高速电子技术在QKD系统与天文CCD成像系统中的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科学技术的发展,人类对信息的获取和处理要求不断提高,电子学系统的进步使当代电子技术不断朝着高速的方向发展。而在不同的电子学系统中,电子技术的高速特性受到不同因素的影响和决定。
     在一个模拟电路系统中,信号的速度直接体现在是否具有快速的上升、下降时间。而随着信号的速度不断提高,系统的带宽、噪声、抖动、信噪比等因素将更多的决定系统整体可以达到的速度水平。在高速的数字系统中,I/O速度的提高使得系统的可用最大抖动预算相应的减少,需要发展降低系统抖动的技术,才能进一步的提高系统的I/O速度。同时,集成电路的发展带来了芯片乃至系统向小型化、集成化的方向发展。这将促使电路朝着低功耗的方向设计。这时,必须降低系统的噪声,使得信号中保证一定的信噪比。因此,研究电子学系统中各种限制信号速度的因素,不断发展降低不利因素对信号速度影响的技术,是电子技术向高速方向发展的重要途径。
     在本论文中,主要对高速电子技术在高速实时处理与控制、高精度低噪声数据获取、高速数据存储与传输等方面进行了一些研究,并将研究成果应用到了量子密钥分发与天文CCD成像这两个领域。
     量子密钥分发是一种基于量子力学原理的新型量子信息技术。在量子力学体系中,量子密钥分发方案已经被证明是绝对安全的。因此,近年来量子密钥分发方案在世界各国得到了大力的发展。本文以合肥城域量子通信示范网项目为应用目标,利用高速电子技术,设计完成了点对点的QKD系统原型。原型系统在国内首次实现了实时的量子密钥分发,量子密钥实时生成率达到17kbps,并且实现了实时的加密语音通讯功能。
     在QKD系统原型中,采用可重构的设计方案,完成了量子密码收发一体机。利用FPGA的并行数据处理特点,系统完成了高速的实时密钥提取算法,包括基矢比对、纠错和隐私放大,从而完成了上位机软件难以实现的实时密钥提取功能。本文对物理层各电子学功能模块的设计进行了具体介绍,设计了基于FPGA的真随机数发生器,给出了系统的控制方案,并完成了对密钥应用层中的加解密算法和密钥扩展算法的设计。另外,系统设计了信息同步机制,通过帧格式的同步光使发送方与接收方的量子信息得以同步。同时,为了满足对量子信息编码数据大数据量的数据缓存,系统对使用SRAM的高速数据存储技术进行了研究。
     天文CCD成像系统是在天文观测领域中非常重要的观测设备,而国内目前尚没有自主开发的高性能天文成像系统。本文中,对高性能可扩展的天文CCD成像系统进行了研究和设计,目前已经完成了原型系统的主要设计功能,并且成功进行了CCD相机的成像功能测试。
     天文CCD成像系统要求具有极低的读出噪声,因此本文对CCD的降噪技术和高精度的数据获取技术进行了重点研究。系统对CCD相机采用了TEC制冷的方案,目前在CCD工作状态下相机可以制冷到-52.0℃。为了降低CCD的读出噪声,系统采用了相关双采样(CDS)电路方案对CCD输出信号进行处理,并设计了高精度的AD转换与数据采集模块对CCD信号进行采集。另外,系统设计中采用了可扩展性的设计理念和可重构技术,设计了具有良好可扩展能力的成像控制器。对系统的控制方案进行了具体设计,利用FPGA与单片机组合工作的模式完成系统的控制功能,并在FPGA中完成了CCD驱动时序与数据采集控制时序。同时,为了满足大型CCD成像系统中大数据量传输的要求,对光纤通信技术进行了相关研究。最后,对目前的原型系统进行了一系列的测试。
     在本论文工作中,成功的完成了一个点对点的实时QKD系统,以及一个天文CCD成像系统原型。将高速实时处理与控制、高精度低噪声数据获取、高速数据存储与传输等高速技术在QKD系统与天文CCD成像系统中予以运用,并取得了一些研究成果。
     本论文的创新之处如下:
     (1)采用可扩展可重构的构架设计完成了量子密码收发一体机以及天文成像控制器的设计,使得系统具有很强的扩展性和可重构性。在QKD系统中能根据实际情况灵活调整,在CCD成像系统中可以适应各种大小、类型的科学级CCD芯片。
     (2)在量子密钥分发系统中应用高速电子学技术中的实时处理和控制技术,高速随机数技术,同步技术以及高速数据存储技术完成了国内首个基于FPGA的量子密码收发一体机,完成了实时密钥提取及控制算法,基于FPGA的真随机数发生器,并成功应用在合肥城域量子通信示范网中。
     (3)在天文成像系统中应用高速电子学技术中的低噪声数据读出技术,高精度ADC采样技术,针对科学级CCD的特点,对降噪技术和高精度数据获取技术进行研究,完成了科学级成像系统原型。
With the development of the seience and technology, requirements for the information acquiring and processing are improved continulusly. The progress of the electronics system makes the electronic technology developing in the high-speed direction. While in different electronic systems, the characteristics of high-speed will be affected and decided by different factors.
