温室气体CH_4卫星遥感监测初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甲烷是一种重要的大气微量成分,其浓度变化对大气的化学过程具有重要的作用,同时它也是一种重要的温室气体,甲烷在空气中的含量远远低于二氧化碳,大约1.7ppmv。最新的第四次IPCC评估报告指出:全球温室效应中甲烷所起的作用约占20%,仅次于CO2。但单位浓度CH4的温室效应比CO2大20倍,大气CH4持续增长会对地球的辐射平衡产生效应,直接影响气候变化。CH4还是大气中最重要的化学活性含碳化合物,与对流层OH自由基作用,在大气O3和HxOy的化学中起着重要作用,影响大气化学过程和人类生存环境。全球各个地面观测站包括我国瓦里关站多年观测结果显示大气中CH4浓度呈增长态势,目前其浓度已是工业化前的两倍多,为了深入研究甲烷的源和汇及其变化规律,近10年来各国科学家开始大力开展卫星遥感监测工作。
     目前国内对大气痕量成分的高光谱卫星探测研究处于起步阶段,星载高光谱卫星探测仪已经开始研制,未来几年有望升空投入试验应用,急需开展包括CH4在内的多种痕量大气成分反演方法以及地基验证的研究工作。鉴于此,本论文在对美国、加拿大以及欧洲当前高光谱大气成分遥感探测仪调研基础上,对可以用于CH4遥感的TES、ACE-FTS、MIPAS、IASI、MOPITT、SCIAMACHY等卫星遥感器以及用于地基观测的傅立叶变换红外光谱仪,从仪器参数、指标性能、资料反演方法、CH4遥感产品及应用等方面进行了综述。重点分析和比较了权重吸收光谱(WFM-DOAS)、优化拟合(OEM)和人工神经网络(SA-NN)方法原理和特点。考虑到已投入研制的我国星载高光谱仪器的特点,本文对反演CH4廓线的优化拟合方法(OEM)进行了研究,在分析了CH4红外、近红外波段吸收特性后,利用欧洲Metop卫星IASI红外光谱资料,选择合适的红外波段进行了反演算法的试验研究,并把CH4柱总量反演结果与欧洲官方神经网络反演结果比较验证,同时利用国家卫星气象中心地基高光谱大气成分FTIR平台开展的CH4柱总量结果对卫星遥感结果进行了验证。最后,利用国外卫星遥感产品对中国区域CH4时空分布特征进行了分析,得到了初步结果,主要结论如下:
     1)CH4在红外、近红外波段主要有三个较强吸收波段可用于卫星遥感,分别为:7.6um(1200~1400 cm?1 ) ,3.3um(2900~3150 cm?1 )和2.3um(4100~4500 cm?1 )。由于CH4吸收波段存在H2O、N2O、O3、CO等吸收成分的吸收带重迭,将一定程度上影响CH4廓线的反演精度。
     2)利用辐射传输模式模拟分析卫星星下和临边观测结果表明:1在红外7.6um波段,对5~15km高度的CH4敏感性最高;而3.3um和2.3um波段,则对0~5km高度处的CH4敏感性最高。因此采用7.6um与3.3um或者7.6um与2.3um波段进行组合的方式进行遥感,可以包含不同高度的CH4浓度信息。2同星下观测方式比较,临边遥感方式,受低层大气发射的影响要弱得多,有利于减少干扰气体的影响;另一方面,临边方式可以采用多组扫描角度(不同的切线高度),观测光谱中包含的目标大气成分垂直分布信息自由度较高,因此临边遥感方式有利于获得高层CH4廓线信息。理论上来说临边、星下联合卫星观测方式可以更好的进行CH4遥感反演。
     3)对CH4吸收波段不同光谱分辨率卫星观测模拟分析表明:采用0.0Xcm?1量级分辨率观测光谱能够很好的捕捉到大气CH4吸收特征。
     4)本论文,基于IASI红外7.6um波段观测光谱,为减弱H2O、N2O干扰成分的影响,选择了(1320~1360cm?1)微窗口用于反演,开发了使用优化拟合算法进行CH4廓线和总量反演的SATFIT程序,用于实际反演。在选择的三个北半球中高纬不同区域上比较SATFIT与欧洲官方神经网络CH4柱总量反演结果,得到很好的一致性结果;IASI反演结果与国家卫星气象中心大气成分高光谱地基FTIR初步观测结果比较,CH4柱总量偏差控制在20%以内,进一步验证了SATFIT反演结果的有效性。由于使用SATFIT进行物理反演过程中遇到反演结果不稳定和反演耗时的问题,考虑到两种主要反演方法(统计反演和物理反演)的优缺点,同时兼顾实际业务运行的需求,建议采用统计反演与物理反演相结合方式进行反演数据处理。
     5)利用SCIAMACHY、AIRS、TES遥感产品分析中国区域近年来CH4的时空分布特征,结果表明:1中国区域CH4均匀混合比东南部平均含量较高,青藏高原地区为低值中心;一年四季存在明显的季节波动,夏季最高,冬、春季含量最低。2中高层CH4混合比内陆西北地区含量较高,东部、南部等地区含量较低;表现出明显的季节变化特征,夏季最高,春季最低;内陆青藏高原地区在夏季季风时段有明显的高值凸出。3中国区域中高层CH4廓线高值时段有空间和持续时间延伸的趋势,并且强度有所增强,而低层表现相对不太明显。
     本论文的主要特色:1)系统回顾并比较了当前国际上用于温室气体CH4探测的卫星遥感器和反演算法;有益于我国温室气体卫星遥感监测研究。2)分析了CH4在红外、近红外波段的吸收特性,根据模拟结果定性给出CH4卫星遥感的理想光谱观测。3)开发了基于优化拟合的CH4物理反演算法,用于实际反演,与官方反演结果比较一致性较好;并首次在中国区域开展地基FTIR大气成分遥感监测研究,用于卫星反演产品的地基验证。4)利用国外卫星数据给出中国区域CH4时空分布变化特征。本论文研究只是一个开端,卫星遥感反演CH4难度较大,国内有关研究相对匮乏,随着我国卫星的发展,需要深入研究卫星遥感CH4所需要的最佳光谱选择,为我国大气成分遥感器的设计制造提供参考资料;进一步完善SATFIT资料处理方法,在卫星产品地基验证的基础上,对中国区域CH4时空分布特征进行监测,并给出分析结果,为政府决策提供科学依据。
As one of the most important trace gases in the earth atmosphere, methane(CH4) plays an important role in the atmospheric chemistry, while it is also an im-portant greenhouse gas just next to carbon dioxide (CO2). IPCC4th assessmentreport shows: despite the about 200 times smaller atmospheric burden of methane(about 1.7ppmv) compared to CO2 this increase constitutes about 20%of the an-thropogenic climate forcing by greenhouse gases because on a per molecule basismethane is a much more