飞机尾流的雷达检测与跟踪技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
飞机尾流是飞机产生升力的必然产物。与周围大气相比,尾流具有独特的空气动力学特性和雷达特性。从空气动力学特性看,尾流内空气流动非常强烈而且不规则,是航空安全的重要影响因素。从雷达探测的角度看,尾流具有较强的雷达可观测性以及独特的多普勒和空间分布特性。尾流雷达探测是航空安全和反隐身等领域的前沿研究课题,论文以此为背景,研究尾流雷达回波模拟、尾流雷达探测和尾流雷达跟踪等问题,主要成果包括以下三个方面:
     首先,对潮湿大气条件下飞机尾流的雷达回波进行建模仿真分析,基于尾涡速度模型,提出了雷达视频回波建模方法和统计直方图方法,得到了相关处理间隔内的飞机尾流的脉冲回波序列和尾流谱解析表达式,研究结果表明,尾流回波具有独特的频域扩展特性,与雷达探测实验结果相吻合,为飞机尾流探测提供了回波模型基础。
     其次,针对具体的飞机尾流探测场景和应用需求,提出三种尾流检测方法。面向长驻留时间情况下尾流监视需要,提出基于多普勒特性的扩展目标CA-CFAR检测方法,给出了高斯分布和Gamma分布杂波背景下虚警概率和检测概率的解析表达式,仿真实验表明,通过自适应选择最优检测单元个数,该方法的检测性能优于传统尾流检测方法;面向短驻留时间条件下尾流监视需要,提出了一种基于短脉冲回波序列的信息几何检测方法,仿真分析了高斯杂波环境下的检测性能,仿真实验表明,信息几何方法的检测性能优于常规相参积累方法;面向复杂天气条件下尾流监视需要,提出了一种基于神经网络的尾流检测方法,通过利用尾流多普勒谱特性来训练后向传播神经网络,可有效实现气象杂波背景下的尾流检测。
     第三,针对尾流回波独特的空间线状分布特性,面向机械扫描脉冲多普勒雷达大空域飞机尾流监视需求,提出了飞机尾流检测前跟踪方法和跟踪方法。在检测前跟踪阶段,该方法通过对特定空间分辨单元进行频域低门限检测,然后针对尾流检测点迹的空间分布特点建立系统状态方程,提出了结合幅度与位置量测的检测前跟踪新方法。该方法可容许预处理较高的虚警,通过空间积累实现低虚警。在跟踪阶段,提出基于空间线状分布模型的尾流跟踪方法,能估计出尾流的中心、倾角、长度等状态向量参数,可实现尾流连续跟踪。
     论文的研究成果对提高军用/民用飞机的飞行安全、增强军用飞机在应急条件下的快速出动能力、提升军用雷达探测隐身目标的能力具有重要的理论意义和军事、民事应用价值。
The wake vortices are the inevitable phenomena of aircraft lift. Compared with theambient atmosphere, the wake vortices have particular aerodynamic characteristics andradar characteristics. For the aerodynamics, the eddying motion of the atmosphere in thewake is very strong and irregular. It is one of the main factors related to aviation safety.For the radar detection, the wake vortices have relatively stronger detectability along withunique Doppler and spatial distribution characteristics. The wake vortices detection is anadvanced field of aviation safety and anti-concealed. Facing the need of aviation safety andanti-concealed, radar echo modeling of the vortices, radar detection, and tracking areinvestigated in the thesis. The main research results are listed as the following threeaspects:
     First, radar echo modeling of vortices in the condition of wet atmosphere is analyzed.Two kinds of the signal modeling methods are put forward. The pulse sequence in a CPIcan be obtained using the radar video frequency echo model, and the analytical expressionof the spectrum can be acquired using the statistics histogram method. The research resultsshow that the vortex echoes have unique Doppler-spread characteristics. It is identical tothe experiment results.
     Second, three vortices detectors are put forward based on the particular explorationand application situation. For the need of wake vortices surveillance in long dwell timecondition, a frequency-domain distributed target detector is put forward, and the analyticalexpressions of false alarm probability and detection probability in Gauss and Gammadistribution clutter are obtained. Simulation experiments show that through adaptivelyselecting the optimal number of detection cells, the detection performance of the proposedmethod is better than the conventional vortices detection method. For the need of wakevortices surveillance in short dwell time condition, an information geometry detector basedon short pulse sequence is put forward, and the detection performance in Gauss clutter wasanalyzed. Simulation experiments show that the detection performance of the informationgeometry method is better than the conventional coherent accumulation method. For theneed of wake vortices surveillance in the complex weather condition, a wake vorticesdetection method based on neural network is proposed. Through training theback-propagation network using the vortex spectrum characteristics, the method can detectthe wake vortices effectively in the complex weather clutter.
