地看到这四条跃迁谱线的互相分离。移除578nm钟探询光功率展宽后,通过补偿磁场将剩余磁场补偿掉,在垂直钟探询光传播方向外加一个磁场,一束线偏振的钟激光脉冲就只能激发“π”跃迁。此时,谱线的宽度在16Hz左右,这已经快接近我们目前实验参数下的傅里叶极限了。
     另外,本论文还进行了相关的理论分析。晶格光若在魔术波长处,其引起某共振跃迁谱线上下能级的光位移将一致,从而消除了差分光位移。我们计算了镱原子两条跃迁谱线的魔术波长,其中6s21S0-6s6p3P1跃迁谱线的魔术波长目前还没有文献报道,可能对556nm光缔合谱图的精确绘制很有帮助。对于镱原子光钟,本文将系统分析黑体辐射频移的影响,给出具体的评估方案。理论上详细分析了利用激光偏转原子束进行同位素分离的可能,这为实验上获取纯度高的同位素提供了理论指导。同时,激光偏转的思想还可用于黑体辐射频移的抑制,本文只概述基本的物理图像。
For about60years, the atomic frequency standards have played a crucial role in the precision measurements, fundamental physical researches and technical applications. Tremendous progress on the laser cooling and trapping techniques has enabled the flexible manipulation of atoms or ions. Since year2000, it is also possible to make a direct and reliable frequency measurement from the optical domain to the microwave domain via the optical frequency comb. Moreover, the ultrastable laser with an extremely narrow linewidth, which acts as a local oscillator, has been successfully achieved. All these possibilities allow us to build optical frequency standards with a lower fractional frequency uncertainty and higher stability. Maybe in the future the second, one of the International System of Units that is currently realized by the microwave caesium frequency standards, will be redefined by an optical atomic transition.
     Ytterbium is regarded as one of the promising candidates for the optical clocks. At present, two optical clocks based on cold ytterbium atoms are being developed in the State Key Laboratory of Precision Spectroscopy, East China Normal University. We have been working on the realization of ytterbium optical clocks for years and we have accomplished the first-stage cooling, second-stage cooling and preliminary optical lattice confinement of ytterbium atoms, which have been detailedly described in the previous works of our group.
     This thesis presents some improvements in each experimental part and emphasizes the precision measurement of the clock-transition spectrum in a cold ytterbium optical clock. In the first cooling stage, the399nm laser is remotely controlled via a Digilock110module. For laser frequency stabilization utilizing the modulation transfer spectroscopy method, we compare two connection schemes to fully exploit the Digilockl10, and finally obtain an error signal with a high signal to noise ratio. In the second cooling stage, a low noise556nm laser is achieved by locking the frequency to a high finesse Fabry Perot (FP) cavity with the Pound-Drever-Hall (PDH) technique. The laser linewidth is narrowed to about3kHz. We optimize the parameters for the556nm magneto-optical trap (MOT) phase, such as the556nm laser frequency, laser intensity and the B-field. The typical temperature of the171Yb atomic cloud is measured to be about20μK. By careful alignment, we construct a so-called "(1,1,1)" light configuration for the optical lattice on three dimensions. Experiments on trapping ytterbium atoms in various optical lattices are presented. The ultracold171Yb atoms are visibly confined in the one-, two-, and three-dimensional optical lattices operating at the Stark-free wavelength, respectively. For the one-dimensional lattice, the temperature, number and lifetime of cold171Yb atoms are measured. After optimization, the one-dimensional optical lattice with171Yb is readily used for the clock laser interrogation.
     Precision measurement of the clock-transition spectrum is performed using the electron shelving technique, which cancels out the shot-to-shot atom number fluctuations. The clock-transition spectrum, taken by scanning a double-passed acousto-optic modulator (AOM) for a total range of a few hundred kHz, consist of a carrier, red sideband and blue sideband spectral structure. The anharmonicity of the lattice results in the coupling between the longitudinal and transverse degrees of freedom. So the sideband structures appear to be broad and asymmetric:a sharp edge with its back to the carrier and a slope towards the carrier. A typical sideband spectral shape is modeled to know about the efficient lattice depth and the temperature of in-lattice atoms. For different lattice depths, the longitudinal oscillation frequency is demonstrated experimentally to be proportional to the square root of the lattice beam power, which is consistent with the harmonic approximation of the lattice. As the carrier favors the purely electronic transition when the lattice is at the magic wavelength, generally it has nothing to do with the nonzero motional excitation and transverse confinement. Maybe the main problem is the line pulling induced by the tail of the sideband spectrum. In fact, the carrier spectrum with a linewidth of several kHz can already be used to lock the clock laser. The linewidth broadening mainly results from the residual magnetic field around the lattice region so that the degeneration of four characteristic Zeeman sub-level transitions are removed. If we zoom in the carrier, all four transitions are separated from each other. After the power broadening effect of the578nm clock laser is eliminated, the residual B-field can be well compensated with our compensation coils. With an external applied B-field perpendicular to the clock laser propagation direction, a linear-polarized clock laser pulse allow only "π" transitions. The spectral lines feature a linewidth of about16Hz, which approaches the Fourier limit for our experimental parameters.
