无人倾转旋翼机飞行控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
倾转旋翼机兼有直升机与螺旋桨飞机的飞行特点,其飞行控制特别是倾转过渡阶段的飞行控制具有很大的难度。本文以小型无人倾转旋翼机为研究对象,进行了无人倾转旋翼机飞行控制技术的理论与试验研究,主要在无人倾转旋翼机的飞行动力学建模、飞行控制律设计、微小型捷联惯性导航系统设计与飞行试验等方面进行了系统的研究,主要创新有:
     (1)建立了无人倾转旋翼机非线性飞行动力学模型,得到了直升机飞行模式、倾转过渡飞行模式、飞机飞行模式的全模式飞行操纵规律与过渡转换路径。对非线性飞行动力学模型进行了操纵响应分析,得到了无人倾转旋翼机不同飞行模式的耦合特性。为了简化非线性模型计算,对若干线性化飞行动力学模型进行综合并模拟非线性飞行动力学模型,获得了具有一致性的操纵响应。
     (2)建立了无人倾转旋翼机的全模式飞行控制律。在直升机悬停与低速飞行模式,采用显模型跟踪控制技术进行飞行控制律设计;在倾转过渡与飞机飞行模式,采用H回路成形鲁棒控制技术进行飞行控制律设计,使控制系统具有良好的鲁棒稳定性。采用多模型自适应控制技术进行全模式飞行控制律的切换设计,以适应无人倾转旋翼机不同飞行模式的操纵特点,仿真表明了该全模式飞行控制律切换策略的可行性。
     (3)研制了用于小型无人倾转旋翼机的嵌入式飞行控制与捷联惯性导航系统,主要包括微惯性传感器与飞行控制计算机的硬件系统设计、飞行控制软件与地面测控系统开发以及通信协议定制等。在悬停与低速飞行状态,采用角速率积分建立过程方程,构造姿态估计卡尔曼滤波器,并推导出了速度、位置、高度滤波算法;在加速飞行状态,采用高精度GPS的速度微分修正机体加速度计的测量误差,设计了基于误差四元数的姿态估计算法。仿真与试验表明该捷联惯性导航系统具有良好的估计精度。
     (4)建立了无人倾转旋翼机的飞行试验系统,进行了无人倾转旋翼机地面联调、地面开车试验及全模式飞行试验,验证了本文建立的无人倾转旋翼机飞行控制技术的有效性。
Tiltrotor aircraft has the flight characteristics of helicopter and propeller airplane. Its flightcontrol, especially in the conversion flight is very difficult. In this thesis, taking a small unmannedtiltrotor aircraft as a research example, the theoretical and experimental investigations on the flightcontrol of unmanned tiltrotor aircraft have been carried out, mainly in the modeling of nonlinear flightdynamics, design of flight control law, design of micro-strapdown inertial navigation system (SINS)and flight tests of a small unmanned tiltrotor aircraft. The main innovations include:
     (1) The nonlinear flight dynamic model of unmanned tiltrotor aircraft has been established toobtain the flight operation laws of the full flight modes including the helicopter flight mode,conversion flight mode and airplane flight mode and the conversion corridor. The operational analysisof the nonlinear flight dynamic model was carried out to obtain the coupling characteristics of thedifferent flight modes of unmanned tiltrotor aircraft. In order to simplify the calculation of thenonlinear model, several linear flight dynamic models were synthesized and to simulate the nonlinearflight dynamic model, obtaining the consistent operational responses.
     (2) The control laws of full flight modes have been established. In the helicopter hover andlow-speed flight modes, the flight control laws were designed by using the explicit model followingcontrol system. In the tilting and airplane flight modes, the flight control laws were designed by usingtheH loop shaping design procedure (LSDP), so that the control system has good robust stability.To be suitable for the operational characteristics of the different flight modes of tiltrotor aircraft, themulti-model adaptive control was use to conduct the switching design of flight control laws for fullflight modes. The simulation results verified the feasibility of the switching strategy of the full modeflight control laws.
