基于混沌分形理论的大型风电机械故障诊断研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
风能作为一种清洁能源受到普遍重视,我国风电制造和风场建设都持续占据世界第一大国的地位,但同时风电设备面临着提高运行稳定性和降低故障发生率的问题,这已经成为制约风电行业进一步发展的瓶颈。我国风电建设正从重视规模和速度化向重视质量和效益化的稳定发展模式转变,因而风电设备早期故障诊断和状态监测技术是一项非常重要的研究内容。风电机组工作环境十分恶劣,叶轮转速随风速变化而波动,将交变载荷传递给整个风电传动链上,各个部件在刚性连接下受到复杂的交变冲击,会出现各种故障。研究表明风电机组传动系统的振动故障在常见故障中占有较高的比重,因此对传动系统进行状态监测是至关重要的。目前,一些商业系统已经能够对风电设备运行数据进行实时获取,具有预警和报警功能,但缺乏对传动系统故障分析的能力。此外风电设备强噪声、不稳定和非线性的特征也使得一些传统故障诊断技术对于风电设备故障诊断率不高,特别是对一些早期故障。基于此本论文选择风力机传动系统为重点研究对象,利用混沌分形理论展开振动数据分析,对相关故障诊断和状态预测进行研究。论文的主要工作如下:
     论文分析了风电设备振动信号特征,在信噪比相对较低的情况下,基于混沌振子的早期故障振动方法充分利用了Duffing混沌振子对微弱周期信号敏感和对噪声免疫的特点,提高了故障特征信号的分辨率,并经过实验验证了该方法具有可行性。同时结合取样积分技术进一步提高了Duffing混沌振子对信号的提取门限,并利用最大Lyapunov指数定量判断故障是否产生。为了克服风电转速波动造成时域信号不稳定的现象,对时域信号进行了角域重采样,提出对角域信号进行Duffing振子特征信号提取的方法。
     对风电设备不同状态下的振动信号,提出用振动信号的分维数进行故障判断区分。分别采用了盒维数、关联维数和多重分形对风电设备进行了分维数提取和分析,并且采用双尺度和小波包变换进行了相关改进。通过对待测信号和已知状态之间进行维数距离的比较,发现分维数可以作为风电运行状态以及不同故障识别的一种有效手段。
     最后对于大型风力机的运行状态提出了基于最大Lyapunov指数局部混沌预测法。作为识别系统混沌行为的工具,用重构相空间和非线性函数逼近法来产生动态模型。这种预测手段依据的是信号自身演化规律属性,在很大程度上减少主观错误,所以对于工作状态的预报精度和可靠性上都有极大提升。
Wind power, as a kind of green energy, draws wide attention, and China has retainedits crown as the world's largest wind manufacturing and wind farm building nation inrecent years. At the same time, wind power industy faces the problems of how to improveoperational stability and decrease fault ratio, which is the the bottleneck restricting furtherdevelopment to a certain extent. Wind power industy development shifts from scale andspeed to quality and efficiency in China, so it is an important content in the research ofincipient fault diagnosis and condition monitoring for wind power equipments. Every rigidconnecting part of wind power equipments is prone to various faults due to abominableworking environment, the big alternant loads produced by changing vane rotating based onwind speed. Some research work shows that the vibration fault in transmission system hashigher proportion compared to other wind turbine parts, so the condition monitoring to thetransmission system is critical. Currently lots of commercial systems can obtain the windturbine operating data in real time and provide the early warning and alarming function.However, these systems are lack of vibration monitoring and relative analysis. Traditionalfault diagnosis technology is also inefficient to the wind turbine equipments because ofstrong noise, instability and nonlinearity, especially to incipient fault diagnosis. Thereforethis paper selects the transmission system as the keystone research subject, and utilze chaosand fractal theory to analyze the vibration signals fault diagnosis and running stateprognosis. The main research work and conclusion are as follows:
     Vibration signal characteristics of wind turbines are analyzed in the paper. And at arelatively lower signal-to-noise ratio (SNR) the accuracy of fault signal feature extractionis greatly improved, which is effective proved by experimental results, because Duffingoscillator is high sensitive to weak periodical signals and immune to noise. Sampling integraltechnology is applied to improve the signal tracking ability, and maximum Lyapunov exponentis adopted as the quantitative judgment of fault signals. Angular resampling algorithm for applying in conditions monitoring of speed variability, as occurs in wind turbines, can changethe signals from time domain to angle domain in order to remove the speed fluctuations. Then,Duffing oscillator is utilized to extact the angle domain characteristic signals.