     This thesis presents some analysis as well. The differential light shifts induced by lattice beams can be cancelled out by operating at the magic wavelength. Here magic wavelengths of two ytterbium transition lines are calculated. The Stark free wavelength of6s21S0-6s6p3P1, which has not been reported yet, may be helpful in accurately mapping the ytterbium photoassciation spectrum using this556-nm intermediate line. For the ytterbium optical clock, I will give the detailed evaluation of the blackbody radiation shift. Isotope separation by laser deflecting an atomic beam is analyzed theoretically, which will give a guideline for simply obtaining pure isotopes of various elements. Meanwhile, the concept of laser deflection can be applied to the blackbody radiation suppression, of which I will just outline the physics here.
引文
1. L. Essen and J. Parry, An atomic standard of frequency and time interval:a caesium resonator[J], Nature 176,280 (1955).
    2. R. Li, K. Gibble, and K. Szymaniec, Improved accuracy of the NPL-CsF2 primary frequency standard:evaluation of distributed cavity phase and microwave lensing frequency shifts[J], Metrologia 48,283 (2011).
    3. J. Guena, M. Abgrall, D. Rovera, P. Laurent, B. Chupin, M. Lours, G. Santarelli, P. Rosenbusch, M. E. Tobar, R. X. Li, K. Gibble, A. Clairon, and S. Bize, Progress in Atomic Fountains at LNE-SYRTE[J], IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control 59,391 (2012).
    4. E. P. Thomas, Long-term comparison of caesium fountain primary frequency standards[J], Metrologia 47,1 (2010).
    5. J. M. Dow, R. Neilan, and C. Rizos, The international GNSS service in a changing landscape of global navigation satellite systems[J], Journal of Geodesy 83,191 (2009).
    6. D. Normile and D. Clery, First Global Telescope Opens an Eye on the Cold Universe[J], Science 333,1820 (2011).
    7. T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, Frequency ratio of Al+ and Hg+ single-ion optical clocks; Metrology at the 17th decimal place[J], Science 319,1808(2008).
    8. L. Hollberg, C. W. Oates, E. A. Curtis, E. N. Ivanov, S. A. Diddams, T. Udem, H. G. Robinson, J. C. Bergquist, R. J. Rafac, W. M. Itano, R. E. Drullinger, and D. J. Wineland, Optical frequency standards and measurements[J], IEEE Journal of Quantum Electronics 37,1502 (2001).
    9. C. Oates, E. Curtis, and L. Hollberg, Improved short-term stability of optical frequency standards:approaching 1 Hz in 1 s with the Ca standard at 657 nm[J], Optics Letters 25,1603 (2000).
    10. H. Katori, Spectroscopy of strontium atoms in the Lamb-Dicke confinement[C], in Frequency Standards and Metrology,Proceedings of the 6th Symposium,323 (2002).
    11. J. Eschner, G. Morigi, F. Schmidt-Kaler, and R. Blatt, Laser cooling of trapped ions[J], Journal of the Optical Society of America B 20,1003 (2003).
    12. R. H. Dicke, The Effect of Collisions upon the Doppler Width of Spectral Lines[J], Physical Review 89,472 (1953).
    13. H. Katori, M. Takamoto, V. Pal'Chikov, and V. Ovsiannikov, Ultrastable optical clock with neutral atoms in an engineered light shift trap[J], Physical Review Letters 91,173005(2003).
    14. T. Ido and H. Katori, Recoil-free spectroscopy of neutral Sr atoms in the Lamb-Dicke regime[J], Physical Review Letters 91,53001 (2003).
    15. M. Takamoto and H. Katori, Spectroscopy of the 1S0-3P0 clock transition of 87Sr in an optical lattice[J], Physical Review Letters 91,223001 (2003).
    16. G. Santarelli, C. Audoin, A. Makdissi, P. Laurent, G. Dick, and A. Clairon, Frequency stability degradation of an oscillator slaved to a periodically interrogated atomic resonator[J], IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control,45,887(1998).
    17. C. Salomon, D. Hils, and J. L. Hall, Laser stabilization at the millihertz level[J], Journal of the Optical Society of America B 5,1576 (1988).
    18. L.-S. Ma, P. Jungner, J. Ye, and J. L. Hall, Delivering the same optical frequency at two places:accurate cancellation of phase noise introduced by an optical fiber or other time-varying path[J], Optics Letters 19,1777 (1994).
    19. T. Udem, A. Huber, B. Gross, J. Reichert, M. Prevedelli, M. Weitz, and T. W. Hansch, Phase-coherent measurement of the hydrogen 1S-2S transition frequency with an optical frequency interval divider chain [J], Physical Review Letters 79,2646 (1997).
    20. T. Udem, J. Reichert, R. Holzwarth, and T. W. Hansch, Accurate measurement of large optical frequency differences with a mode-locked laser[J], Optics Letters 24, 881 (1999).
    21. T. Udem, J. Reichert, R. Holzwarth, and T. Hansch, Absolute optical frequency measurement of the cesium D1 line with a mode-locked laser[J], Physical Review Letters 82,3568 (1999).
