对地观测网传感器资源共享管理模型与方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着地球环境的变化,人们对地球观测数据的需求日益复杂化,对地观测系统呈现多样性,对地观测网概念得以发展。对地观测网是执行地球环境事件感知任务的地理空间观测网,利用对地观测传感器对地球表面和低层大气进行探测,以获取用户感兴趣数据/信息。众所周知,传感器集成管理与协同观测是对地观测网的重大科学问题之一。
     对地观测传感器是地理空间数据获取的源泉。然而,对地观测传感器类型多样、观测机理各异、数量巨大,它们呈现出封闭、孤立和自治性。由于缺乏可共享的描述模型和科学的关联方法,在面对特定陆表事件时,传感器资源的配置不准确、不全面与不及时,直接导致应急响应时传感器规划与调度低效。因此,本文旨在将这些分布式、海量与异构的对地观测传感器资源共享管理起来,这有助于及时、准确与全面地规划与调度传感器,提高对地观测传感器的可管理性和应用效能。
     针对地观测网传感器资源的特点及其在陆表灾害事件监测时的低效应用,本文指出了传感器共享管理是对地观测网传感器集成管理与协同观测这一重大科学问题中迫切需要解决的一个基础问题。围绕这个问题,本文针对传感器共享管理框架进行深入的分析,从共享管理模型与方法上展开研究。即如何实现对地观测传感器共享管理,为特定陆表事件观测时传感器集成管理与协同规划奠定基础。
     首先,本文总结了现有传感器信息交换标准和相关元数据标准,分析了对地观测网传感器资源共享需求,通过扩展与重利用现有传感器相关的元数据标准,提出了传感器共享八元组元数据模型。基于MOF元级理论标准化定义了传感器资源描述元模型,建立了嵌套共享元数据的传感器资源描述模型,为实现传感器资源注册发现、协同规划、动态可视化管理奠定信息模型基础。
     其次,为了实现陆表事件与传感器的有机关联,本文提出了以陆表事件为中心的传感器关联方法。通过定义事件与传感器之间的关联规则,设计了基于时空约束的多层次匹配(MM-TL)算法,实现了从事件到传感器的科学关联,改变过去传感器调度与规划主要依靠被动与不完善的专家经验的局面,为对地观测网传感器集成管理与协同观测提供了可信的传感器依据。
     再次,基于开放地理信息联盟(OGC)的网络目录服务(CSW)规范,本文提出了基于传感器资源描述模型和OGC/CSW的传感器注册机制,通过扩展CSW核心信息模型以支持传感器注册,设计传感器资源描述模型与传感器注册信息模型之间的映射关系,实现基于OGC/CSW的传感器标准注册,为后续传感器发现提供网络目录服务中心。
     然后,结合已经建立的OGC/CSW传感器目录服务中心,设计细粒度多层次的传感器元数据查询项,基于OGC/CSW发现接口,实现传感器资源的按需发现。采用虚拟现实仿真技术,对符合要求的传感器资源一体化动态可视化,有助于传感器查询者对传感器基本信息、时空观测动态能力等信息的直观把握与理解,辅助传感器调度与规划决策生成。
     最后,应用本文所提出的共享管理模型与方法。构建了对地观测传感器共享管理平台框架,以长江流域中下游段水文环境监测传感器资源与内涝型洪涝事件为实验资源,验证了本文的共享管理模型与方法的有效性与可行性。
With the changes of the Earth environment, the demands of Earth Observation (EO) data are becoming increasingly complex, the EO systems are showing greatly diverse and thus the concept of EO web are urgently developing. EO web is a geospatial observation web that implements the event-aware task to the global environment. EO sensors are used to detect the Earth's surface and lower atmosphere for obtaining the data/information of interest to the user. As we all know, the integration management and collaboration observation of the EO sensors is one of the major scientific problems under the EO web environment.
     EO sensor is the source of geospatial data acquisition. However, due to the characteristics (such as:diverse observation mechanism, huge number, isolation and autonomous condition) of the EO sensors, when facing with one specific epicontinental event, the EO sensor allocation is always inaccurate, incomplete and time-lagging. The direct result is inefficiency to the sensor planning and dispatch. Therefore, this paper aims to the sharing management of those distributed, massive and heterogeneous EO sensors which facilitate the timely, accurate and comprehensive scheduling sensors, thus improving the manageability and application for the EO sensors.
     According to the analysis of sensor resources above and the inefficient response to the epicontinental disaster event under the EO web, this paper points out that the sensor sharing management is a basic problem for sensor integration management and collaboration. To solve this basic problem, this paper carries out the in-depth analysis for the sensor sharing management framework, including sensor sharing management model and methodology.