     Fractal dimensions of vibration signals are calculated to distinguish wind turbine differentworking state. Box dimension, correlation dimension and multifractal dimension of windturbine vibration signals are calculated separately. The method of monitor conditioning basedon fractal dimension is modified combined with bi-scale characteristic of vibration signal andthe wavelet packet transformation. Fractal dimension can be used as an efficient measure ofwind turbine different working state or fault by comparing results of dimension distance of themeasured signals to different known state.
     Based on maximum Lyapunov exponent,the local chaotic time series prediction model ispresented to forecast the wind turbine working state. As the tool of recognizing system chaoticbehavior, reconstructing phase space and nonlinear function approximation technique presentsdynamic model. The prediction model is directly from objective laws of time series, whichavoids the defects of human subjectivity and improve the precision and reliability of forecastresults.
引文
[1]李俊峰.2012中国风电发展报告.北京:中国环境科学出版社,2012.
    [2]颜新华.风电产业发展年度报告.太阳能学报,2011,4:25~28.
    [3]徐小力,王红军.大型旋转机械运行状态趋势预测.北京:科学出版社,2011.
    [4]陈雪峰,李继猛,程航等.风力发电机状态监测和故障诊断技术的研究与进展.机械工程学报,2011,47(9):45~50.
    [5] Tony Burton(著),武鑫(译).风能技术.北京:科学出版社,2011.
    [6]金鑫,王东亚,殷伟等.风力发电机在线油品监测系统的设计与应用.仪表技术与传感器,2011,9:62~82.
    [7] Z.Hameeda, Y.S.Honga. Condition monitoring and fault detection of wind turbines and relatedalgorithms: A review. Renewable and Sustainable Energy Reviews,2009,13(1):1~13.
    [8] Lu Bin, Li Yaoyu, Wu Xin, et al. A review of recent advances in wind turbine conditionmonitoring and fault diagnosis. PEMWA2009, IEEE,2009,6:1~7.
    [9]李舜酩,李香莲.振动信号的现代分析技术与应用.北京:国防工业出版社,2008.
    [10]韩清凯,于晓光.基于振动分析的现代机械故障诊断原理及应用.北京:科学出版社,2010.
    [11]李强,机械设备早期故障预示中的微弱信号检测技术研究:(博士学位论文).天津:天津大学,2008.
    [12]张键.机械故障诊断技术.北京:机械工业出版社,2012.
    [13] Gleick J(著),张淑誉(译).混沌:开创新科学.上海:高等教育出版社,2004.
    [14]张济忠.分形.北京:清华大学出版社,1995.
    [15]辛厚文.分形理论及其应用.合肥:中国科技大学出版社,1999:7~15.
    [16] Y. Amirat, M.E.H. Benbouzid. A brief status on condition monitoring and fault diagnosis in windenergy conversion systems. Renewable and Sustainable Energy Reviews,2009,13(9):2629~2636.
    [17] S. J. Watson, B. J. Xiang, W. Yang, et al. Condition monitoring of the power output of windturbine generators using wavelets. IEEE Transactions on Energy Conversion,2010,25(3):715~720.
    [18]杨炯明,秦树人,季忠.旋转机械阶比分析技术中阶比采样实现方式的研究.中国机械工程,2005,16(3):249~253.
    [19] K.R. Fyfe, E.D.S. Munck. Analysis of computed order tracking. Mechanical Systems and SignalProcessing,1997,11(2):187~205.
    [20] Bossley KM, Mckendrick RJ, Harris C J, et al. Hybrid computed order tracking. MechanicalSystems and Signal Processing,1999,13(4):627~641.
    [21]胥永刚,马海龙,付胜等.机电设备早期故障微弱信号的非线性检测方法及工程应用.振动工程学报,2011,24(5):529~538.
    [22]李楠,刘福.微弱信号检测的3种非线性方法.电力自动化设备,2008,28(4):82~86.
    [23]李继猛,陈雪峰,何正嘉.采用粒子群算法的冲击信号自适应单稳态随机共振检测方法.机械工程学报,2011,47(21):58~63.
    [24]李晓龙,冷永刚,范胜波等.基于非均匀周期采样的随机共振研究.振动与冲击,2011,30(12):78~84.
    [25] Kaneyasu T, Takabayashi Y, Lwasaki Y, et al. Scheme for correcting coupling variation induced byinsertion devices near linear difference resonance. Nuclear Instruments and Methods in PhysicsResearch,2011,64(1):5~11.
    [26] Huethe F, Tapia J.A., Schulte M, et al. Improved sensorimotor performance via stochasticresonance. The Journal of Neuroscience,2012,32(36):12612~12618.
    [27] Oya T, Asai T, Amemiya Y. Stochastic resonance in an ensemble of single-electron neuromorphicdevices and its application to competitive neural networks. Chaos, Solitons and Fractals,2007,32(4):855~861.
    [28] Hu Niaoqing, Chen Min, Wen Xisen. The application of stochastic resonance theory for earlydetecting rub-impact fault of rotor system, Mechanical Systems and Signal Processing,2003,17(4):883~895.