    22. L.-S. Ma, Z. Bi, A. Bartels, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, Optical frequency synthesis and comparison with uncertainty at the 10-19 level[J], Science 303,1843 (2004).
    23. A. Daisuke, I. Hajime, H. Kazumoto, Y. Masami, O. Atsushi, S. Tomonari, A. Masaki, and H. Feng-Lei, Spectroscopy and frequency measurement of the 87Sr clock transition by laser linewidth transfer using an optical frequency comb[J], Applied Physics Express 7,012401 (2014).
    24. H. Inaba, K. Hosaka, M. Yasuda, Y. Nakajima, K. Iwakuni, D. Akamatsu, S. Okubo, T. Kohno, A. Onae, and F.-L. Hong, Spectroscopy of 171Yb in an optical lattice based on laser linewidth transfer using a narrow linewidth frequency comb[J], Optics Express 21,7891 (2013).
    25. S. N. Lea, Limits to time variation of fundamental constants from comparisons of atomic frequency standards[J], Reports on Progress in Physics 70,1473 (2007).
    26. S. Schiller, G. Tino, P. Gill, C. Salomon, U. Sterr, E. Peik, A. Nevsky, A. Gorlitz, D. Svehla, and G. Ferrari, Einstein Gravity Explorer-a medium-class fundamental physics mission[J], Experimental astronomy 23,573 (2009).
    27. G. Tino, L. Cacciapuoti, K. Bongs, C. J. Borde, P. Bouyer, H. Dittus, W. Ertmer, A. Gorlitz, M. Inguscio, and A. Landragin, Atom interferometers and optical atomic clocks:New quantum sensors for fundamental physics experiments in space[J], Nuclear Physics B-Proceedings Supplements 166,159 (2007).
    28. C. Chou, D. Hume, T. Rosenband, and D. Wineland, Optical clocks and relativity[J], Science 329,1630(2010).
    29. N. Poli, C. Oates, P. Gill, and G. Tino, Optical atomic clocks[J], LA RIVISTA DEL NUOVO CIMENTO 36,555 (2013).
    30. C. Chou, D. Hume, J. Koelemeij, D. Wineland, and T. Rosenband, Frequency Comparison of Two High-Accuracy Al+Optical Clocks[J], Physical Review Letters 104,70802(2010).
    31. B. Bloom, T. Nicholson, J. Williams, S. Campbell, M. Bishof, X. Zhang, W. Zhang, S. Bromley, and J. Ye, An optical lattice clock with accuracy and stability at the 10-18 level [J], Nature 12941,10.1038(2014).
    32. J. von Zanthier, J. Abel, T. Becker, M. Fries, E. Peik, H. Walther, R. Holzwarth, J. Reichert, T. Udem, T. W. Hansch, A. Y. Nevsky, M. N. Skvortsov, and S. N. Bagayev, Absolute frequency measurement of the 115In+5s2+S0-5s5p 3P0 transition[J], Optics communications 166,57 (1999).
    33. J. v. Zanthier, T. Becker, M. Eichenseer, A. Y. Nevsky, C. Schwedes, E. Peik, H. Walther, R. Holzwarth, J. Reichert, T. Udem, T. W. Hansch, P. V. Pokasov, M. N. Skvortsov, and S. N. Bagayev, Absolute frequency measurement of the In'clock transition with a mode-locked laser[J], Optics Letters 25,1729 (2000).
    34. T. Becker, J. v. Zanthier, A. Y. Nevsky, C. Schwedes, M. N. Skvortsov, H. Walther, and E. Peik, High-resolution spectroscopy of a single In+ ion:Progress towards an optical frequency standard[J], Physical Review A 63,051802 (2001).
    35. Y. Wang, R. Dumke, T. Liu, A. Stejskal, Y. Zhao, J. Zhang, Z. Lu, L. Wang, T. Becker, and H. Walther, Absolute frequency measurement and high resolution spectroscopy of 115In+ 5s2 1S0-5s5p 3P0 narrowline transition[J], Optics communications 273,526 (2007).
    36. S. A. Diddams, T. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, An optical clock based on a single trapped 199Hg'ion[J], Science 293,825 (2001).
    37. J. Stenger, C. Tamm, N. Haverkamp, S. Weyers, and H. R. Telle, Absolute frequency measurement of the 435.5-nm 171Yb+-clock transition with a Kerr-lens mode-locked femtosecond laser[J], Optics Letters 26,1589 (2001).
    38. J. Stenger, T. Binnewies, G. Wilpers, F. Riehle, H. R. Telle, J. K. Ranka, R. S. Windeler, and A. J. Stentz, Phase-coherent frequency measurement of the Ca intercombination line at 657 nm with a Kerr-lens mode-locked femtosecond laser[J], Physical Review A 63,021802 (2001).
    39. T. Udem, S. A. Diddams, K. R. Vogel, C. W. Oates, E. A. Curtis, W. D. Lee, W. M. Itano, R. E. Drullinger, J. C. Bergquist, and L. Hollberg, Absolute Frequency Measurements of the Hg+ and Ca Optical Clock Transitions with a Femtosecond Laser[J], Physical Review Letters 86,4996 (2001).