     Firstly, the paper starts with the summary to the existing sensor information exchange standards and related metadata standards and the analysis to the sensor resources'sharing requirements, through expansing and reusing the existing sensor-related metadata standards, this paper proposes a sensor sharing eight-tuple metadata model. Based on the MOF metamodel theory, this paper standardly defines sensor resource description metamodel and establishes the sharing metadata-nested sensor resource description model, which plays a basic information model for the achievement of registry, discovery, collaborative planning, and dynamic visualization to the EO sensors.
     Secondly, in order to achieve the organic association between the specific epicontiental event and EO sensors, this paper presents an epicontinental event-centric association method. This method defines the association rules between the event and EO sensors, and designs the Multi-level Matching Algorithm based on Time and Location Constraints (MM_TL). In this manner, the scientific association between event and sensors has been realized, and it changes the past situation of that sensor scheduling and planning mainly relies on passive and imperfect expertise. This association method can provide the trust sensor collection for the sensor integration management and collaborative observation.
     Thirdly, on the basis of Open GIS Consortium (OGC) Catalog Service for Web (CSW) specification, this paper proposes a standard sensor register mechanism, including the extending of CSW core information model for supporting sensor registry, designation of mapping relationship between sensor resource description model and sensor registry information model. Then, the OGC/CSW-based sensor register center can be established, which lays the foundation for sensor discovery in the following.
     Fourthly, depending on the OGC/CSW sensor register center mentioned above, this paper designs the fine-grained multi-level sensor metadata query items. By adopting the OGC/CSW discovery interface, the registered EO sensor resources can be discovered on demand. Through using virtual reality simulation technology, this paper integratively visualizes the retrieved sensor resources facilitating the sensor inquirers'intuitive grasp and understanding of sensor basic information and temporal-spatial dynamic abilities, thus aiding the required sensor planning and dispatch decision-making.
     Finally, this paper builds the EO sensor sharing management platform framework. By using the hydrological environment monitoring sensor resources in the downstream section of the Yangtze River basin and the waterlogging type flood event as the experimental resources, the application of proposed sharing management model and method has been examplified.
引文
[1]Joseph J.. Sensors and Sensor Systems Research and Development at APL with a View Toward the Future [J]. Johns Hopkins ApL TechnicAL DigesT.2005,26(4):350-357.
    [2]Goodchild M., Citizens as Sensors:The World of Volunteered Geography [J]. GeoJournal,2007, 69(4):211-221.
    [3]Butler D..2020 computing:everything, everywhere [J]. Nature,2006,440(7083):402-405.
    [4]李德仁.论广义空间信息网格和狭义空间信息网格[J].遥感学报,2005,9(5):513-520.
    [5]Balazinska M., Deshpande A., J. Franklin M., B. Gibbons P., Gray J., Nath S., Hansen M., Liebhold M, Szalay A., and Tao V.. Data Management in the worldwide sensor web [J]. IEEE Pervasive Computing,2010,6(2):30-40.
    [6]李德仁,邵振峰.论天地一体化对地观测网与新地理信息时代[A].见:《中国测绘学会第九次全国会员代表大会暨学会成立50周年纪念大会论文集》[C].北京:中国测绘学会,2009.
    [7]张钧屏,方艾里,万志龙.对地观测与对空监测[M].北京:科学出版社,2001.
    [8]OGC 07-000.OpenGIS Sensor Model Language (SensorML) Implementation Specification[S] (Version 1.0.0). Wayland, MA, USA:Open Geospatial Consortium,2007.
    [9]OGC 07-022rl. Observations and Measurements-Part 1-Observation schema[S] (Version 1.0). Wayland, MA, USA:Open Geospatial Consortium,2007.
    [10]OGC 06-009r6. OpenGIS Sensor observation service implementation specification[S] (Version
    1.0). Wayland, MA, USA:Open Geospatial Consortium,2007.
    [11]OGC 07-014r3. OpenGISTM Sensor Planning Service Implementation Standard[S] (Version 1.0). Wayland, MA, USA:Open Geospatial Consortium,2007.
    [12]OGC 09-001. OpenGIS Sensor Alert Service Implementation Spewecification[S] (Version 0.9.0). Wayland, MA, USA:Open Geospatial Consortium,2007.
    [13]OGC 03-008r2. OpenGIS Web Notification Service[S] (Version 0.1.0). Wayland, MA, USA, Open Geospatial Consortium,2003.
    [14]OGC 10-025r1. OpenGIS Observations and Measurements-XML Implementation[S] (Version 2.0). Wayland, MA, USA:Open Geospatial Consortium,2011.
    [15]OGC 12-006. OGC(?) Sensor Observation Service Interface Standard[S] (Version 2.0).Wayland, MA:USA Open Geospatial Consortium,2012.
    [16]OGC 09-000. OpenGIS Sensor Planning Service Implementation Standard[S] (Version 2.0). Wayland, MA, USA:Open Geospatial Consortium,2011.