    [29]韩爽,刘永前,杨勇平等.风电场超短期功率预测及不确定性分析.太阳能学报,2011,32(8):1251~1256.
    [30]叶林,刘鹏.基于经验模态分解和支持向量机的短期风电功率组合预测模型,中国电机工程学报,2011,31:102~108.
    [31] Milan T, S. Arumugham, R. Suja Manimalar. Forecast and performance of wind turbines,American Journal of Applied Sciences,2012(2):168~176.
    [32] Thanasis G. Barbounis, John B. Theocharis, Minas C. Alexiadis, et al. Long-term wind speed andpower forecasting using local recurrent neural network models. IEEE Transactions on EnergyConversion,2006,21(1):273~284.
    [33] Emilio Miguelanez Martin. Holistic condition monitoring for offshore wind turbines, Conditionmonitor,2012,304:6~12.
    [34] Garcia MC, Sanz Bobi MA, Del Pieo J. SIMAP: Intelligent system for predictive maintenanceapplication to the health condition monitoring of a windturbine gearbox. Computers in Industry,2006,57(6):52~68.
    [35]蒋东翔,洪良友,黄乾等.风力机状态监测与故障诊断技术研究,电网与清洁能源,2008,24(3):40~43.
    [36]刘建军,黄维平.新型海上风电支撑结构设计与分析.太阳能学报,2011,32(11),1616~1621.
    [37]单光坤.兆瓦级风电机组状态监测及故障诊断研究:(博士学位论文).沈阳:沈阳工业大学,2010.
    [38]吴凡.状态监测和故障诊断技术的现状与展望.国外电子测量技术,2006,25(3):5~7.
    [39]和晓慧,刘振祥.风力发电机组状态监测和故障诊断系统.风机技术,2011,6:50~52.
    [40]龙泉,刘永前,杨勇平.状态监测与故障诊断在风电机组上的应用.现代电力,2008,25(6):56~59.
    [41]王瑞闯,林富洪.风力发电机在线监测与诊断系统研究.华东电力,2009,37(1):190~193.
    [42]陈长征,梁树民.兆瓦级风力发电机故障诊断.沈阳工业大学学报,2009,31(3):277~280.
    [43]盛迎新,周继威.风电机组在线振动监测系统及现场应用.振动、测试与诊断,2010,30(6):703~705.
    [44]樊长博,张来斌,殷树根等.应用倒频谱分析法对风电机组齿轮箱故障诊断.科学技术与工程,2006,6(2):187~189.
    [45]罗文.智能型风能资源监测分析系统.电气传动,2011,41(2):54~57.
    [46] Mayorkinos Papaelias, Fausto Pedro Garcia Marquez, Andrew Mark Tobias, et al. Conditionmonitoring of wind turbines: Techniques and methods. Renewable energy,2012,46:169~178.
    [47] Zhang Z. Fault Analysis and Condition Monitoring of the Wind Turbine Gearbox. IEEETransactions on Energy Conversion,2012,27(2):526~535.
    [48]杨红英,叶昊,王桂增.基于混沌理论的动态系统故障检测研究与发展.自动化与仪器仪表,2007,1:1~7.
    [49]李月,杨宝俊.混沌振子检测引论.北京:电子工业出版社,2004.
    [50] Lorenz E.N. Deterministic nonperiodic flow. J.Atmos.Sci.,1963,20:130~141.
    [51]聂春燕.混沌系统与弱信号检测,北京:清华大学出版社,2009.
    [52] Hu Jinqiu, Zhang Laibin, Liang Wei, et al. Incipient mechanical fault detection based onmultifractal and MTS methods. Petroleum Science,2009,6(2):208~216.
    [53] Tien-Yien Li, James A. Yorke. Period three implies chaos. The American Mathematical Monthly,1975,82(10):985~992.
    [54] Yang Hongying, Ye Hao, Wang Guizeng. Dynamic reconstruction-based fuzzy neural networkmethod for fault detection in chaotic system, Tsinghua Science and Technology,2008,13(1):65~70.
    [55] Lewis M.J, Short A.L, Suckling J. Multifractal characterisation of electrocardiographic RR andQT time-series before and after progressive exercise. Computer Methods and Programs inBiomedicine,2012,108(1):176~185.
    [56] Genesio R, Tesi A. Chaos prediction in nonlinear feedback systems. IEE Proceedings,1991,138(4):313~320.
    [57] S Haykin, X B Li. Detection of signals in chaos. Proceedings of IEEE,1995,83(1):95~122.
    [58] Paul V. Mcdonough, Joseph P. Noonan, G. R. HALL. A new chaos detector. Computers andElectrical Engineering,1995,21(6):417~431.
