GNSS/INS深组合导航系统信息匹配问题与跟踪算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
独立的GNSS接收机始终会面临高动态适应性和抗干扰能力在带宽选择上的固有矛盾,从而制约了其应用范围。GNSS/INS深组合导航系统综合了惯性辅助接收机和矢量跟踪的概念,将接收机内部相关器输出的基带信息和惯性信息进行深层次融合,有效地解决了独立GNSS接收机所面临的问题,并且极大地拓展了其应用范围。综合当前研究文献和相关专利,深组合导航系统大体上可以分为集中式、非相干型级联式和相干型级联式三种结构,其中以非相干型级联式结构应用最为广泛,同时也是本文研究的重点。本文基于GPS L1频点和BD B3频点卫星信号,针对GNSS/INS深组合导航关键技术,开展了惯性信息与基带I/Q信息匹配问题研究、基带信号处理中的跟踪算法研究,论文的主要工作归纳如下:
     (1)在相干型或非相干型级联式GNSS/INS深组合导航系统中,包含有基带信号预处理滤波器、码/载波NCO控制量计算、卫星位置速度计算、GNSS/INS组合导航滤波器、惯导解算等信息处理单元,受自身物理特性或硬件条件限制,各信息处理单元的更新率通常不一致,将各信息处理单元与最高更新率模块实现软件同步是深组合导航系统正常工作的前提。通过深入分析,上述问题最终归结为惯导系统估计Doppler频率的在线插值问题。论文研究了一种基于外推和CIC滤波器的Doppler频率插值方法,仿真分析的结果表明:外推+CIC滤波器的插值方法将相对插值误差控制在0.3‰以内;对比Kalman滤波+CIC滤波器的插值方法,外推+CIC滤波器的插值方法能提高插值精度约40%。
     (2)在非相干型级联式GNSS/INS深组合导航系统中,选用码和载波鉴别器输出作为各通道基带信号预处理滤波器的观测量,利用经典的Kalman滤波实现码和载波跟踪,因为码跟踪误差要远大于载波跟踪误差,这一特性会影响基带预滤波器的载波跟踪性能,在一定条件下甚至导致预滤波器发散。此外,码和鉴别器破坏了基带I/Q信息测量噪声原有的独立性,从而不再满足Kalman滤波作为最优估计的前提。借助于误差分离的思想,论文提出了一种基于双滤波器结构的基带信号预处理滤波模型,该模型中利用两个独立的滤波器分别实现载波跟踪和码跟踪;为进一步提高载波跟踪性能,论文针对其中的载波跟踪滤波器,提出了一种修正的Kalman滤波算法,该滤波算法利用二象限反正切鉴相器输出值的条件概率密度,对载波跟踪滤波器观测噪声方差进行周期性修正。基于实际静态场景的仿真结果表明:相比传统的预滤波器模型实现的矢量接收机,双滤波器模型分别提高了Doppler频率跟踪精度、位置精度和速度精度约50%、20%和30%,同时采用修正的Kalman滤波算法分别提高约90%、48%和80%;基于GNSS/INS复合信号源生成动态场景的仿真结果表明:相比传统的预滤波器模型实现的矢量接收机,双滤波器模型分别提高了Doppler频率跟踪精度、位置精度和速度精度约35%、20%和37%,修正的Kalman滤波算法分别提高约85%、53%和71%。
     (3)对于传统的的基带信号预处理滤波器,其状态变量通常包括归一化信号幅值、码跟踪误差、载波相位跟踪误差、载波频率跟踪误差和载波频率变化率跟踪误差,论文在深入分析传统模型的基础上,分析了一种状态变量只包含载波相位跟踪误差、载波频率跟踪误差和载波频率变化率跟踪误差简化的预处理滤波器模型,并利用该简化模型构建了深组合导航系统。基于GNSS/INS仿真平台,对简化的GPS/INS和BD/INS深组合导航系统的性能进行了评估,测试结果表明:与传统的深组合导航系统相比,简化的深组合导航系统有着几乎相同的跟踪性能和导航性能,但后者的运算复杂度降低约67.8%。
     (4)当载噪比低于一定阈值时,码或载波鉴别器的输出噪声会急剧增大,对于非相干型深组合导航系统,将无法得到有用的观测信息。针对上述问题,论文研究了一种基于参数优化的跟踪算法,该算法可以在避免使用鉴别器的同时实现码和载波跟踪。仿真结果显示:与基于Kalman滤波的跟踪方法相比,通过基于参数优化的跟踪方法, GPS和BD的载波跟踪灵敏度分别提高了约2.7dB和2.6dB。论文虽然以GPS和BD系统的典型频点展开的,但是相关结论同样适用于其它的频点(如GPS L5、BD B1和B2等)或卫星导航系统(如GLONASS、GALLIEO等)。
As independent GNSS receivers always face the dilemma in choosing a bandwidthto satisfy both anti-jamming capability and dynamics adaptation, so the applicationrange of which have been limited。 GNSS/INS deeply integrated navigation systeminherits the INS-aiding and vector-tracking concepts, and fuses the basebandinformation from GNSS receiver’s correlators and INS information in a deep level,which was actually proposed to solve the problems in independent GNSS receivers andgreatly extend the application range of them. Generally, the GNSS/INS deepintegration can be divided into central architecture, coherent federated architecture andnon-coherent federated architecture, the non-coherent federated architecture was mostcommonly investigated, which was also the focus of this dissertation. In thisdissertation, GPS L1frequency and BD B3frequency signals were considered,baseband I/Q information and INS information matching problem, baseband signalprefilter algorithm and deep integration architecture problem have been investigated,main conclusions are summarized as follows:
     (1) Different information processing modules, such as baseband signal prefilter,code/carrier NCO control information computation, satellite position and velocitycomputation, GNSS/INS integrated navigation filter, INS, etc., are included in coherentor non-coherent federated GNSS/INS deeply integrated navigation system, the updatedfrequency of which are different from each other, however, the synchronization ofwhich is the necessary condition for implementation. After a profound analysis ofrelationships between each two modules, the synchronization problem was boiled downto INS information estimated Doppler frequency online interpolation or up-samplingproblem, and an extrapolation plus CIC(Cascaded Integrate Comb) filter method wasactually proposed to solve this problem, the simulation results showed that:extrapolation improved the precision of INS information estimated Doppler frequency;the single-cascade CIC was sufficient for Doppler frequency interpolation requirementin deeply integrated navigation system.