     Third, for the need of wake vortices surveillance using the mechanical scan Dopplerradar in the large airspace, based on the spatial linear distribution characteristics, a TBDmethod and a tracking method of airplane wake vortices are proposed. In TBD phase, firstof all, the frequency-domain low-threshold detection is carried out, so the range-angle-Doppler measurement space is reduced to two dimensions of range-anglespace. Then the system state function is set up based the spatial distribution characteristicsof detection points, and a new particle filter TBD method which combines amplitude andposition measurements is proposed. The TBD method tolerates high level of false alarms inpreprocessing, and achieves low false alarms through spatial accumulation. In trackingphase, a wake vortices tracking algorithm based on the spatial linear distribution model isput forward. Wake state parameters, such as center, slope angle, and length can beestimated by this algorithm. The influence of the wake measurement number variety iseliminated using the tracking method, and continuous tracking of the wake vortices isrealized also.
     Research results of this thesis are of important theory meaning and application valueto improve flight safety of fighter plane and civil aircraft, enhance fast takeoff of fighterplane in an emergency, and improve the detection performance of concealed targets.
引文
[1] Welcome to Air Force2025[EB/OL]. http://csat.au.af.mil/2025/index.html
    [2] Choroba P. Comprehensive study of the wake vortex phenomena to the assessmentof its incorporation to ATM for safety and capacity improvements[D]. University ofZilina,2006.
    [3] Jameson A R, Kostinski A B. Partially Coherent Backscatter in Radar Observationsof Precipitation[J]. Journal of the Atmospheric Sciences.2010, EARLY ONLINERELEASE.
    [4] De Bruin A C. S-Wake Assessment of Wake Vortex Safety[R]. NLR-TP-2003-243,2003.
    [5] H hne G, Fuhrmann M, Luckner R. Critical wake vortex encounter scenarios[J].Aerospace Science and Technology.2004(8):689-701.
    [6] Elsenaar B. Wake Turbulence: do we know enough to manage the safetyaspects?[EB/OL].WakeNet2-Europe, the European Thematic Network.http://wwwe.onecert.fr/projets/WakeNet2-Europe
    [7] Veillette P R. Data Show that U.S. Wake-Turbulence Accidents are Most Frequent atLow Altitude and During Approach and Landing[J]. Flight Safety Digest.2002,21(3-4):1-47.
    [8]徐肖豪,赵鸿盛,王振宇.尾流间隔缩减技术综述[J].航空学报.2010,31(4):655-662.
    [9]冯志勇.尾流对飞行的影响及安全间隔研究[D].西南交通大学,2007.
    [10] Gerz T, Holzapfela F, Darracq D. Commercial Aircraft Wake Vortices[J]. Progressin Aerospace Sciences.2002,38:181-208.
    [11]魏志强.尾涡流场及安全间隔的建模与仿真计算研究[D].中国民航大学,2008.
    [12]罗应.隐身目标与雷达反隐身技术[J].舰船电子对抗.2007,30(5):48-53.
    [13] Garnet M, Altman A. Identification of Any Aircraft by Its Unique Turbulent WakeSignature[J]. Journal of Aircraft.2009,46(1):263-268.
    [14] Hilton D A, Tatnall C R. A candidate wake vortex strength definition for applicationto NASA Aircraft Vortex Spacing System(AVOSS)[R]. NASA TechnicalMemorandum110343,1997.
    [15] Hinton D A. Aircraft Vortex Spacing System(AVOSS) Conceptual Design[R].NASA TM-110184,1995.
    [16] Broderick A J, Bevilaqua P, Crouch J, et al. Wake Turbulence: An Obstacle toIncreased Air Traffic Capacity[M]. Washington: the National Academies Press,2008:1-59.
    [17]伊戈尔·弗拉基米罗维奇·帕谢库诺夫.用于防止航空器进入涡流发生器涡流危险区的方法和系统[P].中华人民共和国国家知识产权局,03826844.2.2009.