    40. H. Margolis, G. Barwood, G. Huang, H. Klein, S. Lea, K. Szymaniec, and P. Gill, Hertz-level measurement of the optical clock frequency in a single 88Sr+ ion[J], Science 306,1355(2004).
    41. T. Rosenband, P. O. Schmidt, D. B. Hume, W. M. Itano, T. M. Fortier, J. E. Stalnaker, K. Kim, S. A. Diddams, J. Koelemeij, and J. Bergquist, Observation of the 1S0-3P0 Clock Transition in 27Al+[J], Physical Review Letters 98,220801 (2007).
    42. K. Matsubara, K. Hayasaka, Y. Li, H. Ito, S. Nagano, M. Kajita, and M. Hosokawa, Frequency Measurement of the Optical Clock Transition of 40Ca+ Ions with an Uncertainty of 10-14 Level[J], Applied Physics 1,067011(2008).
    43. K. Hosaka, S. A. Webster, P. J. Blythe, A. Stannard, D. Beaton, H. S. Margolis, S. N. Lea, and P. Gill, An optical frequency standard based on the electric octupole transition in 171Yb+[J], IEEE Transactions on Instrumentation and Measurement,54, 759 (2005).
    44. H. Katori, M. Takamoto, F. L. Hong, and R. Higashi, An optical lattice clock[J], Nature 435,321 (2005).
    45. J. Dalibard and C. Cohen-Tannoudji, Laser cooling below the Doppler limit by polarization gradients: simple theoretical models[J], Journal of the Optical Society of America B 6,2023 (1989).
    46. P. D. Lett, W. D. Phillips, S. Rolston, C. E. Tanner, R. Watts, and C. Westbrook, Optical molasses[J], Journal of the Optical Society of America B 6,2084 (1989).
    47. W. D. Phillips, J. V. Prodan, and H. J. Metcalf, Laser cooling and electromagnetic trapping of neutral atoms[J], Journal of the Optical Society of America B 2,1751 (1985).
    48. H. J. Metcalf and P. van der Straten, Laser cooling and trapping of atoms[J], Journal of the Optical Society of America B 20,887 (2003).
    49. W. M. Haynes, CRC handbook of chemistry and physics[M], USA:CRC Press,2010.
    50. Y. Takasu, K. Komori, K. Honda, M. Kumakura, T. Yabuzaki, and Y. Takahashi, Photoassociation Spectroscopy of Laser-Cooled Ytterbium Atoms[J], Physical Review Letters 93,123202 (2004).
    51. K. Beloy, J. A. Sherman, N. D. Lemke, N. Hinkley, C. W. Oates, and A. D. Ludlow, Determination of the 5d6s 3D1 state lifetime and blackbody-radiation clock shift in Yb[J], Physical Review A 86,051404 (2012).
    52. T. Hong, C. Cramer, W. Nagourney, and E. Fortson, Optical clocks based on ultranarrow three-photon resonances in alkaline earth atoms[J], Physical Review Letters 94,50801 (2005).
    53. R. Santra, E. Arimondo, T. Ido, C. H. Greene, and J. Ye, High-accuracy optical clock via three-level coherence in neutral bosonic 88Sr[J], Physical Review Letters 94, 173002(2005).
    54. Z. W. Barber, C. W. Hoyt, C. W. Oates, L. Hollberg, A. V. Taichenachev, and V. I. Yudin, Direct excitation of the forbidden clock transition in neutral 174Yb atoms confined to an optical lattice[J], Physical Review Letters 96(2006).
    55. S. G. Porsev, A. Derevianko, and E. N. Fortson, Possibility of an optical clock using the 61S0→63P0° transition in 171,173Yb atoms held in an optical lattice[J], Physical Review A 69,021403 (2004).
    56. J. W. Cho, H.-g. Lee, S. Lee, J. Ahn, W.-K. Lee, D.-H. Yu, S. K. Lee, and C. Y. Park, Optical repumping of triplet-P states enhances magneto-optical trapping of ytterbium atoms[J], Physical Review A 85,035401 (2012).
    57. N. D. Lemke, A. D. Ludlow, Z. W. Barber, T. M. Fortier, S. A. Diddams, Y. Jiang, S. R. Jefferts, T. P. Heavner, T. E. Parker, and C. W. Oates, Spin-1/2 optical lattice clock[J], Physical Review Letters 103,063001 (2009).
    58. N. Hinkley, J. Sherman, N. Phillips, M. Schioppo, N. Lemke, K. Beloy, M. Pizzocaro, C. Oates, and A. Ludlow, An Atomic Clock with 10-18 Instability[J], Science 341, 1215(2013).
    59. M. Yasuda, H. Inaba, T. Kohno, T. Tanabe, Y. Nakajima, K. Hosaka, D. Akamatsu, A. Onae, T. Suzuyama, and M. Amemiya, Improved Absolute Frequency Measurement of the 171Yb Optical Lattice Clock towards a Candidate for the Redefinition of the Second[J], Applied Physics Express 5,102401 (2012).