e?ective greenhouse gas than CO2. CH4 is also one of themost important chemical activities of carbon-containing compounds. It can a?ectthe atmospheric ozone (O3) and HxOy chemical reaction because it’s reaction withthe hydroxyl radical (OH) in the troposphere. Many ground-based stations observedresults shows: the atmospheric CH4 concentrations have more than doubled since thepre-industrial era; the growth rate of CH4 was slow down after 2000, but a signif-icant increase from 2006 to 2007. The growth of CH4 concentrations will produceimportant e?ects on the Earth’s radiation balance and then give direct impact onclimate change. But the quantification of global methane emissions still has largeuncertain, as the CH4 emissions have a large spatial and temporal variation and ourground-based observations are limited. To better understand the emissions and sinksof methane, many scientists have carried out a large number of satellite remote sens-ing monitoring of the methane.
     Now it is just beginning in our country to make research on remote sensing ofthe atmospheric trace constituents by high-spectral satellite. In the next few years,we will pay close attention on the high-spectral satellite detector development, butalso urgently we need to make more research on a variety of trace atmospheric con-stituents (including the greenhouse gases methane) retrieval methods and ground-basevalidation work. In view of this, this paper makes an investigation on the UnitedStates, Canada and Europe’s hyper-spectral remote sensing instruments, which areused to measure the atmospheric trace gases in orbit. Then give a introduction of theTES, ACE-FTS, MIPAS, IASI, MOPITT, SCIAMACHY and the ground-base FTIRinstruments, which can be used to detect methane in the atmosphere, though theinstruments parameters, indicators performance, data processing methods and theirCH4 product. Base on this, we did a summary of the current international retrievalmethods used for methane remote sensing focusing on analysis and comparison ofthe principal and characteristics of weighting-function DOAS (WFM-DOAS) method, optimal estimation method (OEM) and the artificial neural method (SA-NN). Con-sidering the direction of our satellite development, we make a research on the OEMretrieval method, which can be used to get methane profile information. After a studyon the CH4 absorption characteristics in the infrared and near-infrared band, we se-lect a appropriate spectral micro-window for algorithms research and developmentbased on the IASI infrared spectroscopy. To validation our methane retrieval results,we compared our CH4 total column results with the o?cial results, which get by theSA-NN method. Also, we compare our retrieval result with the ground-base FTIRmeasurements made by the National Satellite Meteorological Center of China Meteo-rological Administration. Finally, CH4 remote sensing products from foreign satelliteare used to drive the spatial and temporal distribution characteristics in China’s re-gional.