     (3) The flight control and embedded strapdown inertial navigation system used for smallunmanned tiltrotor aircraft has been developed, including the hardware system design ofmicro-inertial sensors and flight control computer, development of flight control software and groundcontrol systems, and communication protocols. In the hover and low speed flight conditions, theangular velocity integration was used to establish the process equations, the Kalman filter of attitudeestimation was constructed, and the filtering algorithm of the speed, position, height was derived. Inthe accelerating flight conditions, the speed differential with high-precision GPS was used to correctthe measurement error of fuselage accelerometers, and the error quaternion based attitude estimation algorithm was designed. The simulation and experiment indicated that the strapdown inertialnavigation system had good estimation accuracy.
     (4) The flight test system of unmanned tiltrotor aircraft has been built. The groundcommunication test, ground engine test and full mode flight test of unmanned tiltrotor aircraft verifiedthe effectiveness of the flight control of unmanned tiltrotor aircraft established in this thesis.
引文
[1] W. Johnson, H. Yeo, C. W. Acree. Performance of Advanced Heavy-Lift, High-SpeedRotorcraft Configurations. Presented at the AHS International Forum on RotorcraftMultidisciplinary Technology, Seoul, Korea,2007.
    [2] S. B. Anderson. An Overview of V/STOL Aircraft Development. AIAA-83-2491:1-13.
    [3] M. Foster. The Future Evolution of the Tiltrotor. AIAA-2003-2652:1-9.
    [4] C. Bolkcom. V-22Osprey Tilt-Rotor Aircraft. CRS Report for Congress,2007.
    [5] T. Amarillo. V-22Osprey Pocket Guide. Bell Boeing V-22Program Office,2007.
    [6] J. Gertler. V-22Osprey Tilt-Rotor Aircraft: Background and Issues for Congress,Congressional Research Service, CRS Report for Congress,2011.
    [7] T. H. Thomason. The Bell Helicopter XV-3&XV-15Experimental Aircraft-Lessonslearned. AIAA-90-3265-CP:1-10.
    [8] M. D. Maisel, D. J. Giulianetti, D. C. Dugan. The History of the XV-15Tilt Rotor ResearchAircraft: From Concept to Flight. NASA-SP-2000-4517:83-104.
    [9] J. M. Schaeffer, L. M. Cullen. Operating Procedures and Control Laws for TransportCategory Performance in the BELL-AGUSTA609Tiltrotor. Presented at the AmericanHelicopter Society63rdAnnual Forum,2007.
    [10] T. Beshears, G. I. Peterson. The HV-911Eagle Eye Tiltrotor VUAV an Exciting Future forCoast Guard Aviation. American Society of Naval Engineers,“ASNE Days” Technical Paper,2004:1-10.
    [11] S. Hwang, M. K. Lee, S. Oh, et al. Collision Avoidance Maneuver Simulation of Tilt RotorUnmanned Aerial Vehicle. AIAA-2006-235:1-10.
    [12] C. S. Yoo, B. J. Park, Y. S. Kang. Evaluation of Operational Flight Program in Tilt RotorUAV. AIAA-2008-7415:1-8.
    [13] Y. S. Kang, B. J. Park, C. S. Yoo, et al. Flight Test Results of Automatic Tilt Control forSmall Scaled Tilt Rotor Aircraft. Inernational Conference on Control, Automation andSystems,2008:47-51.
    [14] Y. S. Kang, B. J. Park, C. S. Yoo, et al. Ground Test Results of Flight Control System for theSmart UAV. International Conference on Control, Automation and Systems,2010:2533-2536.
    [15] W. Johnson. Influence of Wake Models on Calculated Tiltrotor Aerodynamics. AmericanHelicopter Society Aerodynamics, Acoutics, and Test and Evaluation Technical SpecialistsMeeting,2002:23-25.
    [16] P. B. Harendra, M. J. Joglekar, T. M. Gaffey, et al. A Mathematical Model for Real TimeFlight Simulation of the Bell Model301Tilt Rotor Research Aircraft. NASA-CR-114614,1973.
    [17] K. M. Kleinhesselink. Stability and Control Modeling of Tiltrotor Aircraft.[硕士学位论文].College Park: University of Maryland,2007.
    [18] M. Miller, J. Narkiewicz. Tiltrotor Modelling for Simulation in Various Flight Conditions.Journal of Theoretical and Applied Mechanics,2006,44(1):881-906.
    [19]唐永哲.直升机飞行控制技术研究.北京:国防工业出版社,2000.