    [18] Gerz T, Frank H, Denis D. Aircraft Wake Vortices[EB/OL].WakeNet Position Paper.2001.
    [19]王福军.计算流体动力学分析:CFD软件原理与应用[M].清华大学出版社,2004.
    [20]吴子牛.计算流体力学基本原理[M].清华大学出版社,2001.
    [21] Spence G T, Moigne A L, Allerton D J, et al. Wake vortex Model for Real-TimeFlight Simulation Based on Large Eddy Simulation[J]. Journal of Aircraft.2007,44(2):467-475.
    [22] Ghias R, Mittal R, Dong H, et al. Study of Tip-Vortex Formation Using Large-EddySimulation[C].43rd AIAA Aerospace Sciences Meeting and Exhibit,2005:1-13.
    [23] Ginevsky A S, Zhelannikov A I. Vortex Wakes of Aircrafts[M]. Heidelberg:Springer,2009.
    [24] Proctor F H. The Terminal Area Simulation System, Volume I: TheoreticalFormulation[R]. NASA Contractor Report4046,1987.
    [25] Marshall R E, Mudukutore A, Wissel V L H. Radar Reflectivity in Wingtip-Generated Wake Vortices[R]. NASA/CR-97-206259,1997.
    [26] Marshall R E, Myers T J. Wingtip Generated Wake Vortices as Radar Targets[J].IEEE AES Systems Magazine.1996,11(12):27-30.
    [27] Myers T J. Determination of Bragg scatter in an aircraft generated wake vortexsystem for radar detection[D]. the Virginia Polytechnic Institute and State University,1997.
    [28] Shariff K, Wray A. Analysis of the radar reflectivity of aircraft vortex wakes[J]. J.Fluid Mech.2002,463:121-161.
    [29]扈罗全,王雪松,李健兵, et al.随机射线方法分析飞机尾流的电磁散射特性[J].中国电子科学研究院学报.2007,2(5):498-502.
    [30]周彬,王雪松,王涛, et al.侧向风速对飞机尾流运动的影响[J].航空学报.2009,30(5):773-779.
    [31]周彬.飞机尾流的微结构特征及散射特性研究[D].国防科学技术大学,2009.
    [32]周彬,王雪松,王国玉, et al.飞机尾流的快速建模方法[J].航空动力学报.2009,21(4):110-115.
    [33]周彬,王雪松,王涛.飞机尾流的二维可视化仿真[J].系统仿真学报.2008,20(16):4281-4285.
    [34]沈淳.飞机尾流的电磁散射特性分析及仿真平台构建研究[D].长沙:国防科学技术大学,2008.
    [35]李健兵.飞机尾流电磁散射特性研究[D].长沙:国防科学技术大学,2010.
    [36] Li J, Wang X, Wang T, et al. An improved Levin quadrature method for highlyoscillatory integrals[J]. Appl. Num. Math.2010,60(8):833-842.
    [37]李健兵,王雪松,王涛.一维振荡积分的通用求解方法[J].中国科学(F辑).2009,39(6):647-653.
    [38] Zak J A. Atmospheric Boundary Layer Sensors for Application in a Wake VortexAdvisory System[R]. NASA/CR-2003-212175,2003.
    [39] Vaughan J M, Harris M. Lidar measurement of B747wakes: observation of a vortexwithin a vortex[J]. Aerosp. Sci. Technol.2001(5):409-411.
    [40] Harris M, Young R I, K pp F, et al. Wake vortex detection and monitoring[J].Aerospace Science and Technology.2002(6):325-331.
    [41] Rahm S, Smalikho I, K pp F. Characterization of Aircraft Wake Vortices byAirborne Coherent Doppler Lidar[J]. Journal of Aircraft.2007,44(3):799-805.
    [42] Gilson W H. Aircraft wake RCS measurement[R]. NASA Technical Report NASAContractor Rep.10139, Part2,1994.
    [43] Nespor J D, Hudson B, Stegall R L, et al. Doppler radar detection of vortex hazardindicators[C]. NASA Conf. Proc. CP-10193, Part2,1995:651-688.
    [44] Shephard D J, Kyte A P, Segura C A. Radar wake vortex measurements at F and Iband[C]. IEE Colloquium on Radar and Microwave Imaging,1994:1-7.