     (2) In non-coherent federated GNSS/INS deeply integrated navigation system, thecode and carrier discriminators outputs are considered as measurement information, themeasurement noise of the two kinds of discriminators would not be independent anylonger thereby violating the a priori condition of the Kalman filter. In this dissertation,we have proposed a double-filter based prefilter model, a4-dimension state filter isresponsible for code tracking whereas a3-dimension state filter is responsible for carriertracking, and a modified Kalman filter algorithm has been investigated to furtherimprove the tracking performance of the carrier-tracking-filter, which is obtained bymodifying the measurement noise variance of the carrier-tracking-filter based on the conditional joint probability density function of normalized I/Q measurements andcarrier to noise-density ratio estimation periodically. Simulation results of static fieldtest showed that, compared with traditional prefilter model implemented vector-trackingbased receiver, the double-filter based prefilter model improved the Doppler frequencytracking precision, position precison and velocity precision by about50%,20%and30%respectively, the model with modified Kalman filter alogorithm improved about90%,48%and80%respectively. Simulation results with complex GNSS/INS signalsimulator showed that, compared with traditional prefilter model implementedvector-tracking based receiver, the double-filter based prefilter model improved theDoppler frequency tracking precision, position precison and velocity precision by about35%,20%and37%respectively, while the modified Kalman filter alogorithm improvedabout85%,53%and71%respectively.
     (3) Generally, the normalized signal amplitude, carrier phase tracking error, carrierfrequency tracking error, carrier frequency rate tracking error and code phase trackingerror are included in the state space of traditional prefilter. In this dissertation, wehave put forward a simplified prefilter model to replace the traditional one, the statespace of this simplified prefilter model consists of only carrier phase tracking error,carrier frequency tracking error and carrier frequency rate tracking error. Simulationresults showed a more or less identical tracking and navigation performance of this twoprefilter implemented GPS/INS or BD/INS deeply integrated navigation systems,however, the simplified one has been reduced the computational complexity by67.8%.
     (4) The measurement errors of discriminators increase very rapidly whencarrier-to-signal, correspondently, the measurement information of non-coherent deeplyintegrated navigation system would become invalid. An optimization based trackingmethod was investigated to solve this problem in this dissertation, which implementedcarrier and code tracking without using any discriminators. Simulation results showedabout2.7dB GPS carrier tracking and2.6dB BD carrier tracking sensitivityimprovement over traditional Kalman filter based tracking method.Although the discussions in this dissertation were based on two classical frequencies ofGPS and BD signals, the corresponding algorithms or models would be applicable toother frequencies(such as GPS L5, BD B1and B2, etc.) or GNSS(such as GLONASS,GALLIEO, etc.).
引文
[1] Kaplan E D, Hegarty C J. Understanding GPS Principles and applictions [M]. London: ArtechHouse,2006:1~13.
    [2] Kazantsev V N. Overview and Design of the GLONASS System[C]. Proceedings ofInternational Conference on Satellite Communications, Moscow, Russia,18-21, October,1994:207~216.
    [3] ANSER, Russia's Global Navigation Satellite System[R]. U.S. Air Force Contract NumberF33657-90-D-0096, Washington, May.
    [4]杨光,李勇.俄罗斯的GLONASS系统[J].国防科技,2005(3):32~34.
    [5]曾庆化,刘建业,彭文明.我国卫星导航系统相关技术发展分析[J].航天控制,2006(24(4)):91~96.
    [6]赵国栋“.中国特色”GPS系统“北斗”卫星系统的战略应用[J].国际展望,2004(489(4)):32~35.
    [7] China to Build Global Satellite Navigation System. Available:http://www.english.people.com.cn/200704/16/eng20070416_366845.html
    [8]杨元喜.北斗卫星导航系统的进展、贡献与挑战[M].2010:1~6.
    [9] Hein G W, Godet J, Issler J, Martin J. Status of GALILEO Signal Design and Frequency Plan[C].Proceedings of International technical meeting of the satellite division of the Institute ofNavigation(ION GPS), Portland, OR,24-27, September,2002:34~37.
    [10] Status and Description of Galileo Signals Structure and Frequency Plan[N]. European SpaceAgency Technical Note, April,2004.
    [11]钱桂山.欧洲伽利略卫星导航系统[J].国外卫星动态,2006(6):1~10.
    [12]李铁,孙贵新.“伽利略”卫星导航系统综述[J].国外电子测量技术,2005(24(11)):5~8.
    [13] Gao G X X, Lorenzo D D, Chen A, Lo S, Akos D M, Walter T, Enge P. Galileo broadcast E5codes and their application to acquistion and tracking[C]. Proceedings of International technicalmeeting of the satellite division of the Institute of Navigation(ION NTM), San Diego, CA,23-25,January,2007.