    [59] Junyan Yang, Youyun Zhang, Yongsheng Zhu. Intelligent fault diagnosis of rolling elementbearing based on SVMs and fractal dimension. Mechanical Systems and Signal Processing,2007,21(5):2012–2024.
    [60] DS Broomhead, JP Huke, MAS Potts. Cancelling deterministic noise by constructing nonlinearinverses to linear filters. Physica D: Nonlinear Phenomena,1996,89(3~4):439~458.
    [61] Suarez Almudena, Collantes Juan-Mari. New technique for chaos prediction in RF circuit designusing harmonic-balance commercial simulators. IEEE Transactions on Circuits and Systems,1999,46(11):1413~1415.
    [62] Sandor Z, Erdi B, Szell A, et al. The relative Lyapunov indicator: An efficient method of chaosdetection. Celestial Mechanics and Dynamical Astronomy,2004,90(1):127~138.
    [63]朱华,姬翠翠.分形理论及其应用.北京:科学出版社.2011.
    [64] Arnold V I. The stability of the equilibrium position of a Hamitonian system of ordinarydifferential equations in the general elliptic case. Sov.Math,1961,2:247~249.
    [65] Khoo N. Le. On noise robustness of the mexican-hat and hyperbolic wavelets with an experimenton chaos detection. Noise&Vibration Bulletin,2009,2:45~46.
    [66] Anjali Sharma, Vinod Patidar, G. Purohit, et al. Effects on the bifurcation and chaos in forcedDuffing oscillator due to nonlinear damping. Communications in nonlinear science and numericalsimulation,2012,17(6):2254~2269.
    [67]吴耀军,裴文江.子波变换平滑的混沌信号检测.南京航空航天大学学报,1996,28,100~105.
    [68]裴留庆,匡锦瑜.混沌同步系统的频率特性和微弱信号检测.中国科学,1997,23(7):237~242.
    [69]何建华.基于混沌和神经网络的弱信号探测.电子学报,1998,26(10):33~37.
    [70]李月,杨宝俊,林红波等.基于特定混沌系统微弱谐波信号频率检测的理论分析与仿真.物理学报,2005,54(5):1994~1999.
    [71]晋建秀,丘水生,谢丽英等.一种基于周期轨道统计的混沌信号不可预测性强弱的检测方法.物理学报,2008,57(5):2743~2749.
    [72]翟笃庆,刘崇新,刘尧等.利用阵发混沌现象测定未知信号参数.物理学报,2010.59(2):816~825.
    [73]王勇.一种微光子导航源的混沌辨识方法.中国科学,2011,41(5):685~690.
    [74]史丽晨,段志善.基于小波分形技术的隔膜泵磨损故障诊断研究.机械强度,2012,34(1):13~19.
    [75]苏连成,李兴林,李小俚等.风电机组轴承的状态监测和故障诊断与运行维.轴承,2012,1:47~53.
    [76] Chiranjib Koley, Prithwiraj Purkait, Sivaji Chakravorti. SVM Classifier for Impulse FaultIdentification in Transformers using Fractal Features. IEEE Transactions on Dielectrics andElectrical Insulation,2007,14(6):1538~1547.
    [77] Arnold V I, Kozlov V V, Neishtadt A I. Mathematical aspects of classical and celestial mechanics.Encyclopedia of mathematical Sciences,1988,31(3):1234~1239.
    [78] Astakhov V, Kapitaniak T, et al. Mechanism of loss of chaos synchronization in couplednonidentical systems. Phys. Lett.A,1999,258:99~102.
    [79] LI Yue, YANG Baojun, SHI Yaowu, et al. The application of chaotic oscillators to weak signaldetection. IEEE Transactions on Industrial Electronics1999,46(2):440~444.
    [80] J Hu,L Zhang, W Ling, et al. Incipient mechanical fault detection based on multifractal and MTSmethods. Pet.Sci.,2009,6:208~216.
    [81]曾聪敏.分形理论在机械设备状态监测与故障诊断中的应用.机床与液压,2011,39(13):148~150.
    [82]郝研,王太勇,万剑等.分形盒维数抗噪研究及其在故障诊断中的应用.仪器仪表学报,2011,32(3):540~545.
    [83]廖世勇,米林.基于分形理论的内燃机噪声信号分析.内燃机工程,2010,(13):5~63.
    [84]徐小力,王红军.大型旋转机械运行状态趋势预测.北京:科学出版社,2011.
    [85] Chorin A.J, Tu X. An iterative implementation of the implicit nonlinear filter. RAIRO.=Modelisation Mathematique et Analyse Numerique,2012,46(3):535~543.
    [86] Canton EC, Gonzalez Salas JS, Urias J. Filtering by nonlinear systems. Chaos,2008,18(4):1~4.