     By the methane absorption characteristics analysis, we find there are three dis-tinct spectral windows (7.6um (1200~1400cm?1), 3.3um (2900~3150cm?1) and 2.3um(4100~4500cm?1)) can be used for satellite remote sensing. Also it always exist otherinterfering gases such as H2O, N2O, O3, CO in these CH4 absorption bands, whichwill largely a?ect the accuracy of the CH4 profile inversion. Satellite Nadir and Limbways remote sensing of high sensitivity of-band simulation results show that: 1) themethane infrared absorption band 7.6um is sensitivity mainly in 5 15km; the highsensitivity of 3.3um and 2.3 um bands is mainly in 0 5km. Taking into account thethree-band range of di?erent highly sensitive, in theory, the remote sensing method tocombine 4.7um and 3.3um or 4.7um and 2.3um bands can contain di?erent levels ofCH4 profile information, which is conducive to accurate inversion. 2) The Limb wayremote sensing is more sensitive to senior methane in the atmosphere. On one hand,usually the satellite limb observations is less a?ected by the lower atmospheric emis-sion spectra relative to the Nadir observations, which means the limb remote sensingis much more conducive to reducing the impact of interference gases; on the otherhand, Limb manner of remote sensing can use multiple scan angle (di?erent tangentheight) to do the observations, so the spectrum contains more information on thevertical distribution (higher degree of freedom) of our goal atmospheric constituents,which may drive a higher vertical resolution result. In theory, the way to combineboth the Nadir and Limb observation can do a better CH4 remote sensing. Spectralresolution is another important factor to a?ect the inversion accuracy. Compare andanalysis characterization and residue of di?erent resolution spectrum from model, alsoconsidering the theory CH4 absorption line broadening width by the atmosphere,thechoice of 0.0Xcm-1 order of magnitude of the spectral resolution remote is proposed to do the methane remote sensing inversion.
     In the methane profile retrieval algorithm research, considering the H2O, N2Ointerference in the CH4 7.6um absorption band covered by IASI infrared observationspectrum, we chose (1320~1360cm?1) as our retrieval micro-window and then developa program called SATFIT to do the methane profile and total column amount retrievalwork, which is based on the optimal estimation method. To validate the SATFIT re-trieval results, we compare SATFIT total amount of CH4 retrieval results on threedi?erent choose regions of the Northern Hemisphere high latitudes with o?cial SA-NN products, the results show good agreement in all these areas. Also comparingthe IASI retrieval result with NSMC FTIR initial observation, results shows the de-viation of CH4 total column amount is less than 20%. Based on the encounteredproblems (the inversion results of instability and inversion time-consuming) in theusing of SATFIT physical inversion, also taking into account the two main inversionmethods (statistical inversion and physical inversion) advantages and disadvantagesand the actual business needs to run, it is recommended to use statistical inversioncombined with the physical inversion approach to do the inversion data processing.Though the simulation analysis the di?erent height sensitivity of CH4 absorptionbands characteristics, we believe that the SCIAMACHY CH4 products used 2.3umband to do the retrieval re?ects lower CH4 concentration information in the atmo-sphere; the AIRS and IASI CH4 products used infrared 7.6um to do the retrievalre?ects the distribution characteristics of CH4 in the high-level; Theoretically, theTES which covers both the 3.3um and 7.6um CH4 absorption bands can give an ideallow-rise to high-level distribution characteristics of CH4 in the atmosphere. Based onthis, this paper gives the preliminary monitoring results of CH4 spatial and temporaldistribution in China’s region by the SCIMACHY, AIRS, TES years of remote sensingproduct. The average mixing ratio of CH4 is higher in the southeast of China than inthe northwest. Qinghai-Tibet Plateau is the low CH4 concentration center. There issignificant season’s variation for average mixing ratio of CH4 with a peak in summertime. But in the top of troposphere CH4 mixing ratio is higher in the northwestthan in the south and east of China. CH4 mixing ratio in the area of Qinghai-TibetPlateau shows a high value during summer monsoon. CH4 profiles from TES productshows a high value in the height of 180PHa. Trends analysis suggests that this highvalue increase during these years.