    [14] Successful approach of Galileo Satellite: GIOVE-A, the first European Navigation Satellite inSpace. Available:http://www.galileoju.com/doc/8541%20Press%20Release%20Successful%20GIOVE%20%20A.pdf
    [15] Maeda H. Status of the Japanese QZSS Satellite System[C]. Munich Satellite NavigationSummit, Munich, Germany,23-25, March,2004.
    [16] Takahashi H. The Future of JRANS(Japanese Regional Advanced Navigation Statellite System)Concept[C]. SATNAV Symposium,Melbourne, Australia,23, July,2003.
    [17] India Approves Gagan System[N].Asia Surveying and Mapping,15, September,2008
    [18] Gao G X X, Chen A, Lo S, Lorenzo D D, Enge P. GNSS over China, the Compass MEO satellitecodes[J]. Inside GNSS,2007(July/August):36~43.
    [19] Gao G X X, Chen A, Lo S, Lorenzo D D, Walter T, Enge P. Compass-M1broadcast codes in E2,E5b, and E6frequency bands[J]. IEEE Journal of Selected Topics in signal processing,2009(3):599~612.
    [20] Gao G X X, Chen A, Lo S, Lorenzo D D, Walter T, Enge P. Compass-M1Broadcast Codes andTheir Application to Acquisition and Tracking[C]. Proceedings of International technicalmeeting of the satellite division of the Institute of Navigation(ION NTM),San Diego, CA,28-30,January,2008:133~141.
    [21] Gao G X X, Chen A, Lo S, Lorenzo D D, Walter T, Enge P. The Compass MEO SatelliteCodes[J]. Inside GNSS,2007(July/August):36~43.
    [22] Grelier T, Dantepal J, Delatour A, Ghion A, Ries L. Initial observations and analysis ofCOMPASS MEO Satellite signal[J]. Inside GNSS,2007(May/June):39~43.
    [23] COMPASS-MG[Z].International Telecommunication Union(ITU) Radio Frequency Filingsubmitted by China to the ITU,16, November,2003.
    [24] Available: http://www.sina.com.cn
    [25] Groves P D. Principles of GNSS, Inertial, and Multi-sensor integrated Navigation Systems[M].London: Artech House,2008.
    [26]胡小平.自主导航理论与应用[M].长沙:国防科技大学出版社,2002.
    [27] Savage P G. Strapdown Inertial Navigation integration algorithm design, part1: attitudealgorithms[J]. Journal of Guidance, Control and Dynamics,1998(21(1)):19~28.
    [28] Savage P G. Strapdown Inertial Navigation integration algorithm design, part2: velocity andposition algorithms[J]. Journal of Guidance, Control and Dynamics,1998(21(2)):208~221.
    [29]袁信,俞济祥,陈哲编.导航系统[M].北京:航空工业出版社,1993.
    [30] Schmidt G T, INS/GPS Technology Trends[R]. The Research and Technology Organisation ofNorth Atlantic Treaty Organisation,2008.
    [31] Schmidt G T, INS/GPS Technology Trends[R]. The Research and Technology Organisation ofNorth Atlantic Treaty Organisation,2009.
    [32] Schmidt G T, INS/GPS Technology Trends[R]. The Research and Technology Organisation ofNorth Atlantic Treaty Organisation,2010.
    [33] Schmidt G T, INS/GPS Technology Trends[R]. The Research and Technology Organisation ofNorth Atlantic Treaty Organisation,2011.
    [34] Gao G J, Lachapelle G. INS-Assisted High Sensitivity GPS Receivers for Degraded SignalNavigation[C]. Proceedings of International technical meeting of the satellite division of theInstitute of Navigation(ION GNSS), Fort Worth, TX,26-29, September,2006:2977~2989.
    [35] Gao G J. INS-Assisted High Sensitivity GPS Receivers for Degraded Signal Navigation [D].Calgary: Universtiy of Calgary,2007.
    [36] Schmidt G T, Phillips R E. Advances in Navigation Sensors and Integration Technology[R]. TheResearch and Technology Organisation of North Atlantic Treaty Organisation,2003
    [37] Gebre-Egziabher D. What is the difference between 'loose','tight','ultra-tight', and 'deep'integration strategies for INS and GNSS?[J]. Inside GNSS,2007(January/Febuary):28~32.
    [38]王永明. GPS/SINS组合导航技术研究及工程实现[D].南京:南京理工大学,2004.
    [39]何典,袁运斌,柴艳菊. GPS/INS组合中观测噪声方差阵的自适应估计方法研究[J].武汉大学学报-信息科学板,2008(33(8)):838~841.
    [40]王艳东,黄继勋,范跃祖. GPS/INS组合导航系统半实物仿真研究[J].北京航空航天大学学报,1999(25(3)):299~301.
    [41] Neu J M. A Tightly-Coupled INS/GPS integration using a MEMS IMU[D]. Ohio: Air ForceInstitute of Technology,2004.
    [42] Wang W, Liu Z Y, Xie R R. An improved Tightly Coupled Approach for GPS/INSIntegration[C]. IEEE Conference on Robotics, Automation and Mechatronics, Singapore,1-3,December,2004:1164~1167.
    [43] Wendel J, Maier A, Metzger J, Trommer G F. Comparison of Extended and Sigma-PointKalman Filters for Tightly Coupled GPS/INS Integration [C]. AIAA Guidance, Navigation, andControl Conference and Exhibit,San Francisco, California,15-18, August,2005:613~627.