    [45] Mackenzie A I. Measured Changes in C-Band Radar Reflectivity of Clear AirCaused by aircraft Wake vortices[R]. NASA Technical Paper3671,1997.
    [46] Marshall R E, Mudukutore A, Wissel V L H, et al. Three-Centimeter Doppler RadarObservations of Wingtip-Generated Wake Vortices in Clear Air[R].NASA/CR-97-206260,1997.
    [47] Iannuzzelli R J, Schemm C E, Marcotte F J, et al. Aircraft Wake Detection UsingBistatic Radar: Analysis of Experimental Results[J]. Johns Hopking APL TechnicalDigest.1998,19(3):299-314.
    [48] Hanson J M, Marcotte F J. Aircraft Wake Vortex Detection Using Continuous-WaveRadar[J]. Johns Hopkings APL Technical Digest.1997,18(3):348-357.
    [49] Neece R T, Britt C L, White J H, et al. Wake Vortex Tracking Using a35GHzPulsed Doppler Radar[C]. ICNS Conference&Workshop2005,2005:1-11.
    [50] Barbaresco F, Jeantet A, Meier U. Wake Vortex Detection&Monitoring By X-BandDoppler Radar: Paris Orly Radar Campaign Results[C]. the IET internationalconference on radar systems,2007:1-5.
    [51] Seliga T A, Mead J B. Meter-scale observations of aircraft wake vortices inprecipitation using a high resolution solid-state W-band radar[C].34th Conferenceon Radar Meteorology,2009:1-7.
    [52] Rzemien R. Coherent Radar: Guest Editor’s Introduction[J]. Johns Hopkings AplTechnical Digest.1997,18(3):344-347.
    [53] Curry G R. Radar System Performance Modeling,2nd ed[M]. Artech House,2005.
    [54] Skolnik M I.雷达系统导论(第三版)[M].左群声,徐国良,马林, et al,北京:电子工业出版社,2006.
    [55] Ishimaru A.随机介质中波的传播和散射[M].北京:科学出版社,1986:6-20.
    [56]塔塔尔斯基.湍流大气中波的传播理论[M].温景嵩等,译.北京:科学出版社,1978.
    [57]张培昌等.雷达气象学[M].北京:气象出版社,2001.
    [58]徐群玉,宁焕生,陈唯实, et al.气象雷达在民航安全中的应用研究[J].电子学报.2010,38(9):2147-2151.
    [59] Evans J E, Weber M E. Weather Radar Development and Application Programs[J].Lincoln Laboratory Journal.2000,12(2):367-382.
    [60] Mudukutore A S. Pulse compression for weather radars[D]. Colorado StateUniversity,1996.
    [61] Watkins C D, Browning K A. The detection of clear air turbulence byradar[J].Physics in Technology.1973,4(1):28-61.
    [62]张飚,张仕元,窦泽华.警戒雷达仙波特性分析[J].现代雷达.2008,30(6):65-67.
    [63]焦中生,沈超玲,张云.气象雷达原理[M].北京:气象出版社,2005:340-341.
    [64] Skolnik M I.雷达手册(第二版)[M].北京:电子工业出版社,2003:868-870.
    [65] Rubin W L. Radar–Acoustic Detection of Aircraft Wake Vortices[J]. Journal ofAtmospheric and Oceanic Technology.2007,17:1058-1065.
    [66]盛骤,谢式千,潘承毅.概率论与数理统计(第四版)[M].北京:高等教育出版社,2008.
    [67] Daniels T. Comparison of velocity estimators for wake vortex detection[C].37thAIAA Aerospace Sciences Meeting and Exhibit,1999:1-7.
    [68]范特里斯H L.检测、估计和调制理论卷三雷达-声纳信号处理和噪声中的高斯信号[M].北京:国防工业出版社,1991:506-521.
    [69]黄培康,殷红成,许小剑.雷达目标特性[M].北京:电子工业出版社,2005:237-238.
    [70] Taylor J D. Ultra-Wideband Radar Technology[M]. CRC Press LLC,2001.
    [71]陈远征.末制导雷达扩展目标检测方法研究[D].国防科学技术大学,2009.
    [72]顾新锋,简涛,苏峰, et al.一种基于强散射中心的距离扩展目标检测方法[J].数据采集与处理.2009,24(5):576-580.