     It is di?culty to get accuracy atmospheric trace gases concentration from satelliteremote sensing: on one hand, the atmospheric trace elements in the satellite remotesensing spectral signal is very weak, so its detection requires a satellite sounder with both higher spectral resolution (0.0Xcm?1 order of magnitude) and higher spectralsignal to noise ratio; on the other hand, processing such a huge amount of data fromhyper-spectral satellite is more complicated and the atmospheric composition infor-mation retrieval technology is still not perfect. Our country’s satellites still do nothave the ability to remote sensing CH4. The inversion study of atmospheric tracegases in this paper is only a beginning. With the developing of our satellites, we needto do more research on the atmospheric composition information retrieval technol-ogy. This paper’s research could be a good base for future developing Chinese ownsatellite constitute instrument, expanding methane retrieval method and applicationof the production.
引文
[1] IPCC AR4 SYR Appendix Glossary.
    [2] The elusive”absolute surface air temperature,”see GISS discussion.
    [3] Kiehl, J. T.; Kevin E. Trenberth (February 1997).”Earth’s Annual Global Mean EnergyBudget”. Bulletin of the American Meteorological Society 78 (2): 197-208.
    [4] Chapter 3, IPCC Special Report on Emissions Scenarios, 2000.
    [5]”Technical summary”. Climate Change 2001. United Nations Environment Programme.http://www.grida.no/climate/ipcc_tar/wg1/017.htm.
    [6]王明星.大气化学.气象出版社. 2003. 117-124.
    [7]秦瑜,赵春生.大气化学基础.气象出版社. 2003. 50-51.
    [8]”Trace Gases: Current Observations, Trends, and Budgets”. Climate Change 2001. UnitedNations Environment Programme.
    [9] http://www.esrl.noaa.gov/gmd/Photo_Gallery/GMD_Figures/ccgg_figures/tn/ch4_surface_color.png.html, 2009.
    [10]周凌晞,李金龙,汤洁等.瓦里关山大气CH4本底变化.环境科学学报, Vol. 24, 2004, 91-95.
    [11]刘立新,周凌晞,温民等.中国4个国家级野外站大气CH4本底浓度变化特征.气候变化研究进展, Vol 5, 2009, 285-290.
    [12]王木林,温玉璞,程红兵.中国大陆对流层大气中甲烷(CH4)浓度的背景特征研究.气象学报,Vol 51, 1993, 485-489.
    [13]张兴赢,张鹏,方宗义等.应用卫星遥感技术监测大气痕量气体的研究进展.气象, 2007, 33:1-14.
    [14] C. Frankenberg, J. F. Meirink, P. Bergamaschi, etc al. Satellite chartography of atmosphericmethane from SCIAMACHY on board ENVISAT: Analysis of the years 2003 and 2004, J.Geophys. Res., 2006, 111, D07303, doi:10.1029/2005JD006235.
    [15] C. Frankenberg, et al. (2008), Tropical methane emissions: A revised view from SCIA-MACHY onboard ENVISAT, Geophys. Res. Lett., 35, L15811, doi:10.1029/2008GL034300.
    [16] Ruth, S., R. Kennaugh, L. Gray, and J. Russell III (1997), Seasonal, semiannual, andinterannual variability seen in measurements of methane made by the UARS HalogenOccultation Experiment, J. Geophys. Res., 102(D13), 16189-16199.
    [17] H. Kanzawa, et al. (2003), Validation and data characteristics of nitrous oxide and methaneprofiles observed by the Improved Limb Atmospheric Spectrometer (ILAS) and processedwith the Version 5.20 algorithm, J. Geophys. Res., 108, 8003, doi:10.1029/2002JD002458.
    [18] V. H. Payne, S. A. Clough, M. W. Shephard, et al. (2009), Information centered rep-resentation of retrievals with limited degrees of freedom for signal: Application tomethane from the Tropospheric Emission Spectrometer, J. Geophys. Res., 114, D10307,doi:10.1029/2008JD010155.
    [19] M. K. Ejiri, et al. (2006), Validation of the Improved Limb Atmospheric Spectrometer-II(ILAS-II) Version 1.4 nitrous oxide and methane profiles, J. Geophys. Res., 111, D22S90,doi:10.1029/2005JD006449.
    [20] X. Xiong, C. Barnet, E. Maddy, et al. (2008), Characterization and validation of methaneproducts from the Atmospheric Infrared Sounder (AIRS), J. Geophys. Res., 113, G00A01,doi:10.1029/2007JG000500.
    [21] Zahn, A., R. Neubert, M. Maiss, et al. (1999), Fate of long-lived trace species near theNorthern Hemispheric tropopause: Carbon dioxide, methane, ozone, and sulfur hexa?uo-ride, J. Geophys. Res., 104(D11), 13923-13942.