    [44]林敏敏,房建成,高国江. GPS/SINS组合导航系统混合校正卡尔曼滤波方法[J].中国惯性技术学报,2003(11(3)):29~33.
    [45] Pany T, Kaniuth R, Eissfeller B. Deep integration of navigation solution and signalprocessing[C]. Proceedings of International technical meeting of the satellite division of theInstitute of Navigation(ION GNSS), Long Beach, CA,19-22, September,2005:1095~1102.
    [46] Kreye C, Eissfeller B, Winkel J O. Improvements of GNSS Receiver Performance Using DeeplyCoupled INS Measurements[C]. Proceedings of International technical meeting of the satellitedivision of the Institute of Navigation(ION GPS),Salt Lake City, UT,19-22, September,2000:844~853.
    [47] Petovello M G, Sun D, Lachapelle G, Cannon M E. Performance Analysis of an Ultra-TightlyIntegrated GPS and Reduced IMU System [C]. Proceedings of International technical meeting ofthe satellite division of the Institute of Navigation(ION GNSS),Fort Worth, Tx,25-28,September,2007:602~609.
    [48] Hoshizaki T. GPS Accuracy adjustment to mitigate multipath problems for MEMS BasedIntegrated INS/GPS Navigation Systems[P]. U.S.A: US2008/0091351A1,2008.
    [49]董绪容,张守信,陈哲. GPS/INS组合导航定位及其应用[M].长沙:国防科技大学出版社,1998.
    [50] EI-Rabbany A. Introduction to GPS: The Global Positioning System [M].London: Artech House,2002.
    [51] Vice Presidential Initiative[Z].25, January,1999.
    [52]魏二虎,李征航,郭际明.全球定位系统卫星L2载波增加民用码的作用[J].测绘通报,2004(6):1~4.
    [53]魏二虎,柴华,刘经南.关于GPS现代化进展及关键技术探讨[J].测绘通报,2005(12):5~7.
    [54]吴晓进. GPS现代化的背景、目标和措施[J].船用导航雷达,2005(75(4)):1~4.
    [55]陈俊勇. GPS现代化和GPS信号重构技术的进展[J].全球定位系统,2005(30(1)):1~4.
    [56] Ganguly S, Jovancevic A, Kirchner M. GPS Signal Reconstitution[C]. Proceedings ofInternational technical meeting of the satellite division of the Institute of Navigation(IONGNSS), Long Beach, CA,21-24, September,2004:592~603.
    [57] Lannelongue S, Delfour H, Flament D. Towards Dual Frequency L1/L5GNSS Space BasedAugmentation System[C]. Proceedings of International technical meeting of the satellite divisionof the Institute of Navigation(ION GNSS), Long Beach, CA,21-24, September,2004:.
    [58]张玉册,梁开龙. GPS的现代化计划与第三信号L5[J].测绘工程,2002(11(1)):22~25.
    [59] Federal Space Agency for the Russian. GLONASS: Status and Perspectives[C]. Munich SatelliteNavigation Summit,Munich, Germany,9, March,2005.
    [60] Perao-Rasado J A D, Lopez-Salcedo J A, Seco-Granados G, Lopez-Almansa J M, Cosmen J.Kalman Filter-Based Architecture for Robust and High-Sensitivity Tracking in GNSSReceivers[C], Proceedings of European Space Agency Technologies Equipment, Noordwijk,Netherlands,8-10, December,2010.
    [61] Ziedan N I. GNSS Receivers for Weak Signals[M]. London: Artech House,2006.
    [62] Macgougan G D. High Sensitivity GPS Performance analysis in Degraded SignalEnvironments[D]. Calgary: University of Calgary,2003.
    [63] Watson J R A. High-Sensitivity GPS L1Signal Analysis for Indoor Channel Modeling[D].Calgary: Univerisity of Calgary,2003.
    [64]蔡昌听,皮亦鸣.高灵敏度GPS技术的研究进展[J].全球定位系统,2006(2):1~5.
    [65] Tran M, Hegarty C. Receiver alogorithms for the new civil GPS signals[C]. Proceedings ofInternational technical meeting of the satellite division of the Institute of Navigation(ION NTM),San Diego, CA,23-25, January,2003:778~789.
    [66] Tran M, Hegarty C. Performance evaluations of the new GPS L5and L2civil(L2C) signals[C].Proceedings of International technical meeting of the satellite division of the Institute ofNavigation(ION NTM),Anaheim, CA,23-25, January,2003:521~535.
    [67] Babu R. Mitigating the correlation in INS aided tracking loop measurements: a Kalman filterbased approach.[C]. Proceedings of International technical meeting of the satellite division of theInstitute of Navigation(ION GNSS), Long Beach, CA,21-24, September,2004:1566~1574.
    [68] Parkinson B, Spilker J J. Global Positioning System:Theory and Applications[M].Washington,DC: AIAA,1996.
    [69] Grewal M S, Andrews A P. Kalman Filtering: Theory and Practice Using MATLAB[M].NewYork: Wiley,2001.
    [70] Babu R, Wang J L. Ultra-Tight GPS/INS/PL Integration: A system Concept and PerformanceAnalysis[J]. GPS Solutions,2009(13):75~82.
    [71] Kim J W, Hwang D H, Lee S J. A Deeply Coupled GPS/INS Integrated Kalman Filter DesignUsing a Linearized Correlator Output[C]. IEEE/ION, Position, Location, And NavigationSymposium,25-27, April,2006:300~305.