    60. C. Y. Park, D.-H. Yu, W.-K. Lee, S. E. Park, E. B. Kim, S. K. Lee, J. W. Cho, T. H. Yoon, J. Mun, and S. J. Park, Absolute frequency measurement of 1So (F= 1/2)-3P0 (F= 1/2) transition of 171Yb atoms in a one-dimensional optical lattice at KR1SS[J], Metrologia 50,119(2013).
    61. D.-H. Yu, C. Park, W.-K. Lee, S. Lee, S. Park, J. Mun, S.-B. Lee, and T. Kwon, An Yb optical lattice clock: Current status at KRISS[J], Journal of the Korean Physical Society 63,883(2013).
    62. M. Pizzocaro, G. A. Costanzo, A. Godone, F. Levi, A. Mura, M. Zoppi, and D. Calonico, Realization of an Ultrastable 578-nm Laser for an Yb Lattice Clock[J], IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control 59,426 (2012).
    63. G. Mura, T. Franzen, C. A. Jaoudeh, A. Gorlitz, H. Luckmann, I. Ernsting, A. Nevsky, and S. Schiller, A transportable optical lattice clock using 171Yb[C], in European Frequency and Time Forum & International Frequency Control Symposium (EFTF/IFC),2013 Joint,376 (2013).
    64. P. Y. Zhao, Z. X. Xiong, J. Liang, L. X. He, and B. L. Lu, Magneto-Optical Trapping of Ytterbium Atoms with a 398.9 nm Laser[J], Chinese Physics Letters 25,3631 (2008).
    65. Z. Peng-Yii, X. Zhuan-Xian, L. Yun, H. Ling-Xiang, and L. Bao-Long, Realization of Green MOT for Ytterbium Atoms[J], Chinese Physics Letters 26,083702 (2009).
    66. X. Xu, W. Wang, Q. Zhou, G. Li, H. Jiang, L. Chen, J. Ye, Z. Zhou, Y. Cai, and H. Tang, Laser cooling and trapping of ytterbium atoms[J], Frontiers of Physics in China 4,160(2009).
    67. Chen Ning, Zhou Min, Chen Hai-Qin, Fang Su, Huang Liang-Yu, Zhang Xiao-Hang, Gao Qi, Jiang Yan-Yi, Bi Zhi-Yi, Ma Long-Sheng, Xu Xin-Ye, Clock-transition spectrum of 171Yb atomsin a one-dimensional optical lattice[J], Chinese Physics B 22, 90601 (2013).
    68.王文丽,冷镱原子光钟的关键技术研究[D],上海:华东师范大学,2011.
    69. W. L. Wang, J. Ye, H. L. Jiang, Z. Y. Bi, L. S. Ma, and X. Y. Xu, Frequency stabilization of a 399-nm laser by modulation transfer spectroscopy in an ytterbium hollow cathode lamp[J], Chinese Physics B 20,013201 (2011).
    70. G. Li and X. Xu, Thermally induced dephasing of high power second harmonic generation in MgO:LiNbO3 waveguides[J], Chinese Optics Letters 9,121901 (2011).
    71. T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. Martin, L. Chen, and J. Ye, A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity[J], Nature Photonics 6,687(2012).
    72. A. Abramovici, W. E. Althouse, R. W. Drever, Y. Gursel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, and K. S. Thorne, LIGO:The laser interferometer gravitational-wave observatory[J], Science 256,325 (1992).
    73. C. Monroe, Quantum information processing with atoms and photons[J], Nature 416, 238 (2002).
    74. S. Uetake, A. Yamaguchi, S. Kato, and Y. Takahashi, High power narrow linewidth laser at 556 nm for magneto-optical trapping of ytterbium[J], Applied Physics B 92, 33 (2008).
    75. P. Chang Yong, Y. Dai-Hyuk, L. Won-Kyu, P. Sang Eon, and E. B. Kim,556 nm light generation by frequency doubling of a diode laser amplifed Yb-doped fiber amplifer for precision spectroscopy of ytterbium atoms[C], in Conference on Precision Electromagnetic Measurements Digest,186 (2008).
    76. C. Abou-Jaoudeh, C. Bruni, F. Baumer, and A. Gorlitz, A compact source of ultracold ytterbium for an optical lattice clock[C], In Proceeding of Frequency Control Symposium,2009 Joint with the 22nd European Frequency and Time forum. IEEE International (2009).
    77. K. Pandey, K. D. Rathod, S. B. Pal, and V. Natarajan, Magnetic trapping of Yb in the metastable 3P2 state[J], Physical Review A 81,033424 (2010).
    78. M. Yasuda, T. Kohno, H. Inaba, Y. Nakajima, K. Hosaka, A. Onae, and F. L. Hong, Fiber-comb-stabilized light source at 556 nm for magneto-optical trapping of ytterbium[J], Journal of the Optical Society of America B 27,1388 (2010).
    79. 蒋海灵,应用于镱原子光钟的光晶格研究[D],上海:华东师范大学,2012.
    80. E. D. Black, An introduction to Pound-Drever-Hall laser frequency stabilization[J], American Journal of Physics 69,79 (2001).
