敏捷卫星遥感图像配准和拼接技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
遥感图像是指从远距离平台上利用光电成像载荷获取的地物目标图像,常见的平台如飞机和卫星。由于其覆盖范围广,光谱频段丰富,在军事和民用上都起到了巨大的作用。但是随着人类活动的区域日益广泛,对于遥感图像的整体要求也越来越高,希望在获得高分辨率图像的同时,其覆盖的区域更加的宽广,以至于能对一个较大的区域进行细致深入的分析研究,为后续的人类决策提供支持。但是,受限于目前的技术水平,高分辨率和宽视场仍然是一对矛盾体。常见的解决方法是通过图像配准和拼接的方法,也就是是利用传感器得到多幅高分辨率的小视场图像,然后对这些具有一定重叠区域的图像进行配准拼接,得到一幅大视场图像。这种矛盾在敏捷卫星的任务中会出现的更加频繁,敏捷卫星是近年来出现的新型卫星,具有优秀的姿态加速功能,使得敏捷卫星可以对目标进行更快速的瞄准和更精确的扫描,大大提高了满足复杂任务的要求。但是敏捷卫星由于其高机动性,会使得成像环境更加的复杂,从而影响最终的遥感图像质量,因此对敏捷卫星的成像模式进行深入细致地研究,可以定量化地分析机动成像后的图像质量变化特性,而因为敏捷特性带来的图像配准拼接问题也会成为更大的挑战。
     通过对经典的配准和拼接算法的研究,为后续的敏捷卫星的图像拼接约束分析提供理论支持。图像配准拼接技术可分为两类:基于区域的图像配准技术,如序列相似性检测算法、交叉相关相似性度量函数和傅里叶变换算法;基于特征点配准算法包括sIFT特征点提取算法和Harris角点提取算法。对这些配准算法的研究可以从图像角度对敏捷模式带来的影响进行分析,同时也为基于遥感景物内容特性的配准算法提供了基础。
     通过构建几何模型、辐射模型、相机模型和大气模型,来模拟分析敏捷卫星的机动成像模式,并且提出梯度信息熵、仿射退化度和立体结构相似度等新颖评价指标来预估图像质量。基于四个模型对敏捷卫星的成像模式进行分解,使得可以通过卫星轨道等基本参数来定量地分析卫星图像的各个参数,比如分辨率、幅宽,以及后续的图像质量指标。在理论模型的基础上,编写了“敏捷卫星成像仿真和质量分析“软件,可以对敏捷卫星进行各个模型的分析,同时可以对图像退化进行仿真模拟。
     利用图像复原和图像融合的预处理技术,改善敏捷成像下可能带来的图像模糊和颜色退化现象。针对图像复原技术,首先分析了典型的复原算法,然后提出了基于FOE模型的图像复原算法,最后研究对比了图像复原技术对于特征点提取技术的影响。针对图像颜色退化,本文分析了典型的图像融合算法,并对融合后的遥感图像进行配准拼接,提高其目标识别的能力。
     通过对遥感图像景物内容特性的分析,提出了几种改善性的配准和拼接算法,使得遥感图像有更广泛的实际应用能力。首先提出了一种基于梯度信息权重优化的配准技术,利用图像的梯度信息对图像的特征点进行权重划分,利用权重值对特征点进行区别优化,最后将联合的图像拼接技术应用到重叠区域,实现对敏感区域进行高精度匹配的目的。针对遥感图像含有丰富的内容特性,设计了一种双特征点配准算法,利用SIFT和Harris短发提取特征点种类的区别,分别对角点区域密集的地方实现Harris特征点提取,对于相对平坦的区域(比如草地和水面)进行SIFT特征点提取,最后得到可以应付复杂环境下得到的推扫图像。遥感图像通常含有丰富的内容,使得其特征点数量通常非常的巨大,应对这种情况,提出了基于精炼控制点的配准技术,提取少量的精确特征点可以减少错误匹配特征点对结果的干扰,同时可以降低对遥感图像的处理难度。
Remote sensing images which are always acquired from these devices on plane or satellite have been widely used in People's daily life. We always hope to get high resolution and large size remote sensing images which can help to analysis of a region more deeply. However, it is contradiction between field of view and resolution in remote sensing field. The common solution is to acquire final image step by step. Firstly, we acquire small images which have high resolution. Secondly, we utilize registration and blending techniques to stitch two or more images which have overlapped areas into one large image. The registration and blending are very important techniques which can improve practical performance of the image. New agile satellites are appeared in recent years which have excellent acceleration ability. Agile satellite can aim and scan targets more accurately which make it meet the needs of complex tasks. However, due to its high mobility, agile satellites will make the imaging environment more complex, which affect the final quality of remote sensing images. We study the agile model of satellite deeply and in detail, quantified analysis the change of image quality after agile model.