    [17]OGC 08-094rl. OpenGIS SWE Common Data Model Encoding Standard[S] (Version 2.0.0). Wayland, MA, USA:Open Geospatial Consortium,2011.
    [18]OGC 08-132. OpenGIS Event Pattern Markup Language (EML) [S] (Version 0.3.0). Wayland, MA, USA:Open Geospatial Consortium,2008.
    [19]OGC 08-133. OpenGIS Sensor Event Service Interface Specification[S] (proposed) (Version 0.3.0). Wayland, MA, USA:Open Geospatial Consortium,2008.
    [20]Botts M., Percivall G., Reed C., and Davidson J.. OGC(?) Sensor Web Enablement:Overview And High Level Architecture[R]. Baltimore, MD:OGC,2007.
    [21]Chen C., and Helal S.. Sifting Through the Jungle of Sensor Standards [J], IEEE Pervasive Computing,2008,7:84-88.
    [22]Chen N. and Hu C.. A sharable and interoperable meta-model for atmospheric satellite sensors and observations [J]. IEEE Journal of Selected Topics in Applied Earth Observation and Remote Sensing.2012,5(5):1519-1530.
    [23]Simonis I., and Echterhoff J.. GEOSS and the Sensor Web[R]. George R. Brown Convention Center. Houston, Texas, USA:Open Geospatial Consortium,2008.
    [24]Di L.. Moe K., and Yu G.. Metadata requirements analysis for the emerging Sensor Web [J]. International Journal of Digital Earth,2009,2:3-17.
    [25]Lin S., Kalogeraki V., Gunopulos D., and Lonardi S.. Efficient Information Compression in Sensor Networks [J]. Int. J. Sens. Netw,2006, 1(3):229-240.
    [26]Nojeong H., and Varshney P k.. Energy-efficient deployment of Intelligent Mobile sensor networks [J]. System, IEEE Transactions on Man and Cybernetics, Part A,2005,35(1):78-92.
    [27]Chakrabarty K., lyengar S., and Hairong Q.. Grid coverage for surveillance and target location in distributed sensor networks [J]. IEEE Transactions on Computers,2002,51(12):1448-1453.
    [28]Alaiwy M., and Habib S.. Optimization of Actors Placement within Wireless Sensor-Actor Networks [A]. In:proc of 12th IEEE Symposium on Computers and Communications[C],2007, 179-184.
    [29]Commuri S., and Watfa M.. Coverage Strategies in Wireless Sensor Networks [J]. International Journal of Distributed Sensor Networks,2006,2(4):333-353.
    [30]Walkowski A.C.. On GSN Optimization Using a Model based Approach [A]. In:Pebesma E. J., Bishr M., and Bartoschek T.. GI-Days 2008 6th Geographic Information Days[C]. Munster, Germany: ifgiPrints,2008:123-130.
    [31]Commuri S., and Watfa M.. Coverage Strategies in Wireless Sensor Networks [J]. International Journal of Distributed Sensor Networks,2006,2(4):333-353.
    [32]Kulik L., Tanin E., and Umer M.. Efficient Data Collection and Selective Queries in Sensor Networks [A]. In:Nittel S., Labrinidis A. and Stefanidis A.. GeoSensor Networks,2nd International Conference (GSN 2006) [C]. Boston, MA, USA:Computer Science Springer,2008:25-44.
    [33]Reichenbach F., Born A., Nash E., Strehlow C., Timmermann D., and Bill R.. Improving Localization in Geosensor Networks through Use of Sensor Measurement Data [A]. In:Cova T. J., Miller H. J., Beard K., Frank A. U. and Goodchild M. F.. Geographic Information Science,5th International Conference (GIScience 2008)[C]. Springer:Computer Science,2008:261-273.
    [34]Cheng K., Lui K., and Tam V.. HyBloc:Localization in Sensor Networks with Adverse Anchor Placement [J]. Sensors,2009,9:253-280.
    [35]Akkaya K., and Younis M.. A Survey on Routing Protocols for Wireless Sensor Networks [J]. Ad Hoc Netw.2005,3:325-349.
    [36]Liu M., Cao J., Chen G., and Wang X.. An Energy-Aware Routing Protocol in Wireless Sensor Networks [J]. Sensors,2009,9:445-462.
    [37]Nittel S., Labrinidis A., and Stefanidis A.. Advances in GeoSensor Networks [A]. Lecture Notes in Computer Science[C]. Berlin, Germany:Springer,2008:25-44.
    [38]Reichenbach F., Born A., Nash E., Strehlow C., Timmermann D., and Bill R.. Improving Localization in Geosensor Networks through Use of Sensor Measurement Data [A]. In:Proceedings of Geographic Information Science 5th International Conference(GIScience 2008)[C].Park City, VT, USA,2008.