    [20] J. J. Gribble. Linear Quardratic Gussian/Loop Transfer Recovery Design for a Helicopter inLow-Speed Flight. AIAA Journal of Guidance, Control and Dynamics,1993,16(4):754-761.
    [21] J. D. Colbourne, C. R. Frost, M. B. Tischler, et al. Control Law Design and Optimization forRotorcraft Handling Qualities Criteria Using CONDUIT. Presented at the AmericanHelicopter Society55thAnnual Forum,1999:1-21.
    [22] W. L. Garrard, S. Prouty. Design of Attitude and Rate Command System for HelicoptersUsing Eigenstructure Assignment. Journal of Guidance, Control and Dynamics,1989,12(6):783-791.
    [23]唐永哲.武装直升机控制增稳系统的设计.航空学报,1998,19(2):240-242.
    [24] A. Smerlas, I. Postlethwaite, D. J. Walker, et al. Design and Flight Testing of an HController for the NRC Bell205Experimental Fly-By-Wire Helicopter. AIAA-98-4300:1023-1033.
    [25] T. Y. Lee, Y. D. Kim. Nonlinear Adaptive Flight Control Using Backstepping and NeuralNetworls Controller. Journal of Guidance, Control and Dynamics,2001,24(4):675-682.
    [26] R. K. Mehra, R. K. Prasanth, S. Gopalaswamy. XV-15Tiltrotor Flight Control SystemDesign Using Model Predictive Control. IEEE Aerospace Conference Proceedings,1998,2:139-148.
    [27] J. Anthony, A. J. Calise, R. T. Rysdyk. Adaptive Model Inversion Flight Control for TiltrotorAircraft. Presented at the AIAA Guidance, Navigation and Control Conference,AIAA-97-3758:1633-1639.
    [28] T. Yomchinda, J. F. Horn. Integrated Flight Control Design and Handling Qualities Analysisfor a Tilt Rotor Aircraft. AIAA Atmospheric Flight Mechanics Conference,AIAA-2009-6058:1-17.
    [29] Y. Kang, B. Park, C. Yoo, et al. Control Law Modification According to Flight Test of SmallScaled Tilt Rotor UAV. AIAA Guidance, Navigation and Control Conference and Exhibit,AIAA-2008-6334:1-8.
    [30]杨一栋.直升机飞行控制.北京:国防工业出版社,2007.
    [31] K. B. Hilbert, G. Bouwer. The Design of a Model-Following Control System for Helicopters.AIAA-84-1941,1984:601-617.
    [32] M. Trentini, J. K. Pieper. Model-Following Control of a Helicopter in Hover. Proceedings ofthe1996IEEE International Conference on Control Applications,19962:7-12.
    [33] C. R. Frost, W. S. Hindson, G. E. Tucker, et al. Design and Testing of Flight Control Laws onthe RASCAL Research Helicopter. AIAA2002-4869:1-11.
    [34] D. O. Bridge, J. F. Horn, A. Ray. Model-Following Control of a Military Helicopter withDamage Mitigation. AIAA-2005-6347:1-15.
    [35] D. McFarlane, K. Glover. A Loop Shaping Design Procedure Using H Synthesis. IEEETransactions on Automatic Control,1992,37(6):759-769.
    [36] K. Glover, D. McFarlane. Robust Stabilization of Normalized Coprime Factor PlantDescriptions with H-Bounded Uncertainty. IEEE Transactions on Automatic Control,1989,34(8):821-830.
    [37] D. McFarlane, K. Glover. Robust Controller Design Using Normalized Coprime Factor PlantDescriptions,1990, vol.138in Lecture Notes in Control and Information Science,Springer-Verlag, New York.
    [38] R. A. Hyde. H Aerospace Control Design: A VSTOL Flight Application. Berlin/NewYork: Springer,1995.
    [39] A. J. Smerlas, I. Postlethwaite, D. J. Walker. H Loop Shaping: the Bell205HelicopterCase Study. AIAA-99-4275:1605-1612.
    [40] M. L. Civita, G. Papageorgiou, W. C. Messner, et al. Design and Flight Testing of aHigh-Bandwidth H Loop Shaping Controller for a Robotic Helicopter. AIAA-2002-4836:1-11.