     In an analog system, the speed of signal directly reflected in rise and fall time. But with the increasing of the signal speed, the bandwidth, noise, jitter, signal-to-noise ratio of the system will more determine the speed of the whole system. In a high-speed digital system, the increasing speed of the I/O will reduce the maximum jitter of the system could sustain. To improve the system's I/O speed, technology of reducing the jitter need to be developed. At the same time, the development of the integrated circuit has brought the chip and system to the direction of miniaturization, integration. This will bring the circuit design to the direction of low power. At this moment, to guarantee the signal-to-noise ratio of the system, the system noise must be reduced. Therefore, study various factors of limit signal speed in electronics system, develop technologys to reduce influence of adverse factors continuously, is an important way of promoting the electronic technology to develop in direction of high speed.
     In this thesis, the theme will be some research about high-speed and real-time data processing, high-precision and low-noise data acquisition, high-speed data storage and transmission. Some research production has been applied in the quantum key distribution system and astronomical CCD imaging system.
     Quantum key distribution is a new quantum information technology based on the principles of quantum mechanics. In the system of quantum mechanics, quantum key distribution scheme has been proved to be absolutely safe. Thus, in recent years, quantum key distribution has been strongly developed in the world. In this thesis, a point to point QKD system prototype for Hefei metro demonstration network of quantum communication will be designed using high-speed electronic technology. The prototype system achieves real-time quantum key distribution for the first time in China. The generation rate of quantum key reachs17kbps, at the some time real-time and encrypted voice communication has been achieved.
     In our QKD system, we designed an all-in-all chassis of quantum cryptography with reconfigurable scheme. Using the parallel data processing characteristics of FPGA, high-speed and real-time key extraction algorithms are completed, including sifting, error correction and privacy amplification. Thus we complete the feature of real-time key extraction which is difficult to realize by the PC software. In this thesis, electronics function mudules in the physical layer are detailed described, a ture random number generator based on FPGA is designed, the system control scheme is gived out, and the encryption algorithm and the key expansion algorithm in the key application layer are well designed. In addition, an information synchronization mechanism is designed. The quantum information between Alice and Bob is synchronized by the frame format of synchronous light. At the same time, to satisfy the large amount data cache of the quantum information encoded data, the high-speed data starage technology with using SRAM is researched.
     Astronomical CCD imaging systems are important observation equipments in the field of astronomical observation, and there are still no domestic self-developed high-performance astronomical imaging systems. In this thesis, a high-performance scalable general astronomical CCD imaging system is researched and designed. Now the main fertures of the initial prototype system have been completed, and the imaging function test of the CCD camera has been successfully completed.
     For the astronomical CCD imaging system, very low readout noise is required. Therefore the CCD noise processing technology and high precision data acquisition technology are intensive researched in the thesis. With TEC refrigerating scheme, the CCD camera can be refrigeratinged to-52.0℃when the CCD keep in working state. In order to reduce the CCD readout noise, the system uses the correlated double sampling (CDS) circuit to deal with the CCD output signal. And high precision AD conversion and data acquisition modules are designed to acquire the CCD output signal. In addition, the scalability design concept and the reconfigurable technology are adopted in system. We have designed an imaging controller with good extensible ability. The system control scheme is designed also and the system control function is completed usng FPGA and MCU combination work mode. The CCD drive schedule and the data acquisition control sequence are completed in the FPGA too. At the same time, to satisfy the request of data transmission in large CCD imaging system, high-speed optical fiber communication technology is researched. At last, we have processed a series of test for the prototype system.
     In the work of this thesis, we have successfully completed a real-time point to point QKD system and an astronomical CCD imaging prototype system. We use technologys of high-speed and real-time data processing, high-precision and low-noise data acquisition, high-speed data storage and transmission in the QKD system and astronomical CCD imaging system. Some research results have been obtained.