    [39]Cova T., Miller H., Beard K., Frank A., and Goodchild M.. Uncovering Interactions between Moving Objects [A]. In:Lecture Notes in Computer Science Springer[C]. Berlin, Germany,2008, 5266:261-273.
    [40]Cheng K., Lui K., and Tam V. Localization in Sensor Networks with Adverse Anchor Placement [J]. Sensors.2009,9:253-280.
    [41]刘先省,申石磊,潘泉.传感器管理及方法综述[J].电子学报,2002,3(30):394-398.
    [42]Simonis I.. OGC(?) Sensor Web Enablement Architecture [R], OGC White Paper,2008.
    [43]Botts M.. OpenGeo Sensor Web Enablement(SWE) Suite[R]. OpenGeo White Papers,2011.
    [44]Nash J. M. Optimal allocation of tracking resource [A]. In:Proceedings of the IEEE Conference on Decision and Control[C],1977:1177-1180.
    [45]Ng G.W., and Ng K.H.. Sensor management:what, why and how [J]. Information Fusion.2000, 1(2):67-75.
    [46]Broring A., Echterhoff J.. Jirka S., Simonis I., Everding C.,Stasch C., Liang S., and Lemmens R..New Generation Sensor Web Enablement [J]. Sensors,11(3):2652-2699.
    [47]Liang S., Tao V., and Croitoru A.. Sensor Web and GeoSWIFT an Open Geospatial Sensing Service [A]. In:International Society for Photogrammetry and Remote Sensing XXth Congress-Geolmagery Bridging Continents[C],2004:12-23.
    [48]Fairgrieve S., Makuch J., and Falke S.. PULSENet:An implementation of Sensor Web standards [A]. In:International Symposium on Collaborative Technologies and Systems[C]. Baltimore, MD, USA,2009:64-75.
    [49]Mandl D., Cappelaere P., Frye S., Sohlberg R., Ong L., Chien S., Tran D., Davies A., Falke S., Kolitz S., Zhao P., Di L., Chen N., Yu G., Smithbauer D., Ungar S., Derezinski L. and Botts M.. Sensor Web 2.0:Connecting Earth's Sensors via the Internet [A]. In:NASA Earth Science Technology Conference[C], Adelphi, MD, USA,2008.
    [50]Moodley D. and Simonis I.. A New Architecture for the Sensor Web:The SWAP Framework[A]. In l. Cruz, S. Decker, D. Allemang, C. Preist. D. Schwabe, P. Mika, M. Uschold, and L. Aroyo, editors. Lecture Notes in Computer Science[C].5th International Semantic Web Conference (ISWC 2006), Athens, GA, USA,2006:4273.
    [51]Santanche S., Nath J., Liu B., Priyantha and Zhao F.. Senseweb:Browsing the Physical World in Real Time [A]. In:International Conference on Information Processing in Sensor Networks (IPSN) [C], Nashville, USA,2006.
    [52]Chang K., Yau N., Hansen M., and Estrin D.. A Centralized Repository to SLOG Sensor Network Data [A]. In:International Conference on Distributed Computing in Sensor Networks (DCOSS)/ EAWMS[C], San Francisco, USA,2006.
    [53]Gorman B. L., Resseguie D. R., and Tomkins T.. Information Sharing Across Incompatible Sensor Systems [A]. In:International Symposium on CollaborativeTechnologies and Systems[C]. Baltimore, MD, USA:IEEE,2009:448-454.
    [54]章汉武,桂志鹏,吴华意.网格环境下空间信息服务注册中心的设计与实现[J].武汉大学学报(信息科学版),2008,33(5):533-536.
    [55]OGC 07-110r4.CSW-ebRIM Registry Service-Part 1:ebRIM profile of CSW [S]. Open Geospatial Consortium, Inc.,2007.
    [56]胡承芳.空间目录服务及跨协议的目录服务[D].武汉:武汉大学,2008.
    [57]Chen N., Di L., Yu G., Gong J., and Wei Y.. Use of ebRIM-based CSW with sensor observation services for registry and discovery of remote-sensing observations [J]. Computers & Geosciences,2009 (35):360-372.
    [58]Jirka S., Nist D., Schulte J., and Houbie F.. Integrating the OGC Sensor Web Enablement Framework into the OGC Catalogue [A]. WebMGS 2010:1st International Workshop on Pervasive Web Mapping, Geoprocessing and Services[C]. Como, Italy:ISPRS,2010:26-27.
    [59]52North.Sensor Discovery [EB/OL].:http://52north.org/communities/sensorweb /incubation/discovery/index.html,2011-5-15.
    [60]Chen N., Hu C., Chen Y., Wang C., and Gong J.. Using SensorML to construct a geoprocessing e-Science workflow model under a sensor web environment [J].Computers&Geoscience,2011,11(27): 1016-1025.