    81. R. Drever, J. L. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, Laser phase and frequency stabilization using an optical resonator[J], Applied Physics B: Lasers and Optics 31,97 (1983).
    82. M. Zhu and J. L. Hall, Stabilization of optical phase/frequency of a laser system: application to a commercial dye laser with an external stabilizer[J], Journal of the Optical Society of America B 10,802 (1993).
    83. F. Trager, Springer handbook of lasers and optics[M], Germany:Springer Verlag, 2007.
    84. Y. He and B. J. Orr, Optical heterodyne signal generation and detection in cavity ringdown spectroscopy based on a rapidly swept cavity[J], Chemical Physics Letters 335,215(2001).
    85. S. Fang, H. Chen, T. Wang, Y. Jiang, Z. Bi, and L. Ma, Optical frequency comb with an absolute linewidth of 0.6 Hz-1.2 Hz over an octave spectrum[J], Applied Physics Letters 102,231118 (2013).
    86. J. McFerran, L. Yi, S. Mejri, and S. Bize, Sub-Doppler cooling of fermionic Hg isotopes in a magneto-optical trap[J], Optics Letters 35,3078 (2010).
    87. T. H. Loftus, T. Ido, M. M. Boyd, A. D. Ludlow, and J. Ye, Narrow line cooling and momentum-space crystals[J], Physical Review A 70,063413 (2004).
    88. R. Maruyama, R. Wynar, M. Romalis, A. Andalkar, M. Swallows, C. Pearson, and E. Fortson, Investigation of sub-Doppler cooling in an ytterbium magneto-optical trap[J], Physical Review A 68,011403 (2003).
    89. M. D. Swallows, M. J. Martin, M. Bishof, C. Benko, Y. G. Lin, S. Blatt, A. M. Rey, and J. Ye, Operating a 87Sr Optical Lattice Clock With High Precision and at High Density[J], IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control 59,416(2012).
    90. T. Akatsuka, M. Takamoto, and H. Katori, Three-dimensional optical lattice clock with bosonic 88Sr atoms[J], Physical Review A 81,023402 (2010).
    91. 王义遒,原子的激光冷却与囚禁[M],北京:北京大学出版社,2007.
    92. G. Grynberg, B. Lounis, P. Verkerk, J. Y. Courtois, and C. Salomon, Quantized motion of cold cesium atoms in two-and three-dimensional optical potentials[J], Physical Review Letters 70,2249 (1993).
    93. R. L. Mossbauer, The discovery of the Mossbauer effect[J], Hyperfine Interactions 126,1 (2000).
    94. A. Derevianko and H. Katori, Colloquium:Physics of optical lattice clocks[J], Reviews of Modern Physics 83,331 (2011).
    95. T. Akatsuka, M. Takamoto, and H. Katori, Optical lattice clocks with non-interacting bosons and fermions[J], Nature Physics 4,954 (2008).
    96. B. H. Bransden and C. J. Joachain, Physics of atoms and molecules[M], India: Pearson Education India,2003.
    97. X. Zhou, X. Xu, X. Chen, and J. Chen, Magic wavelengths for terahertz clock transitions[J], Physical Review A 81,012115 (2010).
    98. C. H. Corliss and W. R. Bozman, Experimental transition probabilities for spectral lines of seventy elements[R], USA:U.S. Department of Commerce. National Bureau of Standards,1962.
    99. J. Reader, C. H. Corliss, W. L. Wiese, and G. Martin, Wavelengths and Transition Probabilities for Atoms and Atomic Ions. Part I. Wavelengths. Part Ⅱ. Transition Probabilities[M], USA:U.S. Dept. of Commerce, National Bureau of Standards:for sale by the Supt. of Docs., U.S. Govt. Print. Off. (1980)
    100. D. C. Morton, Atomic Data for Resonance Absorption Lines. Ⅱ. Wavelengths Longward of the Lyman Limit for Heavy Elements[J], The Astrophysical Journal Supplement Series 130,403 (2000).
    101. J. E. Golub, Y. S. Bai, and T. W. Mossberg, Radiative and dynamical properties of homogeneously prepared atomic samples[J], Physical Review A 37,119 (1988).
    102. C. J. Bowers, D. Budker, E. D. Commins, D. DeMille, S. J. Freedman, A. T. Nguyen, S. Q. Shang, and M. Zolotorev, Experimental investigation of excited-state lifetimes in atomic ytterbium[J], Physical Review A 53,3103 (1996).
    103. D. R. Lide, CRC handbook of chemistry and physics[M], USA:CRC press,2012.
    104. K. B. Blagoev and V. A. Komarovskii, Lifetimes of Levels of Neutral and Singly Ionized Lanthanide Atoms[J], Atomic Data and Nuclear Data Tables 56,1 (1994).
    105. Z. Barber, Ytterbium optical lattice clock[D], USA:University of Colorado,2007.
    106. S. Porsev, Y. G. Rakhlina, and M. Kozlov, Electric-dipole amplitudes, lifetimes, and polarizabilities of the low-lying levels of atomic ytterbium[J], Physical Review A 60, 2781 (1999).