    [22] Razavi, A., Clerbaux, C., Wespes, et al. Characterization of methane retrievals from theIASI space-borne sounder, Atmos. Chem. Phys., 9, 7889-7899, 2009.
    [23] Jin, J. J., Semeniuk, K., Beagley, S. R., et al. Comparison of CMAM simulations of car-bon monoxide (CO), nitrous oxide (N2O), and methane (CH4) with observations fromOdin/SMR, ACE-FTS, and Aura/MLS, Atmos. Chem. Phys., 9, 3233-3252, 2009.
    [24] Xiong, X., Houweling, S., Wei, J., Maddy, et al. Methane plume over south Asia duringthe monsoon season: satellite observation and model simulation, Atmos. Chem. Phys., 9,783-794, 2009.
    [25]钟锡华.现代光学基础.北京大学出版社. 2007, P192.
    [26]赵凯华,钟锡华.光学.北京大学出版社. 1984, 309-310.
    [27] G. Chalon, F. Cayla and D. Diebel, 2001 IASI: An Advanced Sounder for OperationalMeteorology Proceedings of the 52nd Congress of IAF, Toulouse France, 1-5 Oct. 2001
    [28] Reinhard Beer, Thomas A. Glavich, and David M. Rider,”Tropospheric emission spec-trometer for the Earth Observing System’s Aura satellite,”Appl. Opt. 40, 2356-2367(2001)
    [29] Bernath, Peter (2005), Atmospheric Chemistry Experiment: Spectroscopy from Orbit,Optics Photonics News, Optical Society of America, pp. 24-27.
    [30] Bernath, Peter (2001), The Atmospheric Chemistry Experiment (ACE): An Overview,Spectroscopy from Space, Kluwer Academic Publishers, pp. 147-161.
    [31] Marco Ridolfi, Luca Magnani, Massimo Carlotti, and Bianca Maria Dinelli,”MIPAS-ENVISAT Limb-Sounding Measurements: Trade-O? Study for Improvement of HorizontalResolution,”Appl. Opt. 43, 5814-5824 (2004)
    [32] Olaf Trieschmann and Christian Weddigen,”Thermal Emission from Dielectric Beam Split-ters in Michelson Interferometers: a Schematic Analysis,”Appl. Opt. 39, 5834-5842 (2000)
    [33] George M. Russwurm and Bill Phillips,”E?ects of a Nonlinear Response of the Fourier-Transform Infrared Open-path Instrument on the Measurements of Some AtmosphericGases,”Appl. Opt. 38, 6398-6407 (1999)
    [34] Peter R. Gri?ths, James A. De Haseth. Fourier Transform Infrared Spectrometry. FourierTransform Infrared Spectrometry. A JOHN WILEY & SONS, INC., PUBLICATION. 2007.
    [35] http://tes.jpl.nasa.gov, 2009.
    [36] Beer, R, TES on the Aura Mission: Scientific Objectives, Measurements, and AnalysisOverview, IEEE Trans. Geosci. Remote Sensing, 44, 1102- 1105, May 2006.
    [37] http://tes.jpl.nasa.gov/visualization/l3plots/, 2009.
    [38] Ho, S., D. P. Edwards, J. C. Gille, et al., A global comparison of carbon monoxide pro-files and column amounts from Tropospheric Emission Spectrometer (TES) and Mea-surements of Pollution in the Troposphere (MOPITT), J. Geophys. Res., 114, D21307,doi:10.1029/2009JD012242, 2009.
    [39] Lopez, J. P., M. Luo, et al., TES carbon monoxide validation during two AVE campaignsusing the Argus and ALIAS instruments on NASA’s WB-57F, Journal of GeophysicalResearch, 113, doi:10.1029/2007JD008811, D16S47, August 15, 2008.
    [40] http://www.ace.uwaterloo.ca, 2009.
    [41] P.F. Bernath,C.T. McElroy, M.C. Abrams etc. Atmospheric Chemistry Experiment(ACE): Mission overview. Geophysical Research Letters,VOL.32,L15S01, doi: 10.1029/2005GL022386, 2005.
    [42] http://www.leos.le.ac.uk/mipas/,2009.
    [43] T. von Clarmann, T. Chidiezie Chineke, H. Fischer, B. Funke, et al. Remote Sensing ofClouds and the Atmosphere VII, K. Sch?fer, O. Lado-Bordowsky, A. Comerón, and R.H.Picard (Eds.). Proceedings of SPIE Vol. 4882, SPIE, Bellingham, WA, USA, 172-183, 2003.