    [61]王建国.一种新型的传感器WEB标准-传感器WEB整合框架[J].小型微型计算机系统,2008,29(9):1647-1651.
    [62]王建国,阳叶.基于SWE的无线传感观测服务研究与实现[J].计算机与数字工程,2010,38(2):137-140.
    [63]曾宣皓,张旭,李凡,邓广,郭颖.基于自然保护区传感器网络的整合架构设计[J].林业科学研究,2008,21(增刊):126-129.
    [64]曾宣皓.面向林业监测的Sensor Web研究与应用[D].北京:中国林业科学研究院,2009.
    [65]郭忠文,孙玉婷,蒋永国,朝随.海洋Sensor Web研发面临的问题及挑战[J].中国海洋大学学报,2009,9(5):061-1066.
    [66]蒋永国.面向传感网的海洋观测数据集成关键技术研究[D].青岛:中国海洋大学,2010.
    [67]沈春山,吴仲城,蔡永娟,李云飞.面向广泛互操作的传感数据模型研究[J].小型微型计算机系统,2010,31(6):1046-1052.
    [68]蔡永娟,沈春山,吴仲城,申飞.基于SensorML和IEEE 1451的新型传感器网络标准研究[J].仪表技术,2010,1:1-4.
    [69]蒋锐.宋焕斌.朱杰勇.基于SensorWeb的矿山地质灾害监测预警[J].金属矿山,2010,411:162-165.
    [70]李欣,王伟,陈能成,王超.观测与测量标准在水文观测建模中的应用[J].测绘信息与工程,2011,36(2):43-45.
    [71]胡楚丽,陈家赢,陈能成,李欣,王伟.传感器建模语言(Sensor ML)在南极中山气象站的应用[J].测绘通报,2010,10:31-34.
    [72]陈家赢,陈能成,王伟,胡楚丽.基于SensorML的遥感卫星传感器建模方法[J].武汉大学学报(信息科学版),2010,35(8):971-974.
    [73]郑重,陈能成,王伟,杨士乐,彭彩华.传感器观测服务原型系统的设计与实现[J].测绘信息与工程,2010,35(3):47-49.
    [74]陈能成,狄黎平,龚健雅,郑重.基于Web目录服务的地学传感器观测服务注册和搜索[J].遥感学报,2008,12(3):411-419.
    [75]Chen N., Di L., Yu G. and Min M.. A flexible geospatial sensor observation service for diverse sensor data based on Web service [J]. ISPRS Journal of Photogrammetry and Remote Sensing,2009, 64(2):234-242.
    [76]Chen N., Di L., Yu G., and Gong J.. Automatic on-demand data feed service for autochem based on reusable geo-processing workflow [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2010,3(4):418-426.
    [77]Chen N., Li D., Di L. and Gong J.. An automatic SWILC classification and extraction for the AntSDI under a Sensor Web environment [J]. Canadian Journal of Remote Sensing,2010,36(S1): SI-S12.
    [78]罗开平,姜维,李一军.传感器管理述评[J].电子学报,2010,38(8):1900-1907.
    [79]Greenway P., and Deaves R. H.. Sensor management using the decentralized Kalman filter [A]. In: Proceeding of SPIE on Sensor Fusion[C]. Boston, MA, USA.1994,2355:216-225.
    [80]Schmaedeke W. W.. Information based sensor management [A]. In:Proceeding of SPIE on Signal Processing, Sensor Fusion, and Target Recognition[C]. Orlando, FL, USA.1993.1955:156-164.
    [81]Manyika J. M., and Durrant Whyte H. F.. An Information theoretic approach to management in decentralized data fusion [A]. In:Proceeding of SPIE on Sensor Fusion[C]. Boston, MA, USA.1992.1828:202-213.
    [82]Mahler R. P. S.. Global posterior densities for sensor management [A]. In:Proceeding of SPIE on Acquisition, Tracking, and Pointing[C]. Orlando, FL, USA.1998.3365:252-263.
    [83]Sonmez T.. Sensor Scheduling, Target Detection and Estimation in Sonar Applications [D]. Maryland:University of Maryland College Park,2003.
    [84]Gage A., and Murphy R. R.. Sensor scheduling in mobile robots using incomplete information via min conflict with happiness [J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics.2004,34(1):454-467.
    [85]06-131r6. OGC(?) Catalogue Services Specification 2.0 Extension Package for ebRIM (ISO/TS 15000-3) Application Profile:Earth Observation Products[S](Version 1.0.0).Wayland, MA, USA:Open Geospatial Consortium,2010.
    [86]09-163r2. OGC Catalogue Services Specification 2.0 Extension Package for ebRIM application Profile:SensorML[S].Wayland, MA, USA:Open Geospatial Consortium,2010.