    [72] Bernal D, Closas P, Fernandez-Rubio J A. Particle Filtering Alogorithm for Ultra-tightGNSS/INS integration[C]. Proceedings of International technical meeting of the satellite divisionof the Institute of Navigation(ION GNSS), Savannah, GA,16-19, September,2008:2137~2144.
    [73] Gustafson D, Dowdle J, Flueckiger K. A Hight Anti-Jam GPS-Based Navigation[C].Proceedings of International technical meeting of the satellite division of the Institute ofNavigation(ION NTM), Anaheim, CA,26-28, January,2000:495~503.
    [74] Gustafson D, Dowdle J R, Elwell J M, etc. Deeply-Integrated Adaptive GPS-Based Navigatorwith Extended-Range Code Tracking[P]. U.S.A: US6331835B1,18, December,2001.
    [75] Ohlmeyer E J. Analysis of an Ultra-Tightly Coupled GPS/INS System in Jamming[C].IEEE/ION, Position, Location, And Navigation Symposium, Sac Diego, CA,25-27, April,2006:44~53.
    [76] Crane R N. A Simplified Method for Deep Coupling of GPS and Inertial Data[C]. Proceedingsof International technical meeting of the satellite division of the Institute of Navigation(IONNTM), San Diego, CA,22-24, January,2007:311~319.
    [77] Sivananthan S, Weitzen J. Sub-Optimality of the Prefilter in Deeply Coupled Integration of GPSand INS[J]. Navigation: Jornal of The Institude of Navigation,2010(57(3)):175~184.
    [78] Groves P D, Mather C J, Macaulay A A. Demonstration of Non-coherent Deep INS-GPSIntegration for Optimised Signal-to-noise Performance[C]. Proceedings of Internationaltechnical meeting of the satellite division of the Institute of Navigation(ION GNSS), Fort Worth,Tx,25-28, September,2007:2627~2638.
    [79] Lashley M, Bevly D M. A Comparison of the Performance of a Non-coherent Deeply IntegratedNavigation Algorithm and a Tightly Coupled Navigation Algorithm[C]. Proceedings ofInternational technical meeting of the satellite division of the Institute of Navigation(IONGNSS), Savannah, GA,16-19, September,2008:2123~2129.
    [80] Lashley M, Bevly D M, Hung J Y. Impact of Carrier to Noise Power Density, PlatformDynamics, and IMU Quality on Deeply Integrated Navigation[C]. Proceedings of IEEE/IONPLANS, Monterey, CA,2008:9~16.
    [81] Crane R, Alexander S, Besser J, Wyman J. System and Method for Advanced Tight Coupling ofGPS and Inertial Navigation Sensors[P]. U.S.A: Patent Pending Application U.S.2006/0161329A1,2006.
    [82] Horslund J M, Hooker J R. Increasing Jamming Immunity by Optimizing Processing Gain forGPS/INS Systems[P]. U.S.A: US005983160A,9, November,1999.
    [83] Petovello M G, Lachapelle G. Comparison of Vector-Based Sofware Receiver Implementationswith Application to Ultra-Tight GPS/INS Integration[J]. Proceedings of International technicalmeeting of the satellite division of the Institute of Navigation(ION GNSS), Fort Worth, Texas,26-29, September,2006:1790~1799.
    [84] Won J H, Dotterbock D, Eissfeller B. Performance Comparison of Different Forms of KalmanFilter Approaches for Vector-Based GNSS Signal Tracking Loop[J]. Navigation: Journal of TheInstitute of Navigation,2010(3):185~199.
    [85] Babu R, WANG J L. Comparative study of interpolation techniques for ultra-tight integration ofGPS/INS/PL sensors[J]. Journal of Global Positioning Systems,2005(4):192~200.
    [86] Vesma J. Optimizations and Applications of Polynomial-Based Interpolation Filters[D]. Finland:Tempere Universtiy of Technology,1999.
    [87] Petovello M G, Lachapelle G. Ultra-tight Integartion of an IMU with GPS/GLONASS[C].13thInternational Association of Institutes of Navigation World Congress, Stockholm, Swedan,27-30, October,2009:1~10.
    [88] Macchi F. Development and Testing of an L1Combined GPS-Galileo Software Receiver[D].Calgary: University of Calgary,2010.
    [89] Macchi F, Petovello M G. Development of a One Channel Galileo L1Software Receiver andTesting Using Real Data[C]. Proceedings of International technical meeting of the satellitedivision of the Institute of Navigation(ION GNSS), Fort Worth, TX,25-28, September,2007:2256~2269.
    [90] Julien O. Design of Galileo L1F Receiver Tracking Loops[D]. Calgary: University of Calgary,2005.
    [91] Available at: http://www.ite.kit.edu/english/deeply_coupled.php.
    [92] Capua R, Antonini M. A Soft Touch: Sogei's GPS/Galileo Software Receiver and InstitutionalGNSS Applications in Italy[J]. Inside GNSS,2008(Fall):34~40.
    [93] Gautier J D, Parkinson B W. Using the GPS/INS Generalized Evaluation Tool(GIGET) for thecomparison of loosely coupled,tightly coupled and ultra-tightly coupled integrated navigationsystems[C]. ION59th Annual Meeting/CIGTF22nd Guidance Test Symposium,Albuquerque,NM,23-25June,2003:65~76.
    [94] Ma C, Lachapelle G, Cannon M E. Implementation of a software GPS receiver[C].Proceedings of International technical meeting of the satellite division of the Institute ofNavigation(ION GNSS),Long Beach, CA,21-24, September,2004:956~970.