    [87] Zhang JS, Wang XM, Zhang WF. Chaotic keyed hash function based on feedforward-feedbacknonlinear digital filter. Physics Letters. A,2007,362(5/6):439~448.
    [88] Strahle W.C. Adaptive nonlinear filter using fractal geometry. Electronics Letters,1988,24(19):1248~1249.
    [89] Corron N.J., Hahs D.W. A new approach to communications using chaotic signals. IEEETransactions on Circuits and Systems,1997,44(5):37~382.
    [90] Adrian Leuciuc. Information transmission using chaotic discrete-time filter. IEEE Transactions onAutomatic Control,2000,47(1):82~88.
    [91] Ge T, Lin W, Feng J. Invariance Principles Allowing of Non-Lyapunov Functions for EstimatingAttractor of Discrete Dynamical Systems. IEEE Transactions on Automatic Control,2012,57(2):500~505.
    [92] Parakhonsky A.L, Lebedev M.V., Dremin A.A., et al. The strange attractor of giant opticalfluctuations of2D electrons in the quantum Hall effect regime. Physica. E,2012,44(7/8):1653~1656.
    [93] Spreuer H., Adams E. On the strange attractor and transverse homoclinic orbits for the lorenzequations. Journal of Mathematical Analysis and Applications,1995,190(2):329~360.
    [94] Cao Yongluo. Strange attractor of Henon map and its basin. Science in China. Series A,1995,38(1):29~35.
    [95] Olas A. Construction of optimal Lyapunov function for systems withstructured uncertainties.IEEE Transactions on Automatic Control,1994,39(1):167~171.
    [96] Mitchell L, Gottwald G.A. On finite-size Lyapunov exponents in multiscale systems. Chaos,2012,22(2):1~9.
    [97] Endo T, Chua L.O. Piecewise-linear analysis of high-damping chaotic phase-locked loops usingMelnikov's method. IEEE Transactions on Circuits and Systems,1993,40(11):801~807.
    [98] S. E. Khadem, M. Zamanian. Stability analysis of an electrically actuated microbeam using theMelnikov theorem and Poincare mapping. Journal of mechanical engineering science,2011,225(2):488~497.
    [99] Siewe M.S., Tchawoua C., Woafo P. Melnikov chaos in a periodically driven Rayleigh-Duffingoscillator. Mechanics research communications,2010,37(4):363~368.
    [100] J. Kozlowski, U. Parlitz, W. Lauterborn. Bifurcation analysis of two coupled periodically drivenDuffing oscillators. Physical review. E,1996,61(3):1861~1867.
    [101] R. Gilmore, JWL. McCallum. Structure in the bifurcation diagram of the Duffing oscillator.Physical review. E,1995,51(2):935~956.
    [102] Marek Borowiec, Grzegorz Litak, Arkadiusz Syta. Vibration of the Duffing oscillator: Effect offractional damping. Shock and Vibration,2007,14(1):29~36.
    [103] Leung AYT, Chui SK. Non-linear vibration of coupled duffing oscillators by an improvedincremental harmonic balance method. Journal of Sound and Vibration,1995,181(4):619~633.
    [104] Gamal N. Elnagar, M.A. Kazemi. A cell-averaging Chebyshev spectral method for the controlledDuffing oscillator. Applied Numerical Mathematics,1995,18(4):461~471.
    [105] Nijmeijer H, Berghuis H. On Lyapunov control of the Duffing equation. IEEE Transactions onCircuits and Systems,1995,42(8):473~477.
    [106] Chen Yushu, Xu Jian. Global bifurcations and chaos in a van der pol-duffing-mathieu system withthree-well potential oscillator. Acta Mechanica Sinica,1995,11(4):357~372.
    [107] Bianca PRISECARU, Daniel V. NICOLESCU, Valentina PERSIDEANU, et al. The processapproach as a fractal structure for continuous improvement of the organizations. UniversityPolitechnica of Bucharest scientific bulletin,2012,74(3):253~266.
    [108] Hochman M, Merkin P. Local entropy averages and projections of fractal measures. Annals ofmathematics,2012,175(3):1001~1059.
    [109] Seo S.K., Kim K., Chang K.H., et al. Determination of the dynamical behavior of rainfalls byusing a multifractal detrended fluctuation analysis. Journal of the Korean Physical Society,2012,61(4):658~661.
    [110] Lee CK., Lee SL. Multifractal scaling analysis of reactions over fractal surfaces. Surface Science,1995,325(3):294~310.
    [111]王祖林,周荫清.多重分形谱及其计算.北京航空航天大学学报,2000,26(3):256~258.
    [112] Smale S. Differentiable dynamical systems. Uspekhi Mat. Nauk,1970,25(1):113–185.