    [87]Wang G., He Y., Yang Z., Mao S., and Lu D.. Adaptive sensor management in multisensor data fusion system [J]. Chinese Journal of Electronics,1999,8(2):136-139.
    [88]刘先省.传感器管理方法研究[D].西安:西北工业大学,2000.
    [89]龚健雅.对地观测传感网关键技术与地理国情监测[R].西安:曲江国际会议中心,2012.
    [90]Jirka S. and Broring A.. OWS-6 SensorML Profile for Discovery Engineering Report[R], Wayland, MA, USA:Open Geospatial Consortium Inc.,2009.
    [91]王卷乐,游松财,谢传节.地学数据共享中的元数据标准结构分析与设计[J].地理与地理信息科学,2005,21(1):16-21.
    [92]Craglia M., Bie K.D., Jackson D., Pesaresi M., Remetey-Fulopp G., Wang C., Annoni A., Bian L. Campbell F., Ehlers M., Genderen V.J., Goodchild M., Guo H., Lewis A., Simpson R., Skidmore A., and Woodgate P.. Digital Earth 2020:towards the vision for the next decade [J]. International Journal of Digital Earth,2012,5(1):4-21.
    [93]Jirka S., Broring A., and Stasch C.. Discovery Mechanisms for the Sensor Web [J]. Sensors,2009, 9:2661-2681.
    [94]06-010r6.OpenGISTM Transducer Markup Language (TML) Implementation Specification[S] (Version 1.0.0). Wayland, MA, USA:Open Geospatial Consortium,2007.
    [95]Agrawal R., Imielinski T., and Swami A.. Mining Association Rules Between sets of items in large databases [J]. ACM SIGMOD Record,1993,22(2):207-216.
    [96]刘丽萍,张强,孙雨耕.无线传感器网络多目标关联覆盖[J].天津大学学报,2009,42(6):483-489
    [97]陈江平,傅仲良.基于空间分析的空间关联规则提取[J].计算机工程,2003,29(11):29-31
    [98]马荣华,马小冬.GIS从数据库中挖掘空间关联规则研究[J].遥感学报,2005,9(6):733-741.
    [99]NASA/GCMD:NASA's Global Change Master Directory (GCMD), Directory Interchange Format (DIF) Writer's Guide,2011[EB/OL]:http://gcmd.nasa.gov/User/suppguide/,2011-09-13.
    [100]FGDC-STD-012-2002.Content Standard for Digital Geospatial Metadata:Extensions for Remote Sensing Metadata[S]. USA:Federal Geographic Data Committee,2002.
    [101]ISO 19115:Geographic Information_Metadata[S].ISO Standard,2003.
    [102]ISO19115-2:Geographic Information_Metadata_Part 2:Extensions for Imagery and Gridded Data[S]. ISO Standard,2007.
    [103]ISO 19130:Geographic Information_lmagery Sensor Models for Geopositioning[S]. ISOStandard,2008.
    [104]ISO 19130-2:Geographic information -- Imagery sensor models for geopositioning -- Part 2: SAR, InSAR, Lidar and Sonar[S].ISO Standard,2010.
    [105]Skelton, B., M. Stojic, and J. Sims,2009. Sensor to Internet:A Complete Workflow from Pixels to the Web with On-Demand Geo-Processing [EB/OL].: http://www.ifp.uni-stuttgart.de/publications/phowo09/280Skelton.pdf,2011-09-20.
    [106]NGA Standardization Document. Pushbroom/Whiskbroom Sensor Model Supporting Precise Geopositioning[S]. NGA,2009.
    [107]NGA Standardization Document. Spotlight Synthetic Aperture Radar (SAR) Sensor Model Supporting Precise Geopositioning[S]. NGA,2010.
    [108]NGA Standardization Document.Frame Sensor Model Supporting Precise Geopositioning[S].NGA,2011.
    [109]NGA Standardization Document.Light Detection and Ranging (LIDAR) Sensor Model Supporting Precise Geopositioning[S]. NGA,2011.
    [110]Lee K.. IEEE 1451:A Standard in Support of Smart Transducer Networking [A]. In: Proceedings of the 17th IEEE Instrumentation and Measurement Technology Conference[C]. Baltimore, Maryland:IEEE,2000:525-528.
    [111]OGC 08-124rl. OGC Ocean Science Interoperability Phase 1 Report (OGC Engineering Report0[S]. OGC,2008.
    [112]OGC. OGC(?) Sensor Instance Registry Discussion Paper [EB/OL].: https://portal.opengeospatial.org/modules/admin/license_agreement.php?suppressHeaders=0&access_li cense_id=3&target=http://portal.opengeospatial.org/files/%3fartifact_id=40609,2011-10-11.