     The innovation of this thesis is as follows:
     (1) Complete the all-in-all chassis of quantum cryptography and the astronomical imaging controller with the reconfigurable and the extensible scheme. The systems have strong extensibility and reconfigurability. The QKD system can be adjusted according to the actual situation. The CCD imaing system can adapt to kinds of CCD chips with different size or type.
     (2) Real-time process and control technology, high-speed ture random number generate technology, the synchronization technology and high-speed data storage technology are applied in the QKD system to complete an all-in-all chassis of quantum cryptography. Real-time key extraction and control algorithms and a ture random number generator are designed and successfully applied in Hefei metroregion quantum communication network.
     (3) Low-noise data readout technology and high-precision ADC sampling technology are applied in astronomical imaging system. Contrapose to the characteristics of scientific CCD, noise reduction technology and high-precision data acquisition technology are studied, and the scientific CCD imaging system prototype is completed.
引文
[1]Mike peng li.2008. Jitter,noise,and signal Integrity at High-Speed. Pearson Education,Inc.
    [2]Diffie W., Hellman M.E.1976. New Directions in Cryptography. IEEE Transactions on Information Theory, IT(22):644-654.
    [3]Rivest R., Shamir A., Aldeman L.1978. A method for obtaining digital signatures and public-key cryptosystems [J]. Communications of the ACM, 21(2):120-126.
    [4]Shor P. W.1994. Algorithms for quantum computation:discrete logarithms and factoring. Foundations of Computer Science,1994 Proceedings.,35th Annual Symposium on.
    [5]Bennett C.H., Brassard G.1984. Quantum cryptography:Public key distribution and coin tossing[C]. In Proc. IEEE Int. Conf. on Computers, Systems and Signal Processing Bangalore, India, IEEE, New York.
    [6]Lo H.K., Chau H.F.1999. Unconditional Security of Quantum Key Distribution over Arbitrarily Long Distances. Science,283(5410): 2050-2056.
    [7]Mayers D.2001. Unconditional security in quantum cryptography. Journal of the Acm,48(3):351-406.
    [8]Bennett C.H.1992. Quantum Cryptography Using Any 2 Nonorthogonal States. Physical Review Letters,68(21):3121-3124.
    [9]Bruss D.1998. Optimal eavesdropping in quantum cryptography with six states[J]. Physical Review Letters,81:3018-3021.
    [10]Ekert A.K.1991. Quantum Cryptography Based on Bell Theorem[J]. Physical Review Letters,67(6):661-663.
    [11]Hwang W.Y.2003. Quantum Key Distribution with High Loss:Toward Global Secure Communication. Physical Review Letters,91(5):057901.
    [12]Wang X.B.2005. Decoy-state protocol for quantum cryptography with four different intensities of coherent light. Physical Review A,72(1).
    [13]Lo H.K., Ma X.F., et al.2005. Decoy state quantum key distribution. Physical Review Letters,94(23).
    [14]Ma X., Qi B., et al.2005. Practical decoy state for quantum key distribution. Physical Review A,72(1).
    [15]Bennett C.H., Bessette F., et al.1991. Experimental Quantum Cryptography. Lecture Notes in Computer Science,473:253-265.
    [16]Muller A., Breguet J., et al.1993. Experimental Demonstration of Quantum Cryptography Using Polarized Photons in Optical-Fiber over More Than 1 Km. Europhysics Letters,23(6):383-388.
    [17]Elliott C., Colvin A., et al.2005. Current status of the DARPA quantum network. Quantum Information and Computation Ⅲ,5815:138-149.
    [18]Pearson D., Elliott C.2003. QKD protocols in the DARPA quantum network. Quantum Communication, Measurement and Computing, Proceedings: 391-394.
    [19]Peev M.2009. SECOQC:Major results, the QKD-Network Prototype in Vienna. Quantum Communication, Measurement and Computing (Qcmc), 1110:323-326.
    [20]Peev M., Pacher C., et al.2009. The SECOQC quantum key distribution network in Vienna. New Journal of Physics,11.
    [21]Poppe A., Peev M., et al.2008. Outline of the SECOQC quantum-key-distribution network in Vienna. International Journal of Quantum Information,6(2):209-218.
    [22]Sasaki M., Fujiwara M., et al.2011. Field test of quantum key distribution in the Tokyo QKD Network. Optics Express,19(11):10387-10409.