    [95] Julien O, Zheng B, Dong L, Lachapelle G. A Complete Software-Based IF GNSS SignalGenerator for Software Receiver Development[C]. Proceedings of International technicalmeeting of the satellite division of the Institute of Navigation(ION GNSS), Long Beach, CA,21-24, September,2004:2146~2157.
    [96] Lin T, Abdizadeh M, Broumandan A, Wang D, O'Keefe K, Lachapelle G. InterferenceSuppression for High Precision Navigation Using Vector-Based GNSS Software Receivers[C].Proceedings of International technical meeting of the satellite division of the Institute ofNavigation(ION GNSS), Portland, OR,20-23, September,2011:372~383.
    [97] Beser J, Alexander S, Crane R, Rounds R, Wyman J, Baeder B. TRUNAVTM:A Low-CostGuidance/Navigation Unit Integrating a SAASM-Based GPS and MEMS IMU in a DeeplyCoupled Mechanization[C]. Proceedings of International technical meeting of the satellitedivision of the Institute of Navigation(ION GPS), Portland, OR,24-27, September,2002:545~555.
    [98] Product introduction. Available at:http://www.igsllc.com
    [99] Production Introduction. Available at:http://www.goodrich.com
    [100]张敏虎,任章,华春红. UKF在深组合GPS/INS导航系统中的应用[J].中国惯性技术学报,2009(17(6)):697-700.
    [101]王新龙,于洁.基于矢量跟踪的SINS/GPS深组合导航方法[J].中国惯性技术学报,2009(17(6)):710-717.
    [102]曾庆双,李仁,陈希军.基于软件定义无线电的紧耦合GNSS/INS组合导航结构[J].中国惯性技术学报,2010(5):567~573.
    [103]朱珍珍.卫星导航矢量跟踪关键技术研究[D].长沙:国防科技大学,2011.
    [104]黄仰博.高性能导航接收机基带处理算法与实现技术[D].长沙:国防科技大学,2011.
    [105]唐康华. GPS/MIMU嵌入式组合导航关键技术研究[D].长沙:国防科技大学,2008.
    [106] Li D, Wang J L, Badu R, XIONG Z L. Nonlinear stochastic modelling for INS-derived Dopplerestimates in ultra-tight GPS/PL/INS integration[C]. International Symposium onGNSS/GPS,Hong Kong,8-10December,2005.
    [107] Gunawardena S, Soloviev A, Graas F V. Real Time Implementation of Deeply IntegratedSoftware GPS Receiver and Low Cost IMU for Processing Low-CNR GPS Signals[C]. ION60th Annual Meeting/U.S. Air Force Institute of Technology&The U.S. Air Force ResearchLaboratory, Sensors Directorate,Davton, OH,7-9, June,2004:108~114.
    [108] Babu R, Wang J L. Improving the quality of IMU-derived Doppler estimates for ultra-tightGPS/INS integration[C]. Proceedings of International technical meeting of the satellite divisionof the Institute of Navigation(ION GNSS),Rotterdam, Netherlands,16-19, May,2004:144~151.
    [109] Watson R, Petovello M, Lachapelle G, Klukas R. Testing Oscillator Stability as a LimitingFactor in Extreme High-Sensitivity GPS Applications[C]. Proceedings of ENCGNSS,Manchester, UK,8-10, May,2006.
    [110] Watson R, Petovello M, Lachapelle G, Klukas R. Impact of Oscillator Errors on IMU-AidedGPS Tracking Loop Performance[C]. Proceedings of ENC-GNSS,Geneva, Switzerland,29-31,May,2007.
    [111] Gaggero P, Borio D. Ultra-stable Oscillators: Limits of GNSS Coherent Integration[C].Proceedings of International technical meeting of the satellite division of the Institute ofNavigation(ION GNSS),Savannah, GA,16-19, September,2008:565~575.
    [112] Doerschuk P C. Cramer-Rao Bounds for Discrete-Time Nonlinear Filtering Problems[J]. IEEETransactions on Automatic Control,1995(40(8)):1465~1469.
    [113] Kay S M. Fundamentals of Statistical Signal Processing[M]. New Jersey: Prentice Hall PTR,2003:23~52.
    [114] Hwang D H, Lim D W, Cho S L, Lee S J. Unified Approach to Ultra-Tightly-Coupled GPS/INSIntegrated Navigation System[J]. IEEE Transactions on Aerospace and Electronic Systems,2011:30~38.
    [115] Petovello M G, O'Driscoll C, Lachapelle G, Borio D, Murtaza H. Architecture and Benefits of anAdvanced GNSS Software Receiver[J]. Journal of Global Positioning Systems,2008(7(2)):156~168.
    [116] Julien O, Zheng B, Dong L, Lachapelle G. A Complete Software-Based IF GNSS SignalGenerator for Software Receiver Development[C]. Proceedings of International technicalmeeting of the satellite division of the Institute of Navigation(ION GNSS), Long Beach, CA,21-24, September,2004:2146~2157.
    [117] Won J H, Pang T, Hein G W. GNSS Software Defined Radio: Real Receiver or Just a Tool forExperts?[J]. Inside GNSS,2006(July/August):48~56.
    [118] Borre K, Akos D M, Bertelsen N, etc. A Software-defined GPS and GALILEO Receiver: ASingle-frequency approach[M]. London: Birkhauser Boston,2007.
    [119] Borio D, Sokolova N, Lachapelle G. Doppler Measurements and Velocity Estimation: aTheoretical Framework with Software Receiver Implementation[C]. Proceedings of Internationaltechnical meeting of the satellite division of the Institute of Navigation(ION GNSS),Savannah,Georgia,23-25, September,2009:304~316.