    [113]OGC. OGC(?) Sensor Observable Registry Discussion Paper [EB/OL].: https://portal.opengeospatial.org/modules/admin/license_agreement.php?suppressHeaders=0&access_li cense_id=3&target=http://portal.opengeospatial.org/files/%3fartifact_id=35471,2011-10-24.
    [114]52North. Plugins for an SPS 1.0 [EB/OL].: http://52north.org/twiki/bin/view/Sensornet/SpsPlugins,2011-08-15.
    [115]EO-1.Sensor Web Enabled (SWE) Data Node[EB/OL].:http://eol.geobliki.com,2011-08-15.
    [116]EO-1. EOportal SPS[EB/OL].:http://services.eoportal.org/portal/service /ListService.do?rootCategoryId=1C809280,2011-08-15.
    [117]Xingchen C, Kobialka., and Durnota B.. Open Sensor Web Architecture:Core Services [A].In:Fourth International Conference on Intelligent Sensing and Information Processing[C]. Bangalore:IEEE,2006:98-103.
    [118]Chen Z., Chen N., Di L., and Yang C..2011. A flexible Data and Sensor Planning Service for virtual sensors based on Web Service [J]. IEEE Sensors Journal.11(6):1429-1439.
    [119]蒋景瞳,刘若梅,周旭,等.国家标准《地理信息元数据》研制与实现若干问题[J].地理信息世界,2003,1(5):1-5
    [120]OGC SensorML 2.0 draft:http://www.opengeospatial.org/standards/requests/93.2013.
    [121]陈家赢.对地观测传感器信息资源建模和管理研究[D].武汉:武汉大学,2010.
    [122]04-02lr3. OGCTM Catalogue Services Specification (version 2.0.0) [S]. OGC,2005.
    [123]05-025r3. OGCTM Catalogue Services-ebRIM (ISO/TS 15000-3) profile of CSW (version 1.0.0) [S].OGC,2006.
    [124]韦亚星.基于数据网格的地理空间信息协作共享系统研究[D].合肥:中国科学技术大学,2007.
    [125]OASIS. OASIS/ebXML Registry Information Model v2.5-Committee Approved Specification[S]. OASIS,2003.
    [126]OGC 07-110r4.CSW-ebRIM Registry Service-Part 1:ebRIM profile of CSW[S]. Open Geospatial Consortium Inc,2009.
    [127]杨珀,赵明霞.SOAP应用服务器的设计与实现[J].计算机应用,2003,23(11):106-109.
    [128]汪荣峰,廖学军.空间场景中传感器探测能力的可视化方法[J].计算机工程与设计.2013,33(2):826-830.
    [129]王若璞.基于TLE的空间目标碰撞预警计算[J].测绘科学技术学报,2009,26(4):269-271.
    [130]韦栋SGP4/SDP4模型精度分析[J].天文学报,2009,50(3):332-339.
    [131]白世伟,谷志孟.长江中下游洪涝灾害的成因分析及防御对策[J].岩石力学与工程学报.1998,17(6):701-704.
    [132]长江中下游地区百度百科[EB/OL]:http://baike.baidu.com/view/326742.htm,2011-11-03.
    [133]秦年秀,姜彤.基于GIS的长江中下游地区洪灾风险分区及评价[J].自然灾害学报.2005,14(5):1-7.
    [134]严恩萍,林辉,莫登奎.基于CIWl模型的洪湖市水体识别及动态监测[J].水生态学杂志,2011,32(6):14-19.
    [135]田慧云,周克勤.基于MODIS数据的湖泊水体识别[J].中国建设信息.2008,20:49-50.
    [136]宁德军,朱育雄,孙听.奏响软件交付的爵士乐-Jazz平台实践者之路[M].北京:清华大学出版社,2009:274.
    [137]温河.遥感应用系列讲座之洪涝灾害篇[EB/OL].http://wenku.baidu.com/view/f01b5629bd64783e09122bbc.html,2010.
    [138]谷琦.网络信息资源组织管理与利用[M].北京:科学出版社.2008:254.
    [139]上海市哲学社会科学规划课题组成员.信息资源管理的基本信息[R].上海:上海市哲学社会科学规划院,2008.
    [140]ISO/IEC 19502. Information technology-Meta Object Facility (MOF) [S]. International Standard Organization,2005.
    [141]Goldine A., and Konig P.. A technical overview of the information resource dictionary system [J]. Computers and Standards.1985,4(3):153-208.
    [142]陈亮.基于MDA的面向服务平台对象建模工具的研究与实现[D].吉林:吉林大学,2009.
    [143]杨永波.基于UML和MOF的建模工具的研究与实现[D].吉林:吉林大学,2006.
    [144]赵彧.基于元对象机制的多视图企业模型一致性问题[J].机械工程学报.2006,42(7):1-7.
    [145]何克清,何非,李兵,何扬帆,刘进,梁鹏,王种.而向服务的本体元建模理论与方法研究[J].计算机学报.2005,28(4):524-533.