    107. J. J. Liu, W. X. Peng, Z. K. Jiang, L. J. Wang, H. Yu, and C. Guo, Experimental Determination of Branching Ratios, Lifetime and Transition Probabilities of Ytterbium[J], Chinese Science Bulletin 3,003 (1993).
    108. S. Tojo, M. Kitagawa, K. Enomoto, Y. Kato, Y. Takasu, M. Kumakura, and Y. Takahashi, High-resolution photoassociation spectroscopy of ultracold ytterbium atoms by using the intercombination transition[J], Physical Review Letters 96, 153201(2006).
    109. S. G. Porsev, Y. G. Rakhlina, and M. G. Kozlov, Electric-dipole amplitudes, lifetimes, and polarizabilities of the low-lying levels of atomic ytterbium[J], Physical Review A 60,2781 (1999).
    110. B. Karacoban and L. Ozdemir, Energies, Lande Factors, and Lifetimes for Some Excited Levels of Neutral Ytterbium (Z= 70)[J], Acta Physica Polonica A 119,342 (2011).
    111. M. Takamoto, F. L. Hong, R. Higashi, Y. Fujii, M. Imae, and H. Katori, Improved Frequency Measurement of a One-Dimensional Optical Lattice Clock with a Spin-Polarized Fermionic 87Sr Isotope[J], Journal of the Physical Society of Japan 75, 104302(2006).
    112. X. Baillard, M. Fouche, R. Le Targat, P. Westergaard, A. Lecallier, F. Chapelet, M. Abgrall, G. Rovera, P. Laurent, and P. Rosenbusch, An optical lattice clock with spin-polarized 87Sr atoms[J], The European Physical Journal D-Atomic, Molecular, Optical and Plasma Physics 48,11 (2008).
    113. S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, The 87Sr optical frequency standard at PTB[J], Metrologia 48,399 (2011).
    114. S. Blatt, J. W. Thomsen, G. K. Campbell, A. D. Ludlow, M. D. Swallows, M. J. Martin, M. M. Boyd, and J. Ye, Rabi spectroscopy and excitation inhomogeneity in a one-dimensional optical lattice clock[J], Physical Review A 80(2009).
    115. P. Westergaard, Horloge a reseau optique au Strontium:en quete de la performance ultime[D], France:Telecom ParisTech,2010.
    116. X. Baillard, An optical lattice clock with Strontium atoms[D], France:University of Paris Ⅳ,2008.
    117.方苏,窄线宽激光和窄线宽光梳的研究[D],上海:华东师范大学,2013.
    118. W. Nagourney, J. Sandberg, and H. Dehmelt, Shelved optical electron amplifier: Observation of quantum jumps [J], Physical Review Letters 56,2797 (1986).
    119. V. Dzuba and A. Derevianko, Dynamic polarizabilities and related properties of clock states of the ytterbium atom[J], Journal of Physics B:Atomic, Molecular and Optical Physics 43,074011 (2010).
    120. M. M. Boyd, High Precision Spectroscopy of Strontium in an Optical Lattice: Towards a New Standard for Frequency and Time[D], USA:University of Colorado, 2007.
    121. F. Riehle, Frequency standards:basics and applications[M]. Germany: Wiley-Vch, 2006.
    122. S. G. Porsev and A. Derevianko, Multipolar theory of blackbody radiation shift of atomic energy levels and its implications for optical lattice clocks[J], Physical Review A 74,020502 (2006).
    123. J. Mitroy, J. Zhang, M. Bromley, and K. Rollin, Blackbody radiation shift of the Al+ clock transition[J], The European Physical Journal D 53,15 (2009).
    124. S. G. Wang, D. K. Pan, and W. H. E. Schwarz, Density functional calculations of lanthanide oxides[J], The Journal of Chemical Physics 102,9296 (1995).
    125. X. Chu, A. Dalgarno, and G. C. Groenenboom, Dynamic polarizabilities of rare-earth-metal atoms and dispersion coefficients for their interaction with helium atoms[J], Physical Review A 75,032723 (2007).
    126. K. Brueckner, The many-body problem[M], New York:John Wiley R Sons,1958.
    127. M. S. Safronova, W. R. Johnson, and U. I. Safronova, Relativistic many-body calculations of the energies of n=2 states for the berylliumlike isoelectronic sequence[J], Physical Review A 53,4036 (1996).
    128. H. C. Ho, W. R. Johnson, S. A. Blundell, and M. S. Safronova, Third-order many-body perturbation theory calculations for the beryllium and magnesium isoelectronic sequences[J], Physical Review A 74,022510 (2006).
    129. A. A. Buchachenko, M. M. Szczesniak, and G. Chalasinski, van der Waals interactions and dipole polarizabilities of lanthanides:Tm(2F)-He and Yb('S)-He potentials[J], The Journal of Chemical Physics 124,114301 (2006).
    130. V. A. Dzuba, V. V. Flambaum, and M. G. Kozlov, Combination of the many-body perturbation theory with the configuration-interaction method[J], Physical Review A 54,3948(1996).
    131. M. G. Kozlov, Precision calculations of atoms with few valence electrons[J], International Journal of Quantum Chemistry 100,336 (2004).
