基于GIS的水沙运动模型信息可视化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄河是我国水利的重要工作对象,本文以“数字黄河”的重要组成部分之一“黄河下游基于GIS的二维水沙数学模型”为基础。针对复杂的数学模型需要一个表现平台对其进行可视化的需求,重点研究了如何使各种水沙运动模型信息快速、直观、丰富地表现在GIS平台上。研究的主要模块包括流速场符号化、水文信息分类渲染、流速场动画、三维可视化等,主要涉及的技术内容包括.Net、GDI、ArcGIS开发、时态GIS、OpenGL等。
     论文首先通过对流速场数据的特点和符号化要求的分析,研究了ArcGIS Engine符号渲染接口及其与GDI结合的方法,分别实现了使用字符进行组合和使用GDI绘制两种方法进行单一值符号渲染。通过对两者的比较,得到了它们各自的特点和分别适用的场合。
     论文同时研究了ArcGIS的分类渲染功能,重点研究对其渲染方法进行控制的方法。通过.Net平台上的开发,不依赖第三方组件地实现了分级渲染这种在水利工程上运用最为广泛的功能及基于GUI的自定义功能,实现效果与专业的Desktop相关功能类似,为ArcGIS Engine的开发提供了扩展方法和案例。
     基于对动画效果实现的原理和技术的研究,论文在历史水文信息和GIS结合的基础上,通过对数据关系的处理和时间的控制,实现了GIS平台上可控、高效的二维动画效果,为基于GIS开发动画效果,便于为决策分析提供直观的信息提供了重要的实现方法和案例。
     论文基于对OpenGL的研究和实践,通过对正射影像图形的像素处理模拟叠加水沙运动信息的过程,实现了水沙运动模型的三维可视化,并探讨了在此基础上进行三维动画演示的可行性和技术路线,为实现实时、美观的三维可视化提供了技术方案和案例。
     最后,论文基于以上可视化模块的实现,通过实例数据的分析和测试,验证了上述模块对水沙运动模型信息可视化的作用和表现效果。
The Yellow River is an important target of China's water conservancy, As an important part of“Digital Yellow River”,“Two-dimensional Water and Sand Mathematical Model at Middle and Lower Reaches of the Yellow River Based on GIS”is the base of this thesis. The mathematical models need a performance platform for their visualization, this thesis focus on how to make a variety of hydrological information fast, intuitive, rich performance on GIS platform. The main modules, including symbols of the velocity field, hydrological information classification rendering, animation flow field, three-dimensional visualization, and other, mainly involving the technical content including .Net, GDI, ArcGIS development, temporal GIS, OpenGL, and so on.
     First of all, the thesis analyzed the velocity field of data through the characteristics and requirements of the symbols, researched symbols of the ArcGIS Engine interface and the method of combining GDI, respectively, it achieved the use of characters mix and GDI to renderer a unique value symbol. By comparison of the two, it obtained their respective characteristics.
     At the same time, it researched the classification of ArcGIS exaggerated features, its exaggerated emphasis on methods of control methods. Through the development on the .Net Platform, do not rely on third-party components achieved such a classification in rendering water conservancy project on the use of the most widely-based GUI functions and custom features, achieved professional results with the related features similar to Desktop and provides a expansion method of ArcGIS Engine development and case.
     Based on the realization of the principles of animation and technical research, through the time of treatment and control, this thesis achieved a GIS platform controllable and efficient two-dimensional animation based on the history of hydrological information and GIS integration. Based on GIS for the development of animation, it facilitate decision-making intuitive analysis of information and provided an important method and case.
     Based on OpenGL research and practice, through the image pixel graphics processing to the simulation stack of water and sediment movement, this thesis achieved the 3-D model visualization of the water and sediment movement, and discussed 3-D animation Demonstration of the feasibility and technology on the basis of this, it provided the technology and case to achieve real-time, the handsome three-dimensional visualization.
     Finally, the thesis based on the above visualization module, through examples of data analysis and testing, verified the role of water and sediment movement model information visualization and performance results.