     To do a research summary of a variety of registration techniques of images, such as Sequential Similarity Detection Algorithm (SSDA), Cross Correlation (CC) and Fourier transform. The Scale space can help to Understanding of scale-invariant principle. Scale Invariant Feature Transform (SIFT) and Harris corner extraction are very famous methods which can lay a solid foundation for registration and stitching of remote sensing images.
     Agile satellites have good mobile abilities which can get more different parts of the image. We firstly build geometric model, radiation model, atmospheric model and camera model, secondly propose some principals:Signal to Noise Ratio (SNR), MTF, Gradient Information Entropy, Affine degeneration and Structure Similarity Parameter to evaluate the quality of the image acquired from agile satellites. Our models can evaluate the quality before the target which can help users to make a decision of the target.
     Image restoration and Image fusion can help to reduce image fuzzy and recover the color information of image. Field of Experts restoration method can improve the quality of blurring image, which can make blurring image be used in some situation where is very strict about the quality of the image. The restoration image can extract more feature points than blurring image, and the better matching precision will make the registration more accurate. Image fusion can combine panchromatic image and multispectral image which make the fusion image has high resolution and rich color information.
     We have proposed three improved registration methods of remote sensing images, which can help to acquire better adaption ability in practical application. Firstly, registration method based on human vision introduced the technology of feature point weights. Gradient information of image is the judgment standard which can realize registration of image automatically. The combined stitching method can make the transition of overlap of image more naturally. The double-feature registration method employs two feature extractions, SIFT and Harris. Harris can extract corner features more accurate in urban images, however bad ability in the regions such as water and grassland. After comprehensive comparison, we utilize the SIFT to extract feature from flat area, and Harris to extract feature from urban area. This combined method can acquire more accurate result. Registration based on refined control points can reduce affection of the wrong match of feature points. Remote sensing images always have a lot of objects, so we can extract a mass of feature points which however will also increase the rate of wrong matching. In fact, we only need a few points to resolve the transformation between two or more images. This method can help us to find five groups of well-matched feature points, which make the registration easier.
引文
[1]Chevrel MCourtois M, Weill G. The SPOT satellite remote sensing mission[J]. Photogrammetric Engineering and Remote Sensing.1981,47:1163-1171.
    [2]Eckert S. Improved forest biomass and carbon estimations using texture measures from WorldView-2 satellite data[J]. Remote Sensing.2012,4(4):810-829.
    [3]Karna Y K. Mapping above ground carbon using worldview satellite image and lidar data in relationship with tree diversity of forests[J]. University of Twente, Enschede, The Netherlands.2012.
    [4]冯钟葵,石丹,陈文熙,等.法国遥感卫星的发展——从SPOT到Pleiades [J].遥感信息.2007(04):87-92.
    [5]李春来,刘建军,任鑫,等.嫦娥一号图像数据处理与全月球影像制图[J].中国科学:地球科学.2010(03):294-306.
    [6]叶培建,孙泽洲,饶炜.嫦娥一号月球探测卫星研制综述[J].航天器工程.2007(06):9-15.
    [7]田辉.基于嫦娥一号卫星CCD立体影像处理模型与方法的研究[D].中国地质大学(北京),2011.
    [8]Anuta P E. Spatial registration of multispectral and multitemporal digital imagery using fast Fourier transform techniques[J]. Geoscience Electronics, IEEE Transactions on.1970,8(4):353-368.
    [9]Levine M DO'Handley D A, Yagi G M. Computer determination of depth maps[J]. Computer Graphics and Image Processing.1973,2(2):131-150.
    [10]Nevatia R. Depth measurement by motion stereo[J]. Computer Graphics and Image Processing.1976,5(2):203-214.
    [11]Brown L G. A survey of image registration techniques[J]. ACM computing surveys (CSUR).1992,24(4):325-376.
    [12]Kher A R, Mitra S. Registration of noisy SAR imagery using morphological feature extractor and 2D cepstrum[C]. International Society for Optics and Photonics, 1993.
    [13]Flusser J, Suk T. A moment-based approach to registration of images with affine geometric distortion[J]. Geoscience and Remote Sensing, IEEE Transactions on. 1994,32(2):382-387.