    [113]潘庭龙,纪志成,吴定会.变速恒频风电系统效率-可靠性优化控制.太阳能学报,2011,32(8):1217~1221.
    [114]刘世明,程尧.风电叶片的五年之忧—某风电场风电机组叶片定检、维护、维修统计分析报告.风能,2011,10:56~60.
    [115] Ellner S, Turchin P. Chaos in a noisy world—new methods and evidence from time-series analysis.The American Naturalist,1995,145(3):343~375.
    [116] Wolf A, Swift JB, Swinney HL, et al. Determining Lyapunov exponents from time series. PhysicaD,1985,16(2):285~371.
    [117] Snao M, Sawada Y. Measurement of Lyapunov spectrum from a chaotic time series. PhysicalReview Letter,1985,55(10):1082~1085.
    [118]范松南,蔡萍.取样积分在射频导纳物位测量中的应用.传感技术学报,2006,19(6):2540~2543.
    [119]周晓峰,杨世锡,甘春标.一种旋转机械振动信号的盲源分离消噪方法.振动、测试与诊断,2012,32(5):714~717.
    [120]刘红星,林京,屈梁生等.信号时域平均处理中的若干问题探讨.振动工程学报,1997,10(4):446~450.
    [121]袁静,何正嘉,王晓东等.平移不变多小波相邻系数降噪方法及其在监测诊断中的应用.机械工程学报,2009,45(4):155~160.
    [122] Braun S. The extaction of periodic waveforms by the time domain averaging. Acustica,1975,32:69~77.
    [123] Kihong Shin. Realization of the real-time time domain averaging method using the kalman filter.International Journal of Precision Engineering and Manufacturing,2011,12(3):413~418.
    [124] Noriaki Kaneda, Xiang Liu, William Shieh, et al. Demonstration of frequency-domain averagingbased channel estimation for40-Gb/s CO-OFDM with high PMD. IEEE Photonics TechnologyLetters,2009,21(20):1544~1546.
    [125] D N Futter. Techniques for condition monitoring of large gearboxes in the power industry. Insight,1995,37(8):591~594.
    [126] Jacek Urbanek, Tomasz Barszcz, Nader Sawalhi, et al. Comparison of amplitude-based andphase-based methods for speed tracking in application to wind turbines. Metrology AndMeasurement Systems,2011, XVIII(2):295~304.
    [127] Bartelmus W., Zimroz R. A new feature for monitoring the condition of gearboxes innon-stationary operating conditions. Mechanical Systems and Signal Processing,2009,23(5):1528~1534.
    [128] Bonnardot F., El Badaoui M, Randall R.B., et al. Use of the acceleration signal of a gearbox inorder to perform angular resampling (with limited speed fluctuation). Mechanical Systems andSignal Processing,2005,19:766–785.
    [129]彭富强,于德介,武春燕.基于自适应时变滤波阶比跟踪的齿轮箱故障诊断.机械工程学报,2012,48(7):77~85.
    [130]陈向民,于德介,罗洁思.基于线调频小波路径追踪阶比循环平稳解调的齿轮故障诊断.机械工程学报,2012,48(3):95~101.
    [131]程军圣,李宝庆,杨宇.基于广义解调时频分析和瞬时频率计算的阶次谱方法在齿轮故障诊断中的应用.振动与冲击,2011,30(9):30~34.
    [132]张亢,程军圣,杨宇.基于局部均值分解的阶次跟踪分析及其在齿轮故障诊断中的应用.中国机械工程,2011,22(14):1732~1736.
    [133]杨通强,郑海起,龚烈航等.计算阶次分析中的采样率设置准则.中国工程机械学报,2011,9(1):14~18.
    [134]张亢.基于局部均值分解的阶次跟踪分析及其在齿轮故障诊断中的应用.中国机械工程,2011,22(14):1732~1736.
    [135]何正嘉,陈进,王太勇等.机械故障诊断理论及应用.北京:高度教育出版设,2011.
    [136] Carolina Vilar, Julio Usaola, Hortensia Amarís. A frequency domain approach to wind turbines forflicker analysis. IEEE Transactions On Energy Conversion,2003,18(2):335~341.
    [137] Barszcz T, Robert B. Application of spectral kurtosis for detection of a tooth crack in the planetarygear of a wind turbine. Mechanical Systems and Signal Processing,2009(23):1352~1365.
    [138] HUANG Qian, JIANG Dongxiang, HONG Liangyou, et al. Application of wavelet neuralnetworks on vibration fault diagnosis for wind turbine gearbox. Lecture Notes in ComputerScience,2008,5264:313~320.
    [139]李崇晟,屈梁生.齿轮早期疲劳裂纹的混沌检测方法.机械工程学报,2005,41(8):195~198.