引文
[1]黄文彬.数字水利与地理信息系统.浙江水利水电专科学校学报,2003,15(4):33~35
    [2]钟登华,朱慧蓉,刘东等. GIS在水利水电工程建设中的应用与展望.中国水利,2003,(3):62~64
    [3]廖通逵,姚静,王平等.基于GIS的水流信息可视化表达.遥感信息,2004,(4):62~65
    [4]刘学,王兴奎,王光谦.基于G IS与数学模型集成的泥沙过程可视化分析系统.水科学进展,2000,11(3):235~240
    [5]梁国亭,姜乃迁,赖瑞勋等.基于GIS的黄河下游二维水沙数学模型可视化构件设计.人民黄河,2005,27(3):47~48
    [6] http://www.tianmomo.com/GIS/Knowledge/3779055965.html
    [7]陈华,郭生练,林凯荣等.流域水文时空数据模型初探.水利水电科技进展,2006,(6):10~12
    [8]尹章才,李霖. GIS中的时空数据模型研究.测绘科学,2005,(3):3~5
    [9] http://www.esrichina-bj.cn/library/气象行业解决方案.pdf
    [10] Jurgen Dollner, Klaus Hinrichs. An object-oriented approach for integrating 3D visualization systems and GIS. Computers & Geosciences,2000,(26):67~76
    [11] Urska Demsar, Kirlna Skeppstrom. Use of GIS and 3D visualization to investigate radon problem in groundwater. Scandinavian Research Conference on Geographical Information Systems,2005,39~51
    [12]韩敏,陈明.洪水演进模拟的三维可视化研究.计算机应用,2005,25(8):1906~1907
    [13]龚建雅. GIS中面向对象时空数据模型.测绘学报,1997,26(4):289~298
    [14] Microsoft,http://www.microsoft.com/china/windows/products/windowsvista/default.mspx
    [15] MSDN,http://msdn.microsoft.com/zh-cn/library/aa291755(VS.71).aspx
    [16] ESRI中国通讯,http://www.esrichina-bj.cn/library/arcnews15/news15-Engine.htm
    [17]邵颂东,王光谦,费详俊.流团模型在洪水计算中的应用.水动力学研究与进展,1997,(6):13~19
    [18]邵颂东,王光谦,费详俊.平面二维Lagrange-Euler方法及其在水流计算中的应用.水利学报,1997,(6):21~27
    [19] Macdougal EB. Dynamic statistical visualization of GIS. GIS/LIS Proceedings (1). 1991,158~165
    [20] Milne JA,Sear DA. Modeling river channel topography using GIS. J Geographical Information Science,1997,(5): 499~519
    [21] Ding YM. The integration of spatial analysis and GIS Computers. Environment and Urban Systems,1992,(16):3~19
    [22] Armenakis C,Siekierska EM. Issues on the visualization of time-dependent geographicalinformation. Proceedings of the Canadian Conference on GIS. 1991. 584~595
    [23] Schl Agel JD,Newtonm A. GIS-based statistic method to analyze spatial change. Photogrammetric Engineering & Remote Sensing,1996,(7):839~844
    [24] Moore LD. Digital terrain modeling: review of hydrological geomorphologic and biological applications. Hydraulically Processes,1991,(5):3~30
    [25]汪卫民.地理信息系统及其在水利行业中的应用.微型电脑应用,1998(03):12~15
    [26]李青元,刘纪平,雷兵等.基于GIS的桌面水利信息系统设计与实现.遥感信息,1998(51):90~94
    [27]李硕,曾志远,张运生.数字地形分析技术在分布式水文建模中的应用.地球科学进展, 2002(05):140~146
    [28]周晓峰,王志坚.“数字流域”剖析.计算机工程与应用,2003(3):104~106
    [29] Milne JA. Bed forms and bend-arc spacing of some coarse-bedload channels in upland Britain. Earth Surface Processes and Landforms,1982,(7):227~240
    [30] Sear DA. Morphological and sediment logical changes in a gravel-bed river following 12 years of flow regulation for hydropower. Regulated Rivers: Research and Management,1995,(10):247~264
    [31] Puppo E. Parallel terrain triangulation. Geographical Information Science,1994,(8):105~128
    [32] Goodchili MF,Robert H,Stephen W. Integrating GIS and spatial data analysis. Problems and Possibilities,Geographical Information Science,1992,(5):407~423
    [33]周德亮,丁继洪,马生忠.基于GIS的地下水模拟可视化系统开发的初步探讨.吉林大学学报(地球科学版). 2002,32 (2):158~162
    [34]张建春,彭补拙,徐瑞祥等.江苏省实时水情可视化分析系统的设计与应用.南京大学学报(自然科学版) . 2002,38(6):771~778
    [35]姚党生.黄河水污染原因、危害及防治对策.人民黄河,2004,(5)
    [36]连煜,宋世霞,彭勃等.黄河流域水资源保护规划.郑州:黄河流域水资源保护局,2001
    [37]李清泉,严勇,杨必胜等.地下管线三维可视化研究.武汉大学学报(信息科学版). 2003,28 (3):277~282
    [38]朱剑英.智能系统非经典数学方法.武汉:华中科技大学出版社,2001
    [39]李满春,余有胜.一个实用的城市地下管线网GIS数据结构.遥感信息,1999(3):15~18
    [40]谢丹俊,费奇.可视化技术在水利工程决策支持系统中的应用研究.水电能源科学,1996(02):134~139
    [41]罗鸿,王忠民. ERP原理·设计·实施.北京:电子工业出版社,2003,208~217
    [42]曹利军.可持续发展评价理论与方法.北京:科学出版社,1999
    [43]吴季松.水资源及其管理的研究与应用.北京:中国水利水电出版社,2000
    [44]吴信才:地理信息系统原理与方法,电子工业出版社,2002
    [45]部伦,刘瑜,张晶等.地理信息系统一原理、方法和应用.北京:科学出版社,2001
    [46]陈述彭.城市化与城市地理信息系统.北京:科学出版社,1999
    [47]郭达志.地理信息系统基础与应用.煤炭工业出版社,1997
    [48]陈述彭,鲁学军,周成虎.地理信息系统导论.北京:科学出版社,1999
    [49]龚健雅.地理信息系统基础.北京:科学出版社,2001

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700