    [14]Li HManjunath B S, Mitra S K. A contour-based approach to multisensor image registration[J]. Image Processing, IEEE Transactions on.1995,4(3):320-334.
    [15]Fonseca L M, Manjunath B S. Registration techniques for multisensor remotely sensed imagery[J]. PE & RS-Photogrammetric Engineering & Remote Sensing.1996, 62(9):1049-1056.
    [16]Zitova B, Flusser J. Image registration methods:a survey[J]. Image and vision computing.2003,21(11):977-1000.
    [17]Brown M, Lowe D G. Recognising panoramas. [C].2003.
    [18]Lowe D G. Object recognition from local scale-invariant features[C]. Ieee, 1999.
    [19]Lowe D G. Distinctive image features from scale-invariant keypoints[J]. International journal of computer vision.2004,60(2):91-110.
    [20]Bay HTuytelaars T, Van Gool L. Surf: Speeded up robust features[M]. Springer, 2006,404-417.
    [21]Holtkamp D J, Goshtasby A A. Precision registration and mosaicking of multicamera images[J]. Geoscience and Remote Sensing, IEEE Transactions on.2009, 47(10):3446-3455.
    [22]Gao JKim S J, Brown M S. Constructing image panoramas using dual-homography warping[C]. IEEE, 2011.
    [23]Brown L G. A survey of image registration techniques[J]. ACM computing surveys (CSUR).1992,24(4):325-376.
    [24]Pratt W K. Digital Image Processing[Z].1978.
    [25]Duda R O, Hart P E. Pattern classification and scene analysis[M]. Wiley New York,1973.
    [26]Widrow B. The "rubber-mask" technique—Ⅰ. Pattern measurement and analysis[J]. Pattern Recognition.1973,5(3):175-197.
    [27]Kuglin C D. The Phase Correlation Image Alignment Method[Z]. Hines D C. 1975.
    [28]De Castro E, Morandi C. Registration of translated and rotated images using finite fourier transforms.[J]. IEEE transactions on pattern analysis and machine intelligence.1987,9(5):700-703.
    [29]Lee D JKrile T F, Mitra S. Digital registration techniques for sequential fundus images[C]. International Society for Optics and Photonics,1988.
    [30]Reddy B S, Chatterji B N. An FFT-based technique for translation, rotation, and scale-invariant image registration[J]. IEEE transactions on image processing.1996, 5(8):1266-1271.
    [31]Goshtasby A, Stockman G C. Point pattern matching using convex hull edges[J]. Systems, Man and Cybernetics, IEEE Transactions on.1985(5):631-637.
    [32]Sester MHild H, Fritsch D. Definition of ground-control features for image registration using GIS data[J]. International Archives of Photogrammetry and Remote Sensing.1998,32:538-543.
    [33]Hsieh Y CMckeown Jr D M, Perlant F P. Performance evaluation of scene registration and stereo matching for artographic feature extraction[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence.1992,14(2):214-238.
    [34]Alhichri H S, Kamel M. Virtual circles:a new set of features for fast image registration[J]. Pattern Recognition Letters.2003,24(9):1181-1190.
    [35]Matas JObdrzalek T, Chum O. Local affine frames for wide-baseline stereo[C]. IEEE,2002.
    [36]Hsieh Y CMckeown Jr D M, Perlant F P. Performance evaluation of scene registration and stereo matching for artographic feature extraction[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence.1992,14(2):214-238.
    [37]Moss S, Hancock E R. Multiple line-template matching with the EM algorithm[J]. Pattern Recognition Letters.1997,18(11):1283-1292.
    [38]Wang W, Chen Y. Image registration by control points pairing using the invariant properties of line segments[J]. Pattern Recognition Letters.1997,18(3): 269-281.
    [39]Dai X, Khorram S. Development of a feature-based approach to automated image registration for multitemporal and multisensor remotely sensed imagery[C]. IEEE,1997.
    [40]Govindu VShekhar C, Chellappa R. Using geometric properties for correspondence-less image alignment[C]. IEEE,1998.
    [41]Li HManjunath B S, Mitra S K. A contour-based approach to multisensor image registration[J]. Image Processing, IEEE Transactions on.1995,4(3):320-334.
    [42]Maitre H, Wu Y. Improving dynamic programming to solve image registration[J]. Pattern Recognition.1987,20(4):443-462.
    [43]Shin DPollard J K, Muller J. Accurate geometric correction of ATSR images[J]. Geoscience and Remote Sensing, IEEE Transactions on.1997,35(4):997-1006.