    [73]戴奉周,刘宏伟,吴顺君.一种基于顺序统计量的距离扩展目标检测器[J].电子与信息学报.2009,30(10):2488-2492.
    [74]何友,关键,彭应宁.雷达自动检测与恒虚警处理[M].北京:清华大学出版社,1998:8-12.
    [75] Tang J, Zhu Z. Analysis of Extended Target Detectors[C]. IEEE radar conference,1996:364-368.
    [76] Ricci G, Scharf L L. Adaptive Radar Detection of Extended Gaussian Targets[C].Proceedings of the Twelfth Annual Adaptive Sensor Array Processing Workshop,2004:1-20.
    [77] Gerlach K, Steiner M, Lin F C. Detection of a spatially distributed target in whitenoise[J]. IEEE signal processing letters.1997,4(7):198-200.
    [78] Weisstein E W. Concise Encyclopedia of Mathematics CD-ROM(CD-ROM edition1.0)[DB/CD].1999.
    [79] Haykin S, Stehwien W, Deng C, et al. Classification of radar clutter in an air trafficcontrol environment [J]. Proceedings of the IEEE.1991,79(6):742-772.
    [80] Haykin S, Deng C. Classification of Radar Clutter Using Neural Networks[J]. IEEETrans. on Neural Networks.1991,2(6):589.
    [81] Pierucci L, Bocchi L. Improvements of radar clutter classification in air trafficcontrol environment[C].2007IEEE International Symposium on Signal Processingand Information Technology,2007:721-724.
    [82] Yeary M B, Zhai Y, Yu T, et al. Spectral signature calculations and target trackingfor remote sensing[J]. IEEE Trans. on Instrumentation and Measurement.2006,55(4):1430-1441.
    [83] Amari S, Nagaoka H. Methods of Information Geometry[M]. England: OxfordUniversity Press,2000:25-32.
    [84] Cathicha A. Change, time and information geometry[C]. Proc. Bayesian Inferenceand Maximum Entropy Mehods in Science and Engineering,2000:72-82.
    [85] Pennec X. Intrinsic Statistics on Riemannian Manifolds: Basic Tools for GeometricMeasurements[J]. J. Math Imaging.2006,25:127-154.
    [86]仲锋惟,孙华飞,张真宁. Fisher Z分布流形的几何结构[J].科技导报.2007,25(9):33-36.
    [87]黄友平.贝叶斯网络研究[D].中国科学院计算技术研究所,2005.
    [88] Efron B. The Geometry of Exponential Families[J]. Annals of Statistics.1978,6:362-376.
    [89]柳桂国,黄海燕,黄道.基于信息几何学概念的支持向量分类机[J].华东理工大学学报.2008,34(3):422-424.
    [90]刘蕴辉.基于信息几何的神经网络学习问题研究[D].北京:北京交通大学,2005.
    [91]杨坚,罗四维,刘蕴辉.一种基于广义KL距离和几何曲率的模型选择准则[J].电子学报.2005,33(12):2272-2277.
    [92]刘蕴辉,罗四维,黄华, et al.修剪算法的信息几何分析[J].计算机研究与发展.2006,43(6):1609-1614.
    [93] Barbaresco F. Interactions between Symmetric Cone and Information Geometries:Bruhat-Tits and Siegel Spaces Models for High Resolution Autoregressive DopplerImagery[C]. ETVC’08Conf., Ecole Polytechnique, Nov.2008, published bySpringer, in Lecture Notes in Computer Science,2009:124-163.
    [94] Barbaresco F, Rivereau N. Diffusive CFAR&its Extension for Doppler andPolarimetric Data[C].2007IET International Conference on Radar Systems,2007:1-5.
    [95] Barbaresco F. Innovative tools for radar signal processing Based on Cartan’sgeometry of SPD matrices&Information Geometry[C]. IEEE Radar Conference,2008:1-6.
    [96] Lenglet C, Rousson M, Deriche R, et al. Statistics on the Manifold of MultivariateNormal Distributions: Theory and Application to Diffusion Tensor MRIProcessing[J].2006,25:423-444.
    [97] Fletcher P T, Lu C, Joshi S. Statistics of Shape via principal geodesic analysis on LieGroup[C]. Proc. IEEE Conf. on Computer Vision and Pattern Recognition,2003:91-101.
    [98]齐民友.重温微积分[M].北京:高等教育出版社,2003.