    [140] Luisa F. Villa, An bal Renones, Jose R. Peran, et al. Angular resampling for vibration analysis inwind turbines under non-linear speed fluctuation. Mechanical Systems and Signal Processing,2011,25(6):2157–2168.
    [141] F. Bonnardot, M. El Badaoui, R.B. Randall, et al. Use of the acceleration signal of a gearbox inorder to perform angular resampling(with limited speed fluctuation). Mechanical Systems andSignal Processing,2005,19:766–785.
    [142] P.D. Samuel, D.J. Pines. A review of vibration-based techniques for helicopter transmissiondiagnostics. Journal of Sound and Vibration,2005,282:475–508
    [143] P.D. McFadden. Interpolation techniques for time domain averaging of gear vibration. MechanicalSystems and Signal Processing1989,3(1):87–97.
    [144] Jacek Urbanek, Tomasz Barszcz, Nader Sawalhi, et al. Comparison of amplitude-based andphase-based methods for speed tracking in application to wind turbines. Metrol. Meas. Syst.,2011, XVIII(2):295~304.
    [145] B.Yang, C.S.Suh, A.K.Chan. Wavelet Based Algorithms for Crack Detection in Rotor-Machinery.Condition Monitoring&Diagnostic Engineering Management,2003,6(1):31~40.
    [146] Borkowski D. On-line instantaneous frequency estimation and voltage/current coherentresampling metod. Metrology and Measurement Systems,2005,12(1):59~75.
    [147] Sedlacek M, Krumpholc M. Digital measurement of phase difference-a comparative study of DSPalgorithms. Metrology and Measurement Systems,2005,12(4):427~449.
    [148] Combet F, Gelman L. An automated methodology for performing time synchronous averaging ofa gearbox signal without speed sensor. Mechanical Systems and Signal Processing,2007,21:2590~2606.
    [149] Combet F, Zimroz R. A new method for the estimation of the instantaneous speed relativefluctuation in a vibration signal based on the short time scale transform. Mechanical Systemsand Signal Processing,2009,23:1382–139.
    [150] Ebrahimi M. A necessary and sufficient contractivity condition for the fractal transform operator.Journal of mathematical imaging and vision,2009,35(3):186~192.
    [151] Xu Chuangwen, C. Hualing. Fractal analysis of vibration signals for monitoring the condition ofmilling tool wear. Proceedings of the Institution of Mechanical Engineers,2009,223(6):909~918.
    [152] C. Craig, R. D. Neilson,J. Penman. The use of correlation dimension in condition monitoring ofsystems with clearance. Journal of Sound and Vibration,2000,231(1):1~17.
    [153] Lau KS., Ngai SM. Multifractal measures and a weak separation condition. Advances inMathematics,1999,141(1):45~96.
    [154] H. Sakamoto, S. Shimizu. On-Machine Monitoring of the Wheel Working Surface Condition withthe Fractal Dimension Analysis of Its Profile. Key Engineering Materials,2001,196:121~132.
    [155] Amit A. Paithankar, Raj B.K.N. Rao, N. M. Singh. Chaos Mathematics and its Applications in theField of Condition. Condition Monitoring&Diagnostic Engineering Management,2002,5(3):39~44.
    [156] Spagnoli A. Fractality in the threshold condition of fatigue crack growth: an interpretation of theKitagawa diagram. Chaos, Solitons and Fractals,2004,22(3):589~598.
    [157]吕铁军,郭双兵,肖先赐.调制信号的分形特征研究.中国科学E辑,2001,31(6):508~513.
    [158]郝研,王太勇,万剑等.分形盒维数抗噪研究及其在故障诊断中的应用.仪器仪表学报,2011,32(3):540~544.
    [159]訾艳阳,胥永刚,何正嘉.离散振动信号分形盒维数的改进算法和应用.机械科学与技术,2001,20(3):373~375.
    [160] Fuchslin RM, Shen Y, Meier PE. An efficient algorithm to determine fractal dimension of pointsets.Physics Letter A,2001,285:69~75.
    [161]庞茂,吴瑞明,谢明祥.关联维数快速算法及其在机械故障诊断中的应用.振动与冲击,2010,29(12):106~109.
    [162]田玉楚.混沌时间序列的时滞判定.物理学报,1997,3:18~21.
    [163] Albano A M, Muench J, Schwartz C. Singular value decomposition and the Grassberger Procacciaalgorithm. Physical Review A,1988,38(6):3017~3026.
    [164] Fraser AM, Swinney HL. Independent coordinates for strange attractors from mutual information.Physical Review A,1986,33(2):1134~1140.
    [165]吕小青,曹彪,曾敏等.确定延迟时间互信息法的一种算法.计算物理,2006,23(2):184~187.
    [166] Kraskov A, Stogbauer H, Grassberger P. Estimating mutual information. Phyical Review E,2004,69(9):066138.