    [44]Li S ZKittler J, Petrou M. Matching and recognition of road networks from aerial images[C]. Springer,1992.
    [45]Canny J. A computational approach to edge detection[J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on.1986(6):679-698.
    [46]Marr D, Hildreth E. Theory of edge detection[J]. Proceedings of the Royal Society of London. Series B. Biological Sciences.1980,207(1167):187-217.
    [47]Li HManjunath B S, Mitra S K. A contour-based approach to multisensor image registration[J]. Image Processing, IEEE Transactions on.1995,4(3):320-334.
    [48]Maintz J Bvan den Elsen P A, Viergever M A. Comparison of edge-based and ridge-based registration of CT and MR brain images[J]. Medical image analysis.1996, 1(2):151-161.
    [49]Maintz J B Avan den Elsen P A, Viergever M A. Evaluation of ridge seeking operators for multimodality medical image matching[J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on.1996,18(4):353-365.
    [50]Zitova B, Flusser J. Image registration methods: a survey[J]. Image and vision computing.2003,21(11):977-1000.
    [51]Stockman GKopstein S, Benett S. Matching images to models for registration and object detection via clustering[J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on.1982(3):229-241.
    [52]Ton J, Jain A K. Registering Landsat images by point matching[J]. Geoscience and Remote Sensing, IEEE Transactions on.1989,27(5):642-651.
    [53]Fonseca L M, Costa M H. Automatic registration of satellite images[C]. IEEE, 1997.
    [54]Hsieh JLiao H M, Fam K, et al. A fast algorithm for image registration without predetermining correspondences[J]. IEEE,1996.
    [55]Bhattacharya D, Sinha S. Invariance of stereo images via the theory of complex moments[J]. Pattern Recognition.1997,30(9):1373-1386.
    [56]Wang CSun H, Yada S, et al. Some experiments in relaxation image matching using corner features[J]. Pattern Recognition.1983,16(2):167-182.
    [57]Smith S M, Brady J M. SUSAN—a new approach to low level image processing[J]. International journal of computer vision.1997,23(1):45-78.
    [58]Zheng ZWang H, Khwang Teoh E. Analysis of gray level corner detection[J]. Pattern Recognition Letters.1999,20(2):149-162.
    [59]Kitchen L, Rosenfeld A. Gray-level corner detection[J]. Pattern recognition letters.1982,1(2):95-102.
    [60]Dreschler L, Nagel H. Volumetric model and 3D-trajectory of a moving car derived from monocular TV-frame sequences of a street scene[C]. Morgan Kaufmann Publishers Inc.,1981.
    [61]Forstner W, Gulch E. A fast operator for detection and precise location of distinct points, corners and centres of circular features[C].1987.
    [62]Smith S M, Brady J M. SUSAN—a new approach to low level image processing[J]. International journal of computer vision.1997,23(1):45-78.
    [63]Zitova BKautsky J, Peters G, et al. Robust detection of significant points in multiframe images[J]. Pattern Recognition Letters.1999,20(2):199-206.
    [64]Wong R Y. Sensor transformations[J]. Systems, Man and Cybernetics, IEEE Transactions on.1977,7(12):836-841.
    [65]Van Wie P, Stein M. A landsat digital image rectification system[J]. Geoscience Electronics, IEEE Transactions on.1977,15(3):130-137.
    [66]Berthilsson R. Affine correlation[C]. IEEE,1998.
    [67]Barnea D I, Silverman H F. A class of algorithms for fast digital image registration[J]. Computers, IEEE Transactions on.1972,100(2):179-186.
    [68]Le Moigne JCampbell W J, Cromp R P. An automated parallel image registration technique based on the correlation of wavelet features[J]. Geoscience and Remote Sensing, IEEE Transactions on.2002,40(8):1849-1864.
    [69]Goshtasby AStockman G C, Page C V. A region-based approach to digital image registration with subpixel accuracy[J]. Geoscience and Remote Sensing, IEEE Transactions on.1986(3):390-399.
    [70]Koenderink J J, van Doom A J. Representation of local geometry in the visual system[J]. Biological cybernetics.1987,55(6):367-375.
    [71]Lindeberg T. Principles for automatic scale selection[J].1999.
    [72]Witkin A P. Scale-space filtering: A new approach to multi-scale description[C]. IEEE,1984.
    [73]Lindeberg T. Scale-space theory in computer vision[M]. Springer,1993.
    [74]Sporring JNielsen M, Florack L M, et al. Gaussian scale-space theory[M]. Kluwer Academic Publishers,1997.