    [99]陈省身,陈维桓.微分几何讲义[M].北京:北京大学出版社,2001.
    [100]白正国,沈一兵,水乃翔, et al.黎曼几何初步[M].北京:高等教育出版社,2004.
    [101]余天庆,毛为民.张量分析及应用[M].北京:清华大学出版社,2006.
    [102] Rao C. Information and accuracy attainable in the estimation of statisticalparameters[J]. Bull. Calcutta Math. Soc.1945,37:81-91.
    [103]孟大志,刘蓉.信息几何-计算神经科学的几何学方法[J].生物物理学报.1999,15(2):243-248.
    [104] Chentsov N N. Statistical Decision Rules and Optimal Inference[M]. Rhode Island:AMS,1982.
    [105]徐秉峥,张百灵,韦岗.神经网络理论与应用[M].广州:华南理工大学出版社,1994.
    [106] Moakher M. A Differential Geometric Approach to the Geometric Mean ofSymmetric Positive-Definite Matrices[J]. SIAM J. Matrix Anal. Appl.2002,24(1):735-747.
    [107] Karcher H. Riemannian center of mass and mollifier smoothing[J]. Comm. PureAppl. Math.1977,30:509-541.
    [108] Perona P, Malik J. Scale-space and edge detection using anisotropic diffusion[J].IEEE Transactions on Pattern Analysis and Machine Intelligence.1990,12(7):629-639.
    [109]曹丽梅,孙华飞,张真宁.股票收益率的信息几何[J].北京理工大学学报.2007,27(1):91-94.
    [110]罗四维.大规模人工神经网络理论基础[M].北京:北方交通大学出版社,2004.
    [111]王小谟,张光义.雷达与探测(第2版)[M].北京:国防工业出版社,2008:66-67.
    [112] Kay S M.统计信号处理基础-估计与检测理论[M].罗鹏飞,张文明,刘忠, et al,北京:电子工业出版社,2003.
    [113]张贤达.矩阵分析与应用[M].北京:清华大学出版社,2004.
    [114] Cover(科弗) T M, Thomas(托马斯) J A.信息论基础[M].阮吉寿,张华,北京:机械工业出版社,2005.
    [115]陈维桓,李兴校.黎曼几何引论(上册)[M].北京:北京大学出版社,2002:290-296.
    [116]西蒙·赫金.自适应滤波器原理[M].郑宝玉等译,北京:电子工业出版社,2003.
    [117]数学手册编写组.数学手册[M].高等教育出版社,2000.
    [118] Carlson B D, Evans E D, Wilson S L. Search radar detection and track with theHough transform,part I: System concept[J]. IEEE Trans. AES.1994,30(1):102-108.
    [119] Tonissen S M, Evans R J. Performance of Dynamic Programming Techniques forTrack-Before-Detect[J]. IEEE Trans. AES.1996,32(4):1440-1451.
    [120] Tonissen S M, Bar-Shalom Y. Maximum likelihood track-before-detect withfluctuating target amplitude[J]. IEEE Trans. AES.1998,34(3):796-809.
    [121] Boers Y, Driessen J N. Multitarget particle filter track before detect application[J].IEE Proc-Radar Sonar Navig.2004,151(6):351-357.
    [122] Punithakumar K, Kirubarajan T, Sinha A. A Sequential Monte Carlo ProbabilityHypothesis Density Algorithm for Multitarget Track-Before-Detect[J]. Proc. OfSPIE.2005,5913:1-8.
    [123]强勇.超视距雷达抗干扰与目标检测方法[D].西安电子科技大学,2004.
    [124] Boers Y, Driessen H. Particle Filter Based Track Before Detect Algorithm[J].Proceedings of SPIE.2003,5204:20-30.
    [125] Driessen H, Boers Y. Efficient Particle filter for jump Markov nonlinear systems[J].IEE Proc.-Radar Sonar Navig.2005,152(5):323-326.
    [126] Rutten M G, Ristic B, Gordon N J. A Comparison of Particle Filter for RecursiveTrack-before-detect[C].7th International Conference on Information Fusion,2005:169-175.
    [127] Punithakumar K, Kirubarajan T, Sinha A. A Sequential Monte Carlo ProbabilityHypothesis Density Algorithm for Multitarget Track-Before-Detect[J]. Proc. of SPIE.2005,5913:1-8.