    [120] Graas F V, Soloviev A. Precise Velocity Estimation Using a Stand-Alone GPS Receiver[J].Navigation:Jornal of The Institude of Navigation,2004(51(4)):283~291.
    [121] Li X F, Akos D. Implementation and Performance of Clock Steering in a Software GPS L1Single Frequency Receiver[J]. Navigation: Jornal of The Institude of Navigation,2010(57(1)):69~85.
    [122] Charkhandeh S, Petovello M G, Watson R and Lachapelle G. Implementation and Testing of aReal-Time Software-Based GPS Receiver for x86Processors[C]. Proceedings of Internationaltechnical meeting of the satellite division of the Institute of Navigation(ION NTM), Monterey,California,18-20, January,2006:927~934.
    [123] O'Driscoll C, Petovello M G, Lachapelle G. Software Receiver Strategies for the Acquistion andRe-Acquistion of Weak GPS Signals[C]. Proceedings of International technical meeting of thesatellite division of the Institute of Navigation(ION NTM),San Diego, California,28-30, January,2008:843~854.
    [124]刘慧超. GNSS软件接收机关键算法研究[D].北京:北京交通大学,2009.
    [125]易维勇,董绪荣,孟凡玉,郭晶. GNSS单频软件接收机应用与编程[M].北京:国防工业出版社,2010.
    [126] Kim H S, Bu S C, Jee G I, Gook C, Park. An Ultra-tightly coupled GPS/INS Integration usingFederated Kalman Filter[C]. Proceedings of International technical meeting of the satellitedivision of the Institute of Navigation(ION GNSS),Portland, OR,9-12, September,2003:2878~2885.
    [127] Fernandez-Prades C, Closas P, Vela-Valls J. Nonlinear Filtering for Ultra-Tight GNSS/INSIntegration[C]. IEEE ICC2010.
    [128]秦永元,张洪钺,汪叔华.卡尔曼滤波与组合导航[M].西安:西北工业大学出版社,1998.
    [129] Abbott A S, Hooker J. Global positioning systems and inertial measuring unit ultra-tightcoupling method[P]. U.S.A:6516021,2003.
    [130] O'Driscoll C, Petovello M G, Lachapelle G. Impact of Extended Coherent Integration Times onWeak Signal RTK in an Ultra-Tight Receiver[C]. Royal Institute of Navigation NAV0828-30,October,2008.
    [131] Meskin D G, Bar-Itzhack I Y. Observability analysis of piece-wise constant systems-part1:theory.[J]. IEEE Transactions on Aerospace and Electronic Systems,1992(28(4)):1056~1067.
    [132]胡广书.数字信号处理——理论、算法与实现[M].北京:清华大学出版社,2007.
    [133] Gardner F M. Interpolation in Digital Modems-Part Ⅰ: Fundamentals[J]. IEEE Transations onCommunications,1993(41(3)):501~507.
    [134] Hentschel T, Fettweis G. Sample Rate Conversion for Software Radio[J]. IEEE CommunicationsMagazine,2000(August):2~10.
    [135] Jury E I. Theory and Application of the z-Transform Method[M]. NewYork: John Wiley&Sons,1964.
    [136]于长官.现代控制理论[M].哈尔滨:哈尔滨工业大学出版社,1997.
    [137] Haykin S, Veen B V. Signal and Systems[M].New York: Wiley,2003.
    [138]于进强,陶小鱼,欧斌.基于CIC滤波的重采样技术[J].信息技术,2008(12):65~68.
    [139]刘彬彬,林伟.基于MATLAB和FPGA的CIC滤波器的设计[J].电子器件,2010(33(2)):231~234.
    [140]郝金光,冯宇,邱相艳. Hogenauer CIC滤波器算法研究及FPGA设计实现[J].微型电脑应用,2006(22(9)):15~17.
    [141] Dolecek G J, Mitra S K. On Design of CIC Decimation Filter with Improved Response[C].ISCCSP,Malta,12-14, March,2008:1072~1076.
    [142] Hogenauer E B. An economical class of digital filters for decimation and interpolation[J]. IEEETransactions on Acoustics, Speech, and Signal Processing,1981(29(2)):155~162.
    [143]史焕卿,邓春伟.积分梳状滤波器的FPGA实现[J].现代电子技术,2008(17):31~33.
    [144] Horn, Roger A. Matrix Analysis[M].New York: Port&Telecom Press,2005.
    [145]钟秋海,付梦印.现代控制理论与应用[M].北京:机械工业出版社,1998.
    [146]戴华.矩阵理论[M].北京:科学出版社,2001.
    [147] Li T. Use of Wheel Speed Sensors to Enhance a Reduced IMU Ultra-Tight GNSS Receiver [D].Calgary: University of Calgary,2009.
    [148] O'Driscoll C, Lachapelle G. Comparison of Traditional and Kalman Filter Based TrackingArchitectures[C]. European Navigation Conference,Naples,Italy,3-6, May,2009.
    [149] O'Driscoll C, Petovello M G, Lachapelle G. Choosing the coherent integration time for Kalmanfilter-based carrire-phase tracking of GNSS signals[J]. GPS Solutions,2011(15(4)):345~356.
    [150] Patapoutian A. On phase-locked loops and Kalman filters[J]. IEEE Transactions onCommunication,1999(47(5)):670~672.
    [151] Burden R L, Faires J D. Numerical differentiation and integration[M].Florence: ThomsonBrooks/Cole,2005:167~249.