    [146]ISO/IEC 19763-1:2007信息技术互操作性元模型框架第1部分:参考模型[S].北京:中华人民共和国国家质量监督检验检疫总局和中国国家标准化管理委员会.2007.
    [147]ISO/IEC 19763-1:2007信息技术互操作性元模型框架第2部分:核心模型[S].北京:中华人民共和国国家质量监督检验检疫总局和中国国家标准化管理委员会.2007.
    [148]ISO/IEC 19763-1:2007信息技术互操作性元模型框架第3部分:本体注册元模型[S].北京:中华人民共和国国家质量监督检验检疫总局和中国国家标准化管理委员会.2007.
    [149]ISO/IEC 19763-1:2007信息技术互操作性元模型框架第4部分:模型映射元模型[S]. 北京:中华人民共和国国家质量监督检验检疫总局和中国国家标准化管理委员会.2007.
    [150]何克清.本体元建模理论与方法及其应用[M].北京:科学出版社,2008.
    [151]李兵,何克清,刘进,李瑞轩.Web信息整合系统基础设施的研究[J].北京航天航空大学学报,2004,30(11):1048-1052.
    [152]推论统计学维基百科[EB/OL]:http://zh.wikipedia.org/wiki推论统计学,2011-08-11.
    [153]数据分析维基百科[EB/OL]:http://wiki.mbalib.com/wiki/数据分析,2011-08-13.
    [154]统计分析维基百科[EB/OL]:http://wiki.mbalib.com/wiki/统计分析,2011-08-15.
    [155]张少杰.统计学教程[M].北京:科学出版社,2009:282.
    [156]Feigenbaum E.. Panel:history of AI research 1965-67 [A]. In Proc. Of the 6th IJCAI[C], 1979:1103-1105.
    [157]杨兴,朱大奇,桑庆兵.专家系统研究现状与展望[J].计算机应用研究,2007,24(5):4-9.
    [158]LARIA.. Application of case-based reasoning in CPA decision-making [A]. In Proc of the 34th Annual Meeting of the Decision Sciences Institute[C]. Washington DC,2003:205-210.
    [159]KHAN A., and HOFFMANN A.. Building a case-based diet recommendation system without a knowledge engineer [J]. Artificial Intelligence in Medicine,2003,27(2):155-179.
    [160]Populaire S., and DENOEUX T.. Combining expert knodledge with data based on befief function theory:an application in waster water treatment [A]. In proc of IEEE International Conference of Systems[C]. Man and Cybernetics,2002:574-578.
    [161]于跃海,郑瑞强.基于案例推理的ICU应急诊断系统[J].系统工程理论与实践,2002,22(3):137-142.
    [162]安丽那,张十杰.专家系统研究现状及展望[J].计算机应用研究,2007,24(12):1-5.
    [163]郭秀娟.基于关联规则数据挖掘算法的研究[D].吉林:吉林大学,2004.
    [164]沈斌.关联规则技术研究[M].浙江:浙江大学出版社,2011:169.
    [165]陶再平.丛于约束的关联规则挖掘[M].浙江:浙江工商大学出版社,2012:139.
    [166]董研,邵良杉.时态关联规则挖掘综述[J].科技情报开发与经济,2005,16(10):241-242.
    [167]欧阳为民,蔡庆生.在数据库中发现具有时态约束的关联规则[J].软件学报,1999,10(5):527-532.
    [168]丁祥武.挖掘时态关联规则[J].武汉交通科技大学学报,1999,23(4):365-367.
    [169]葛登科,王亚民.基于GIS的空间关联规则挖掘方法研究[J].现代图书情报技术,2009,7(8):97-101.
    [170]张雪伍,苏奋振,石忆邵,张丹丹.空间关联规则挖掘进展[J].地理科学进展,2007,26(6):119-131.
    [171]张现忠.语义传感器Web中传感器本体构建研究[D].大连:大连海事大学,2011.
    [172]Rahm B., and Bernstein P A.. A survey of approaches to automatic schema matching [J]. The International Journal on Very Large Data Bases,2001,10(4):334-350.
    [173]何杰.多版本开放式地球空间网络服务统一访问方法研究[D].武汉:武汉大学,2010.
    [174]ISO 19136.ISO 19136:2007 Geographic information-Geography Markup Language (GML) [S], International Standard Organization,2007.
    [175]李庆云,魏娟杰.基于多层匹配筛选的web服务发现模型的研究[J].计算机应用与软件,2010,27(6):142-144.
    [176]李德仁.论空天地一体化对地观测网络[J].地球信息科学学报,2012,14(4):419-425.
    [177]李德仁,童庆禧,李荣兴,龚健雅,张良培.高分辨率对地观测的若干前沿科学问题[J].中国科学:地球科学,2012,6:805-813.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700