    [44] Remedios, J. J., D. P. Moore, P. Meacham, et al, New measurements of trace species inthe upper troposphere from infra-red spectra of the atmosphere, Proceedings of the NATOremote sensing of the atmosphere for environmental security workshop held in Rabat,Morocco in November 2005.
    [45] http://smsc.cnes.fr/IASI/GP_satellite.htm, 2009.
    [46] D.Blumstein, G.Chalon, T.Carlier, C.Buil, P.Hébert, T.Maciaszek, G.Ponce, T.Phulpin,B.Tournier, D.Siméoni, et al., 2004 IASI instrument: Technical Overview and measuredperformances SPIE Conference, Denver (Co), August 2004 SPIE 2004-5543-22
    [47] F. Aires, W.B Rossow, N.A. Scott etc. Remote sensing from the infrared atmosphericsounding interferometer instrument. Journal of Geophysical R esearch, VOL.107, NO. D22,460, doi: 10.1029/2001/JD001591,2002.
    [90] J.Hadji-Lazaro, C.Clerbaux and S.Thiria, October 1999 An inversion algorithm using neu-ral networks to retrieve atmospheric CO total columns from high-resolution nadir radiancesJGR, Vol 104, N°D19, Pages 23, 841-23, 854.
    [49] A.M Lubrano, G. Masiello, M. Matricardi, C. Serio and V. Cuomo, 2003 Retrieving N2Ofrom nadir viewing infrared spectrometers. Submitted to Tellus B.
    [50] Pierre-Francois Coheur, Brice Barret, Solène Turquety, Daniel Hurtmans, Juliette Hadji-Lazaro, and Cathy Clerbaux, 2005 Retrieval and characterization of ozone vertical profilesfrom a thermal infrared nadir sounder. Journal of Geophysical Research, Vol. 110, D24303,doi:10.1029/2005JD005845.
    [51] Yashcov, D., A. Steen, T. Blumenstock, et al.: Column Amounts of ClONO2, HCl, HNO3,and HF from Ground-Based FTIR Measurements at Kiruna (Sweden) during Winter 1999,Proceedings of the Fifth European Workshop on Polar Stratospheric Ozone, St. Jean DuLuz 1999, European Commission - Air pollution research report 73, 396 - 399, 2000.
    [52] Schneider, M., F. Hase, T. Blumenstock: Ground-based remote sensing of HDO/H2Oratio profiles: introduction and validation of an innovative retrieval approach, ACP, Vol.6, 4705-4722, SRef-ID: 1680-7324/acp/2006-6-4705, 2006.
    [53] Schneider, M., F. Hase, T. Blumenstock, A. Redondas, and E. Cuevas: Quality assessmentof O3 profiles measured by a state-of-the-art ground-based FTIR observing system, ACP,Vol.8, 5579-5588, SRef-ID: 1680-7324/acp/2008-8-5579, 2008.
    [54] Hase, F., O. Trieschmann, and Ch. Weddigen: Response of Fourier-transform spectrome-ters to absorption and emission in a homogeneous single-layered beam splitter, Appl. Opt.40, 5078-5087, 2001.
    [55] Blumenstock, T., F. Hase, H. Fischer, et al.: Ground Based FTIR Measurements of O3,HF, HCl, ClONO2, and HNO3 at Kiruna (Sweden) since Winter 1993/94, Proceedings ofthe Quadrennial Ozone Symposium, Sapporo 2000, p. 145 146, 2000.
    [56] http://www.ndsc.ncep.noaa.gov/, 2009.
    [57] Liwen Pan, David P. Edwards, John C. Gille, et al.,”Satellite remote sensing of tropo-spheric CO and CH4: forward model studies of the MOPITT instrument,”Appl. Opt. 34,6976-6988 (1995)
    [58] Mark W. Smith,”Method and results for optimizing the MOPITT methane bandpass,”Appl. Opt. 36, 4285-4291 (1997)
    [59] Juying X. Warner, John C. Gille, David P. Edwards, et al.,”Cloud Detection and Clearingfor the Earth Observing System Terra Satellite Measurements of Pollution in the Tropo-sphere (MOPITT) Experiment,”Appl. Opt. 40, 1269-1284 (2001)
    [60] http://mopitt.eos.ucar.edu/mopitt/instr/index.html, 2008.
    [61] Rodgers, C. D.. Retrieval of atmospheric temperature and composition from remote mea-surement of thermal radiation, Reviews of Geophys. And Space Phys., 14, 609-624, 1976.
    [62] Edwards, D. P., C. Halvorson, J. C. Gille, Radiative transfer modeling for the EOS TerraSatellite Measurement of Pollution in the Troposphere(MOPITT) instrument, J. Geophys,Res., in press, 1999.