    [152] Available at: www.navcomtech.com
    [153] Mohamed A H, Schwarz K P. GPS C/N0Estimation in the Presence of Interference and LimitedQuantization Levels[J]. IEEE Transactions on Aerospace and Electronic Systems,2007(43(1)):227~238.
    [154] Groves P D. GPS Signal to Noise Measurement in Weak Signal and High InterferenceEnvironments[C]. Proceedings of International technical meeting of the satellite division of theInstitute of Navigation(ION GNSS), Long Beach, CA,13-16, September,2005:643~658.
    [155]董绪容,唐斌,蒋德.卫星导航软件接收机原理与设计[M].北京:国防工业出版社,2008.
    [156] Basil H, Ananthasayanam M R, Puri S N. Adaptive Kalman Filter Tuning In Integration ofLow-Cost MEMS-INS/GP[C]. AIAA Guidance, Navigation, and Control Conference andExhibit,Providence, Rhode Island,16-19, August,2004.
    [157] Mohamed A H, Schwarz K P. Adaptive Kalman Filtering for INS/GPS[J]. Journal of Geodesy,1999(73):193~203.
    [158] Magill D T. Optimal adaptive estimation of sampled stochastic processes[J]. IEEE Transationson Automatic Control,1965(10(4)):434~439.
    [159] Brown R G, Hwang P Y C. Introduction to random signals and applied Kalman filtering
    [M].New York: John Wiley,1992.
    [160] Gary R A, Maybeck P S, An integrated GPS/INS/BARO and RADAR altimeter system foraircraft precision approach landings[R].Air Force Institute of Technology, Ohio,
    [161] White N A. MMAE dectection of interference/jamming and spoofing in a DGPS-aided inertialsystem[D]. Ohio: Air Force Institute of Technology,1996.
    [162] Mehra P K. On the identification of variance and adaptive Kalman filtering[J]. IEEE Transationson Automatic Control,1970(15(2)):175~184.
    [163] Kailath T. A note on least squares estimation by the innovation method[J]. Soc Ind Appl Math,1972(10(3)):477~486.
    [164] Maybeck P S. Stochastic models, estimation, and control[M]. New York: Academic Press,1982.
    [165] Salychev O S, Special studies in dynamic estimation procedures with case studies in inertialsurveying[R]. ENGO699.26lecture notes, Department of Geomatics Engineering, Unversity ofCalgary, Calgary,1994.
    [166] Winkel J O. Modeling and Simulating GNSS Signal Structures and Receivers[D]. Neubiberg:University FAF Munich,2003.
    [167] Betz J W, Kolodziejski K R. Generalized theory of code tracking with early-late discriminator,part2: Noncoherent processing and numerical results[J]. IEEE Transations on Aerospace andElectronic Systems,2009(45(4)):1557~1564.
    [168] Betz J W, Kolodziejski K R. Generalized thory of code tracking with early-late discriminator,part1: Lower bound and coherent processing[J]. IEEE Transations on Aerospace and ElectronicSystems,2009(45(4)):1538~1556.
    [169] Humphreys E D, Psiaki M L, Kinter P K. GPS Carrier Tracking Loop Performance in thePresence of Ionospheric Scintillation[C]. Proceedings of International technical meeting of thesatellite division of the Institute of Navigation(ION GNSS),Long Beach, CA,13-16, September,2005:156~166.
    [170] Weil L R. A high performance code and carrier tracking architecture for ground-based mobileGNSS receivers[C]. Proceedings of International technical meeting of the satellite division of theInstitute of Navigation(ION GNSS), Portland, OR,21-24, September,2010:3054~3068.
    [171] Lin T, Curran J T, O'Driscoll C, Lachapelle G. Implementation of a navigation domain GNSSsignal tracking loop[C]. Proceedings of International technical meeting of the satellite division ofthe Institute of Navigation(ION GNSS), Portland, OR,20-23, September,2011:3644~3651.
    [172] Bussey W H. The Origin of Mathematical Induction[J]. The American Mathematical Monthly,1917(5):199~207.
    [173] Dreyfus S E, Law A M. The Art and Theory of Dynamic Programming[M]. Academic Press,1977.
    [174] Bellman R. The Theory of Dynamic programming [J]. The American Mathematical Monthly,1954(60):503~516.
    [175]宋茂忠.用加权几何精度因子选星的GPS抗多径定位方法[J].南京航空航天大学学报,2000(32(5)):510~515.
    [176] Garin L, Rousseeau J M. Enhanced Strobe correlator multipath rejection for code and carrier[C].Proceedings of International technical meeting of the satellite division of the Institute ofNavigation(ION GPS), Kansas, MO,16-19, September,1997:559~568.
    [177] Iltis R A, Hanson G A. C/A Code Tracking and Acquistion with Interference Rejection using theExtended Kalman Filter[C]. Proceedings of International technical meeting of the satellitedivision of the Institute of Navigation(ION NTM), San Diego, CA,25-27, January,1999:881~889.
    [178] Iltis R A, Joint estimation of PN code delay and multipath using the extended Kalman filter[J].IEEE Transations on Communications,1990(38):292~299.
    [179] Soloviev A, Graas F V. Utilizing Multipath Refections in Deeply Integrated GPS/INSArchitecture for Navigation in Urban Environments,2008:383~393.
    [180] User Manual. Available: http://www.olinkstar.com.
    [181]粟欣,许希斌.软件无线电原理与应用[M].北京:人民邮电出版社,2010.
    [182] User Manual. Available: http://www.fcctec.com.
    [183] User Manual. Available: http://www.aquilatech.co.nz/
    [184] Available: http://www.thinksrs.com/downloads/PDFs/Manuals/FS725m.pdf

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700