    [23]Chen T.Y., Wang J., et al.2010. Metropolitan all-pass and inter-city quantum communication network. Optics Express,18(26):27217-27225.
    [24]Wang S.A., Chen W., et al.2010. Field test of wavelength-saving quantum key distribution network. Optics letters,35(14):2454-2456.
    [25]刘洋.2012.远距离量子密钥分发系统的相关研究[D]:[博士].合肥:中国科学技术大学,138-150.
    [26]Hey J.S.1975. The Radio Universe,2nd Ed., Pergamon Press, Oxford-New York.
    [27]Boyle W.S., Smith G.E.2007. Charge coupled semiconductor device. Bell syst. Tech..J.,49(4):587-593.
    [28]Janesick J. R.2001. ScientificCharge-Coupled Devices. Bellingham, WA: SPIE Press.
    [29]Jorden Paul, Ball Kevin, Bell Ray, et al.2006. Commercialisation of full depletion scientific CCDs. Proceedings of SPIE,6276:604-627.
    [30]Zou S.C., Wang G.2006. The CCD imaging systems for LAMOST. Proceedings of SPIE,6269:626-922.
    [31]Cheng Yaoyu, Hu Yan, Han Yan.2002. The study of cosmetic grade CCD and its application in ray imaging testing. Laser and Optoelectronics progress,39(2):41-45.
    [32]Janesick J., Blouke M.1987. Sky and telescope Magazine, September, 74,238.
    [33]Howell S.B.2006. Handbook of CCD Astronomy,2nd Ed., Cambridge University Press
    [34]Eccles M., Sim E., Tritton K.1983. Low light level detectors in Astronomy, Cambridge University Press
    [35]Zhang H.F., Wang J., Cui K., et al.2012. A real-time QKD system based on FPGA. IEEE/OSA Journal of Lightwave Technology,30(20):3226-3234.
    [36]张鸿飞,王坚,罗春丽等.2011.基于抖动的高速真随机数发生器的设计和实现,核技术,34(7):556-560.
    [37]崔珂,张鸿飞等.2012.基于USB的量子密钥分发系统中高速数据通道的设计.光电子激光,23(4):751-756.
    [38]Cui K., Wang J., Zhang H.F., et al.2013. A real-time design based on FPGA for Expeditious Error Reconciliation in QKD system. IEEE transactions on Information Forensics and Security,8(1):184:190.
    [39]Krawczyk H.1994. LFSR-Based Hashing and Authentication. In Advances in Cryptology-CRYPTO '94", Y. Desmedt, ed. Lecture Notes in Computer Science,839:129-139.
    [40]Piotr Obroslak, Grzegorz Kasprowicz, Ryszard S.R.2010. Digital techniques for noise reduction in CCD detectors. PHOTONICS LETTERS OF POLAND,2(3):134-136.
    [41]Martin G.J., Blessinger K.V., Veits C.1993. High-resolution CCD camera for industrial imaging[J]. SPIE, doi:10.1117/12.144777.
    [42]Kriss Michael, Parulski Ken, David Lewis.1989. Critical technologies for still imaging systems[A]. SPIE[C],1082:157-183..
    [43]许秀贞,李自田,薛利军.2004.CCD噪声分析及处理技术.红外与激光工程,33(4):343-357.
    [44]江孝国,祁双喜,王婉丽等.2001.CCD输出信号的低噪声处理电路研究[J].光电子激光,12(11):1126-1129.
    [45]李云飞,司国良,郭永飞.2005.科学级CCD相机的噪声分析及处理技术.光学精密工程,13(sup.):158-163.
    [46]Jaroslav Hynecek.1992. Theoretical Analysis and Optimization of CDS Signal Processing Method for CCD Image Sensors. IEEE Transactions on electron devices,39(11):2497-2507.
    [47]Musah T., Gregoire B.R., et al.2007. Parallel correlated double samplingtechnique for pipelined analogue-to-digital converters. ELECTRONICS LETTERS,43(23): 10.1049/e1:20072152.
    [48]桑子儒.2013.可重构核仪器研究[D]:[博士].合肥:中国科学技术大学,73-75.
    [49]易磊.2008.高速高精度ADC测试技术研究[D]:[硕士].成都:电子科技大学,5-15.
    [50]骆丽娜,杨万全.2007.高速ADC的性能参数与测试方法.实验科学与技术,5(2):145-147.
    [51]王崇.2006.CCD感光特性测试系统的研究:[硕士].天津:天津大学,1-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700