    [63] JinxueWang, Merrutt N. Deeter, et al. Retrieval of Tropospheric Carbon Monoxide Profilesfrom MOPITT: Algorithm Description and Retrieval Simulation. NACAR/ACD, Boul-der, CO, 80307-3000. http://www.atmosp.physics.utoronto.ca/MOPITT/NCAR_SPIE_paper1.pdf, 2009.
    [64] Bovensmann.H., Burrows, J.P.,Buchwitz, M.,et al. SCIAMACHY -mission objectives andmeasurement modes, J.Atoms. Sci.,56:127-150,1999.
    [75] Michael Buchwitz, Vladimir V. Rozanov, and John P. Burrows, A near-infrared optimizedDOAS method for the fast global retrieval of atmospheric CH4, CO, CO2, H2O, and N2Ototal column amounts from SCIAMACHY Envisat-1 nadir radiances. Journal of Geophys-ical Research, VOL, 105, NO. D12. P15231-15245, June 27, 2000.
    [66]杨军,董超华,卢乃锰等.中国新一代极轨气象卫星-风云三号.气象学报. 67(4), 2009, 501-509.
    [67]方宗义,许键民,赵凤生.中国气象卫星和卫星气象研究的回顾和发展.气象学报, 62 (50) :5502560, 2004.
    [68]许键民,钮寅生,董超华,张文建,杨军.风云气象卫星的地面应用系统.中国工程科学, 8 (11):13218, 2006.
    [69]石广玉.大气辐射学.科学出版社. 2007.
    [70]廖国男.大气辐射导论.气象出版社. 2004.
    [71]吴健,杨春平,刘建斌.大气中的光传输理论.北京邮电大学出版社. 2005.
    [72] L.S. Rothmana, D. Jacquemart, A. Barbe, et al. The HITRAN 2004 molecular spectro-scopic database. Journal of Quantitative Spectroscopy and Radiative Transfer, vol. 96, pp.139-204 (2005).
    [73] L.S. Rothmana, I.E.Gordon, A. Barbe, et al. The HITRAN 2008molecularspectroscop-icdatabase. Journal of Quantitative Spectroscopy and Radiative Transfer, vol. 110, pp.533-572 (2009).
    [74] Clough, S. A., M. W. Shephard, E. J. Mlawer, et al, Atmospheric radiative transfer mod-eling: a summary of the AER codes, Short Communication, J. Quant. Spectrosc. Radiat.Transfer, 91, 233-244, 2005.
    [75] Buchwitz. Michael., Vladimir V. Rozanov, and John P. Burrows, 2000. A near-infraredoptimized DOAS method for the fast global retrieval of atmospheric CH4, CO, CO2, H2O,and N2O total column amounts from SCIAMACHY Envisat-1 nadir radiances. Journal ofGeophysical Research, VOL, 105, NO. D12. P15231-15245.
    [76] Buchwitz, M, S. Noel, K. Bramstedt, V. V. Rozanov,et al. 2004. Retrieval of trace gasvertical columns from SCIAMACHY/ENVISAT near-infrared nadir spectra: first pre-liminary results, Advances in Space Research, Volume 34, Issue 4, Trace Constituentsin the Troposphere and Lower Stratosphere, Pages 809-814, ISSN 0273-1177, DOI:10.1016/j.asr.2003.05.054.
    [77] Buchwitz, M., and Burrows, J. P., 2004. Retrieval of CH4, CO, and CO2 total columnamounts from SCIAMACHY near-infrared nadir spectra: Retrieval algorithm and firstresults, in Remote Sensing of Clouds and the Atmosphere VIII. Vol. 5235 of Proceedingsof SPIE, 375-388.
    [78] Gloudemans, A.M.S., Schrijver, H., Kleipool, Q., et al., The impact of SCIAMACHY near-infrared instrument calibration on retrieved CH4 and CO total columns, Atmos. Chem.Phys., 2005, acpd, accepted. SRef-ID: 1680-7375/acpd/2005-5-1.
    [79] Frankenberg, C. , Platt, U. and Wagner, T., Iterative maximum a posteriori (IMAP)-DOASfor retrieval of strongly absorbing trace gases: Model studies for CH4 and CO2 retrievalfrom near infrared spectra of SCIAMACHY onboard ENVISAT, Atmos. Chem. Phys. 5,9-22, 2005.
    [80] Buchwitz, M., V. V. Rozanov ,and J. P. Burrows, 1999. A correlated-k distribution schemefor the radiative transfer model GOMETRAN/SCIATRAN: Accuracy speed, and applica-tions, in Proceedings ESA MS’99- European Symposium on Atmospheric Measurementsfrom Space, pp. 765-770, ESA Earth Sci. Div., Eur. Space Res. and Techol. Cent./ Noord-wijk, Netherlands.