    132. T. Middelmann, S. Falke, C. Lisdat, and U. Sterr, Long-range transport of ultracold atoms in a far-detuned one-dimensional optical lattice[J], New Journal of Physics 14(2012).
    133. V. Yudin, A. Taichenachev, M. Okhapkin, S. Bagayev, C. Tamm, E. Peik, N. Huntemann, T. Mehlstaubler, and F. Riehle, Atomic clocks with suppressed blackbody radiation shift[J], Physical review letters 107,30801 (2011).
    134. J. A. Sherman, N. D. Lemke, N. Hinkley, M. Pizzocaro, R. W. Fox, A. D. Ludlow, and C. W. Oates, High-Accuracy Measurement of Atomic Polarizability in an Optical Lattice Clock[J], Physical Review Letters 108,153002 (2012).
    135. T. Middelmann, S. Falke, C. Lisdat, and U. Sterr, High Accuracy Correction of Blackbody Radiation Shift in an Optical Lattice Clock[J], Physical Review Letters 109,263004(2012).
    136. M. S. Safronova, S. G. Porsev, and C. W. Clark, Ytterbium in Quantum Gases and Atomic Clocks:van der Waals Interactions and Blackbody Shifts[J], Physical Review Letters 109,230802 (2012).
    137. K. Beloy, Experimental constraints on the polarizabilities of the 6s2 1S0 and 6s6p 3P0° states of Yb[J], Physical Review A 86,022521 (2012).
    138. A. Ye and G. Wang, Dipole polarizabilities of ns2 1S0 and nsnp 3P0 states and relevant magic wavelengths of group-IIB atoms[J], Physical Review A 78,014502 (2008).
    139. C. Thierfelder and P. Schwerdtfeger, Effect of relativity and electron correlation in static dipole polarizabilities of ytterbium and nobelium[J], Physical Review A 79, 032512(2009).
    140. D. E. Nelson, R. G. Korteling, and W. R. Stott, Carbon-14:direct detection at natural concentrations[J], Science (New York, N.Y.) 198,507 (1977).
    141. K. Wendt, K. Blaum, C. Geppert, R. Horn, G. Passler, N. Trautmann, and B. Bushaw, Laser resonance ionization for efficient and selective ionization of rare species[J], Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms 204,325 (2003).
    142. V. Natarajan, Proposed search for an electric-dipole moment using laser-cooled l71Yb atoms[J], The European Physical Journal D-Atomic, Molecular, Optical and Plasma Physics 32,33 (2005).
    143. V. Balykin, V. Letokhov, Y. B. Ovchinnikov, A. Sidorov, and S. Shul'ga, Channeling of atoms in a standing spherical light wave[J], Optics letters 13,958 (1988).
    144. E. Kotlikov and L. Y. Khryashchev, Experiment on the formation of angular distribution of a photodeflected atomic beam[J], Optics and Spectroscopy 61,405 (1986).
    145. A. Witte, T. Kisters, F. Riehle, and J. Helmcke, Laser cooling and deflection of a calcium atomic beam[J], Journal of the Optical Society of America B 9,1030 (1992).
    146. J. Nellessen, J. Muller, K. Sengstock, and W. Ertmer, Large-angle beam deflection of a laser-cooled sodium beam[J], Journal of the Optical Society of America B 6,2149 (1989).
    147. G. R. Janik, B. Cannon, R. Ogorzalek-Loo, and B. Bushaw, Isotopically selective optical deflection of a krypton atomic beam[J], Journal of the Optical Society of America B 6,1617(1989).
    148. T. H. Loftus, Laser cooling and trapping of atomic ytterbium[D], USA:University of Oregon,2001.
    149. P. J. Ungar, D. S. Weiss, E. Riis, and S. Chu, Optical molasses and multilevel atoms: theory[J], Journal of the Optical Society of America B 6,2058 (1989).
    150. X. Xu, T. H. Loftus, J. W. Dunn, C. H. Greene, J. L. Hall, A. Gallagher, and J. Ye, Single-stage sub-Doppler cooling of alkaline earth atoms[J], Physical Review Letters 90,193002(2003).
    151. T. Kohno, M. Yasuda, H. Inaba, and F. L. Hong, Optical frequency stability measurement of an external cavity blue diode laser with an optical frequency comb[J], Japanese Journal of Applied Physics 47,8856 (2008).
    152. A. F. Bernhardt, Isotope separation by laser deflection of an atomic beam[J], Applied Physics A:Materials Science & Processing 9,19 (1976).
    153. K. Honda, Y. Takahashi, T. Kuwamoto, M. Fujimoto, K. Toyoda, K. Ishikawa, and T. Yabuzaki, Magneto-optical trapping of Yb atoms and a limit on the branching ratio of the'P, state[J], Physical Review A 59,934 (1999).
    154. S. E. Park, H. S. Lee, E.-j. Shin, T. Y. Kwon, S. H. Yang, and H. Cho, Generation of a slow and continuous cesium atomic beam for an atomic clock[J], Journal of the Optical Society of America B 19,2595 (2002).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700