    [75]Schmid C, Mohr R. Local grayvalue invariants for image retrieval[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence.1997,19(5):530-534.
    [76]Lindeberg T. Direct estimation of affine image deformations using visual front-end operations with automatic scale selection[C]. IEEE,1995.
    [77]Witkin A P. Scale-space filtering: A new approach to multi-scale description[C]. IEEE,1984.
    [78]Mikolajczyk K, Schmid C. Indexing based on scale invariant interest points[C]. IEEE,2001.
    [79]Lindeberg T. Scale-space theory: A basic tool for analyzing structures at different scales[J]. Journal of applied statistics.1994,21(1-2):225-270.
    [80]Harris C, Stephens M. A combined corner and edge detector. [C]. Manchester, UK,1988.
    [81]Schmid CMohr R, Bauckhage C. Comparing and evaluating interest points[C]. IEEE,1998.
    [82]Schmid CMohr R, Bauckhage C. Evaluation of interest point detectors[J]. International Journal of computer vision.2000,37(2):151-172.
    [83]Park S CPark M K, Kang M G. Super-resolution image reconstruction:a technical overview[J]. Signal Processing Magazine, IEEE.2003,20(3):21-36.
    [84]Baker S, Kanade T. Limits on super-resolution and how to break them[J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on.2002,24(9): 1167-1183.
    [85]Robinson D, Milanfar P. Statistical performance analysis of super-resolution[J]. Image Processing, IEEE Transactions on.2006,15(6):1413-1428.
    [86]Baker S, Kanade T. Super-resolution: Limits and beyond[M]. Springer,2002, 243-276.
    [87]Irani M, Peleg S. Super resolution from image sequences[C]. IEEE,1990.
    [88]Rav-Acha A, Peleg S. Two motion-blurred images are better than one[J]. Pattern Recognition Letters.2005,26(3):311-317.
    [89]Viallefont-Robinet F, Leger D. Improvement of the edge method for on-orbit MTF measurement[J]. Optics express.2010,18(4):3531-3545.
    [90]Richardson W H. Bayesian-based iterative method of image restoration[J]. JOSA.1972,62(1):55-59.
    [91]Lucy L B. An iterative technique for the rectification of observed distributions[J]. The astronomical journal.1974,79:745.
    [92]Rudin L IOsher S, Fatemi E. Nonlinear total variation based noise removal algorithms[J]. Physica D:Nonlinear Phenomena.1992,60(1):259-268.
    [93]Bioucas-Dias J MFigueiredo M A, Oliveira J P. Total variation-based image deconvolution: a majorization-minimization approach[C]. IEEE,2006.
    [94]Dey NBlanc Feraud L, Zimmer C, et al. Richardson-Lucy algorithm with total variation regularization for 3D confocal microscope deconvolution[J]. Microscopy research and technique.2006,69(4):260-266.
    [95]Wang YYang J, Yin W, et al. A new alternating minimization algorithm for total variation image reconstruction[J]. SIAM Journal on Imaging Sciences.2008, 1(3):248-272.
    [96]Rodriguez P, Wohlberg B. Efficient minimization method for a generalized total variation functional[J]. IEEE Trans. Image Process.2009,18(2):322-332.
    [97]Levin AFergus R, Durand F, et al. Image and depth from a conventional camera with a coded aperture[J]. ACM Transactions on Graphics (TOG).2007,26(3):70.
    [98]Rrishnan D, Fergus R. Fast Image Deconvolution using Hyper-Laplacian Priors.[C].2009.
    [99]Dong WFeng H, Xu Z, et al. A piecewise local regularized Richardson-Lucy algorithm for remote sensing image deconvolution[J]. Optics & Laser Technology. 2011,43(5):926-933.
    [100]Dong WZhang D, Shi G, et al. Image deblurring and super-resolution by adaptive sparse domain selection and adaptive regularization[J]. Image Processing, IEEE Transactions on.2011,20(7):1838-1857.
    [101]Fish D ABrinicombe A M, Pike E R, et al. Blind deconvolution by means of the Richardson-Lucy algorithm[J]. JOSA A.1995,12(1):58-65.
    [102]Stefan W. Image Restoration by blind deconvolution[Z]. Diploma Thesis, Technische Universitat Munchen (TUM) and Arizona State University,2003.
    [103]Chan T F, Wong C. Total variation blind deconvolution[J]. Image Processing, IEEE Transactions on.1998,7(3):370-375.