    [128] Boers Y, Driessen H, Torstensson J, et al. Track-before-detect algorithm for trackingextended targets[J]. IEE Proc.-Radar Sonar Navig.2006,153(4):345-351.
    [129] Wallace W R. The use of track-before-detect in pulse-Doppler radar[C]. IEEEInternational Radar Conference,2002:315-319.
    [130]龚亚信.基于粒子滤波的弱目标检测前跟踪算法研究[D].国防科学技术大学,2009.
    [131] Hugher E J, Lewis M B. A multiple intelligent software agent based technique forimproving radar detection of low observable small craft in sea clutter[C]. The IEESeminar on Signal Processing Solutions for Homeland Security,2005:1-11.
    [132]杨兴,朱大奇,桑庆兵.专家系统研究现状与展望[J].计算机应用研究.2007,24(5):4-9.
    [133]杨春华,涂正林. Agent理论和技术在电子战中的应用[J].现代雷达.2005,27(7).
    [134]彭溢,孟令奎,林承达.空间信息多Agent耦合技术研究[J]. GIS技术.2008(4):86-90.
    [135] Arulampalam M S, Maskell S, Gordon N, et al. A tutorial on particle filters foronline non-linear/non-Gaussian Bayesian tracking[J]. IEEE Trans. Signal Process.2002,50(2):174-188.
    [136] Sobol' L M. A Primer for the Monte Carlo Method[M]. CRC Press,1994.
    [137]杨小军,潘泉,王睿, et al.粒子滤波进展与展望[J].控制理论与应用.2006,23(2):261-267.
    [138] Kolawole M O. Radar Systems, Peak Detection and Tracking[M]. Newnes,2002.
    [139] Herman S M. A Particle Filtering Approach to Joint Passive Radar Tracking andTarget Classification[D]. the Graduate College of the University of Illinois atUrbana-Champaign,2002.
    [140] Mahler R. Detecting, tracking, and classifying group targets: a unified approach[J].Proceedings of SPIE.2001,4380:217-228.
    [141]何友,修建娟,张晶炜.雷达数据处理及其应用[M].北京:电子工业出版社,2006:111-133.
    [142] Devroye L. Non-Uniform Random Variate Generation[M]. Springer-Verlag,1986.
    [143]杜兰,刘宏伟,保铮.一种基于距离-多普勒二维联合的群目标分辨方法[J].电子学报.2004,32(6):881-885.
    [144] Koch W, Saul R. A Bayesian Approach to Extended Object Tracking and Trackingof Loosely Structured Target Groups[C].20057th International Conference onInformation Fusion,2005:827-834.
    [145] Clark D E, Bell J. Data Association for the PHD Filter[C]. Proceedings of the2005International Conference on Intelligent Sensors, Sensor Networks and InformationProcessing,2005:217-222.
    [146] Clark D, Godsill S. Group Target Tracking with the Gaussian Mixture ProbabilityHypothesis Density Filter[C]. Proceedings of the2005International Conference onIntelligent Sensors, Sensor Networks and Information Processing,2007:149-154.
    [147] Gilholm K, Godsill S, Maskell S, et al. Poisson modals for extended target and grouptracking[J]. Proc. of SPIE.2005,5913:1-12.
    [148] Gilholm K, Salmond D. Spatial distribution model for tracking extended objects[J].IEE Proc.-Radar Sonar Navig.2005,152(5):364-371.
    [149] Godsill S, Li J, Ng W. Multiple and extended object tracking with Poisson spatialprocesses and variable rate filters[C]. First IEEE International Workshop onComputational Advances in Multi-Sensor Adaptive Processing,2005:93-96.
    [150]陈皓亮,夏志军,章新华, et al.舰艇回转规避尾流自导鱼雷仿真研究[J].舰船科学技术.2008,30(4):168-174.
    [151] Maskell S, Briers M, Wright R, et al. Tracking using a radar and a problem specificproposal distribution in a particle filter[J]. IEE Proc.-Radar Sonar Navig.2005,152(5):315-322.
    [152]方开泰,许建伦.统计分布[M].北京:科学出版社,1987:53-58.
    [153] Cappé O, Godsill S J, Moulines E. An Overview of Existing Methods and RecentAdvances in Sequential Monte Carlo[C]. Proceedings of the IEEE,2007:899-924.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700