    [81]齐瑾.利用SCIAMACHY/ENVISAT资料开展中国区域NO2反演研究.中国气象科学研究院.2007.
    [82] Stammes, P., 1994. Error in UV re?ectivity and albedo calculations due to neglectingpolarization, Proc. SPIE Int. Soc. Opt. Eng. 2311, 227-235.
    [83] Buchwitz. M., R.de Beek, J. P. Burrows etc.2005. Atmospheric methane and carbon dioxidefrom SCIAMACHY satellite data: initial comparison with chemistry and transport model.Atmos. Chem. Phys.,5. 941-962.
    [84] Backus G.E. and Gilbert J.F., (1970), Uniqueness in the inversion of inaccurate gross Earthdata, Trans. R. Soc. Lon, Ser. A, 266, 123-192.
    [85] Rodgers, C.D., (2000), Inverse methods for atmospheric sounding: Theory and practice,World Scientific, Singapore.
    [86] Dejian Fu,Observations of Atmospheric Gases Using Fourier Transform Spectrometers.Waterloon, Ontario, Canada. 2007.
    [87] Rodgers, C.D., (1990), Characterization and error analysis of profiles retrieved from remotesounding measurements, J. Geophys. Res., 95, 5587-5595.
    [88]阎平凡,张长水.人工神经网络与模拟进化算法.清华大学出版社. 2005.
    [89] S. Turquety, J. Hadji-Lazaro, C. Clerbaux, et al. (2004), Operational trace gas retrievalalgorithm for the Infrared Atmospheric Sounding Interferometer, J. Geophys. Res., 109,D21301, doi:10.1029/2004JD004821.
    [90] Hadji-Lazaro, J., C. Clerbaux, and S. Thiria (1999), An inversion algorithm using neuralnetworks to retrieve atmospheric CO total columns from high-resolution nadir radiances,J. Geophys. Res., 104(D19), 23841-23854.
    [91] D.Blumstein, G.Chalon, T.Carlier, et al., 2004. IASI instrument: Technical Overview andmeasured performances SPIE Conference, Denver (Co), August 2004 SPIE 2004-5543-22
    [92]张磊,董超华,张文建,张鹏. METOP星载干涉式超高光谱分辨率红外大气探测仪(IASI)及其产品.气象科技,vol,36. 2008年10月.
    [93]刘辉,董超华,张文建.国际卫星红外大气探测器发展新特点.气象科技, 2006, 34:600-605.
    [94] U. Amato, C. Masiello, C. serio and M. Viggiano, The sigma-IASI code for the calculationof infrared atmospheric radiance and it’s derivatives, Environment Modeling and Software17/7, pp. 651-667, 2002.
    [95] A. Carissimo, I. De Feis, C. Serio, The Physical retrieval methodology for IASI: the sigma-IASI code. Environment Modeling and Software 20 (2005) 1111-1126.
    [96] http://home.scarlet.be/dhurtma/atmosphit.html, 2009.
    [97]吕乃光.傅里叶光学.机械工业出版社. 2008年10月.
    [98]翁诗甫.傅里叶变换红外光谱仪.化学工业出版社. 2005年7月.
    [99] Gallery W.O., Kneizys F.X., and Clough S.A., (1983), Air mass computer program for at-mospheric transmittance/radiance calculation: FSCATM, Environ. Res. Pap., 828 (AFGL-TR-83-0065), U.S. Air Force Geophysics Laboratory, Bedford, Massachusetts.
    [100] Meier A., Goldman A., Manning P.S., Stephen T.M., et al., (2004), Improvements to airmass calculations for ground-based infrared measurements, J. Quant. Spectrosc. Radiat.Trans., 83, 109-113.
    [101] Kuntz M, H4opfner M, Stiller GP, Clarmann Tv, et al.. The Karlsruhe optimized and pre-cise radiative transfer algorithm. Part III: ADDLIN and TRANSF algorithms for modelingspectral transmittance and radiance. SPIE Proc 1998;3501:247-56
    [102] F. Hase, J. W. Hannigan, M. T. Co?ey, et al., Intercomparison of retrieval codes used forthe analysis of high-resolution, ground-based FTIR measurements, Journal of QuantitativeSpectroscopy and Radiative Transfer, Volume 87, Issue 1, 1 August 2004, Pages 25-52, ISSN0022-4073, DOI: 10.1016/j.jqsrt.2003.12.008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700