    [104]You Y, Kaveh M. Blind image restoration by anisotropic regularization[J]. Image Processing, IEEE Transactions on.1999,8(3):396-407.
    [105]Fergus RSingh B, Hertzmann A, et al. Removing camera shake from a single photograph[C]. ACM,2006.
    [106]Almeida M S, Almeida L B. Blind and semi-blind deblurring of natural images[J]. Image Processing, IEEE Transactions on. 2010,19(1):36-52.
    [107]Cho S, Lee S. Fast motion deblurring[C]. ACM,2009.
    [108]Xu Z, Lam E Y. Maximum< i> a posteriori blind image deconvolution with Huber-Markov random-field regularization[J]. Optics letters.2009,34(9):1453-1455.
    [109]Roth S, Black M J. Fields of experts: A framework for learning image priors[C]. IEEE,2005.
    [110]Goldstein T, Osher S. The split Bregman method for L1-regularized problems[J]. SIAM Journal on Imaging Sciences.2009,2(2):323-343.
    [111]Chen JDong W, Feng H, et al. High quality non-blind image deconvolution using the Fields of Experts prior[J]. Optik-International Journal for Light and Electron Optics.2013,124(18):3601-3606.
    [112]Tu THuang P S, Hung C, et al. A fast intensity-hue-saturation fusion technique with spectral adjustment for IKONOS imagery[J]. Geoscience and Remote Sensing Letters, IEEE.2004,1(4):309-312.
    [113]Choi M. A new intensity-hue-saturation fusion approach to image fusion with a tradeoff parameter[J]. Geoscience and Remote Sensing, IEEE Transactions on.2006, 44(6):1672-1682.
    [114]Freeman W TPasztor E C, Carmichael O T. Learning low-level vision[J]. International journal of computer vision.2000,40(1):25-47.
    [115]Levin AZomet A, Peleg S, et al. Seamless image stitching in the gradient domain[M]. Springer,2004,377-389.
    [116]Davis J. Mosaics of scenes with moving objects[C]. IEEE,1998.
    [117]Efros A A, Freeman W T. Image quilting for texture synthesis and transfer[C]. ACM,2001.
    [118]Milgram D L. Computer methods for creating photomosaics[J]. IEEE Transactions on Computers.1975,24(11):1113-1119.
    [119]Peleg SRousso B, Rav-Acha A, et al. Mosaicing on adaptive manifolds[J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on.2000,22(10): 1144-1154.
    [120]Adelson E HAnderson C H, Bergen J R, et al. Pyramid methods in image processing[J]. RCA engineer.1984,29(6):33-41.
    [121]Uyttendaele MEden A, Skeliski R. Eliminating ghosting and exposure artifacts in image mosaics[C]. IEEE,2001.
    [122]Burt P J, Adelson E H. The Laplacian pyramid as a compact image code[J]. Communications, IEEE Transactions on.1983,31(4):532-540.
    [123]Toet A. A morphological pyramidal image decomposition[J]. Pattern recognition letters.1989,9(4):255-261.
    [124]Burt P J, Kolczynski R J. Enhanced image capture through fusion[C]. IEEE, 1993.
    [125]Mallat S G. A theory for multiresolution signal decomposition:the wavelet representation[J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on. 1989,11(7):674-693.
    [126]Kwatra VSchodl A, Essa I, et al. Graphcut textures: image and video synthesis using graph cuts[C]. ACM,2003.
    [127]Duplaquet M. Building large image mosaics with invisible seam lines[C]. International Society for Optics and Photonics,1998.
    [128]Chen JFeng H, Pan K, et al. An optimization method for registration and mosaicking of remote sensing images[J]. Optik-International Journal for Light and Electron Optics. 2014,125(2):697-703.
    [129]Fischler M A, Bolles R C. Random sample consensus:a paradigm for model fitting with applications to image analysis and automated cartography[J]. Communications of the ACM.1981,24(6):381-395.
    [130]Stockman GKopstein S, Benett S. Matching images to models for registration and object detection via clustering[J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on.1982(3):229-241.
    [131]Goshtasby A, Stockman G C. Point pattern matching using convex hull edges[J]. Systems, Man and Cybernetics, IEEE Transactions on. 1985(5):631-637.
    [132]More J J. The Levenberg-Marquardt algorithm: implementation and theory[M]. Springer,1978,105-116.
    [133]Jia J, Tang C. Image stitching using structure deformation[J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on.2008,30(4):617-631.
    [134]Trucco E. Geometric Invariance in Computer Vision[J]. A1 Communications. 1995,8(3):193-194.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700