    [167] Abarbanel HDI, Masuda N, Rabinovich M, et al. Distribution of mutual information. PhyicalReview A,2001,281(5/6):369~373.
    [168]黄显高,徐健学,何岱等.利用小波多尺度分解算法实现混沌系统的噪声减缩.物理学报,1999,48(10):1810~1817.
    [169] P. J. Murtagh, B. Basu. Identification of equivalent modal damping for a wind turbine at standstillusing Fourier and wavelet analysis. Journal of Multi-body Dynamics,2007,221(4):557~589.
    [170] Baoping Tang, Wenyi Liu, Tao Song. Wind turbine fault diagnosis based on Morlet wavelettransformation and Wigner-Ville distribution. Renewable energy,2010,35(12):2862–2866.
    [171] Baoping Tang, Yi Qin, Wenyi Liu, et al. Feature extraction method of wind turbine based onadaptive Morlet wavelet and SVD. Renewable energy,2011,36(8):2146–2153.
    [172]谷勇霞,周忠宁,李意民.基于关联维数的风机失速特征研究.南京航空航天大学学报(英文版),2011,28(4):362~366.
    [173]朱亚萍,赵新甫.小波包降噪在风机振动检测中的应用.杭州电子科技大学学报,2011,31(4):140~143.
    [174]赵玲,秦树人,刘小峰.小波分形神经网络故障诊断法及其在风机诊断中的应用研究.现代科学仪器,2010,4:21~25.
    [175] Wickerhauser MV. Acoustic signal compressionwithwavelet packets in wavelet: a tutorial intheory and application. Boston: Academic Press,1992,32:697~700.
    [176]訾艳阳,何正嘉,张周锁.小波分形技术及其在非平稳故障诊断中的应用.西安交通大学学报,2000,9,34(9):827~87.
    [177] Grzegorz Litak, Jerzy T. Sawicki. Crack identification by multifractal analysis of a dynamic rotorresponse. Zeitschrift fur Angewandte Mathematik und Mechanik,2009,89(7):587~592.
    [178] Jin Yu, Songtao Li, Guozhen Wu. Multifractal analysis for the eigencoefficients of the eigenstatesof highly excited vibration. Chemical Physics Letters,1999,301(3/4):217~222.
    [179] Z. Peng, Y. He, D. Guo, et al. Wavelet Multifractal Approaches for Singularity Analysis ofVibration Signals. Key Engineering Materials,2003,245/246:565~570.
    [180]李兵,张培林,任国全等.形态学广义分形维数在发动机故障诊断中的应用.振动与冲击,2011,30(10):208~211.
    [181]李兵,张培林.齿轮故障信号多重分形维数的形态学计算方法.振动、测试与诊断,31(4):450~453.
    [182] Andrew Kusiak, Wenyan Li. The prediction and diagnosis of wind turbine faults. Renew ableEnergy,2011,36:16~23.
    [183]冬雷,王丽婕,高爽等.基于混沌时间序列的大型风电场发电功率预测建模与研究.电工技术学报,2008,23(12):125~129.
    [184]吕金虎,占勇,陆君安.电力系统短期负荷预测的非线性混沌改进模型.中国电机工程学报,2000,20(12):80~83.
    [185]安学利,蒋东翔.风力发电机组运行状态的混沌特性识别及其趋势预测.电力自动化设备,2010,30(3):15~19.
    [186] HaykinS, Li XB. Detectionof signalsinchaos. Proceedings of the IEEE,1995,83(1):95~122.
    [187] Gotoda H, Ikawa T, Maki K, et al. Short-term prediction of dynamical behavior of flame frontinstability induced by radiative heat loss. Chaos,2012,22(3):1-8.
    [188] Gotoda H., Ikawa T., Maki K., et al. Short-term prediction of dynamical behavior of flame frontinstability induced by radiative heat loss. Chaos,2012,22(3):1~8.
    [189] Bech J, Hansen A D, Janosi L, et al. Wind farm modelling for power quality. Industrial ElectronicsSociety,2001,3(29):1959~1964.
    [190] Li Shuhui, Wunsch D C, O Hair E A, et al. Using neural networks to estimate wind turbine powergeneration. IEEE Transactions on Energy Conversion,2001,16(3):276~282.
    [191] Alexiadis M C, Dokopoulos P S, Sahsamanoglou H S. Wind speed and power forecasting basedon spatial correlation models. IEEE Transations on Energy Conversion,1999,14(3):836~842.
    [192]丁涛,肖宏飞.基于最优邻域的动态加权混沌风速预测模型.太阳能学报,2011,32(4):560~564.
    [193]王斌,汤俊.一种基于混沌预测的离群时间序列检测方法.武汉大学学报,2010,43(2):265~268.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700