    [41] P. J. Kang, D. Fowler, A. Monteiro, et al. Improving Altitude Complementary Filter forStable Helicopter Altitude Hold Modes during Search and Rescue Missions. AHS,64thAnnual Forum,2008:1-8.
    [42] D. B. Kingston, R. W. Beard. Real-Time Attitude and Position Estimation for Small UAVsUsing Low-Cost Sensors. AIAA3rdUnmanned Unlimited Technical Conference, Workshopand Exhibit, AIAA-2004-6488:1-9.
    [43] J. S. Jang, D. Liccardo. Automation of Small UAVs Using a Low Cost MEMS Sensor andEmbedded Computing Platform. IEEE/AIAA25thDigital Avionics System Conference,2006:1-9.
    [44] Y. G. Song, H. J. Wang. Design of Flight Control System for a Small Unmanned Tilt RotorAircraft. Chinese Journal of Aeronautics,2009:250-256.
    [45]沙虹伟,陈仁良.倾转旋翼机飞行力学特性.航空动力学报,2012,27(4):749-754.
    [46]朱学平,杨军.倾转旋翼机飞行控制系统变结构设计.弹箭与制导学报,2006,26(2):700-702.
    [47]樊方星,杨军.参数空间法在倾转旋翼机飞行控制系统设计中的应用.弹箭与制导学报,2006,26(2):349-353.
    [48]凡永华,杨军,赖水清等.倾转旋翼机过渡段最优飞行控制系统设计.飞行力学,2007,25(1):47-50.
    [49]孙杰,杨军.倾转旋翼机过渡段控制器的综合设计方法.飞行力学,2008,26(3):41-43.
    [50]孙涛.直升机飞行力学模型辨识研究,[博士学位论文].南京:南京航空航天大学,2010.
    [51] M. A. McVeigh. Preliminary Simulation of an Advanced, Hingeless Rotor XV-15Tilt-RotorAircraft. NASA-R-151950,1976.
    [52] R. T. N. Chen. Effects of Primary Rotor Parameters on Flapping Dynamics. NASA-TP-1431,1980:40-42.
    [53] M. Gervais. Tiltrotor Noise Reduction Through Flight Trajectory Management and AircraftConfiguration Control,[博士学位论文]. College Park: University of Maryland,2004.
    [54] O. Heuze, S. Diaz, A. Desopper. Simplified Models for Tiltrotor Aerodynamic Phenmena inHover and Low Speed Flight. CEAS Aerospace Aerodynamics Research Conference,Cambidge,2002:1-11.
    [55] I. A. Raptis, K. P. Valavanis. Linear and Nonlinear Control of Small-Scale UnmannedHelicopters. Intelligent System, Control and Automation: Science and Engineering, vol.45,Springer-Verlag,2011.
    [56] P. D. Talbot, B. E. Tinling, W. A. Decker, et al. A Mathematical Model of a Single MainRotor Helicopter for Piloted Simulation. NASA-TM-84281,1982:1-22.
    [57] E. B. Carlson. Optimal Tiltrotor Aircraft Operations During Power Failure,[博士学位论文].Ann Arbor: the Faculty of the Graduate School of the University of Minnesota,1999.
    [58] M. A. McVeigh, C. A. Widdison. A Mathematical Simulation Model of a1985-era TiltrotorPassenger Aircraft. NASA-CR-151949,1976:44-50.
    [59] M. Sugeno, H. Winston. Intelligent Control of an Unmanned Helicopter Based on FuzzyLogic. AHS51thAnnual Forum. Fort Worth: American Helicopter Society,1995:791-803.
    [60] C. Philips, C. L. Karr, G. Walker. Helicopter Flight Control with Fuzzy-Logic and GeneticAlgorithms. Engineering Applications of Artificial Intelligence,1996,9(2):175-184.
    [61]宋彦国,张呈林.小型无人直升机模糊飞行控制系统设计.南京航空航天大学学报,2007,39(1):103-106.
    [62]夏佩伦.目标跟踪与信息融合.北京:国防工业出版社,2010.
    [63]曾光奇,胡均安,王东等.模糊控制理论与工程应用.武汉:华中科技大学出版社,2006.
    [64] S. Skogestad, I. Postlethwaite. Multivariable Feedback Control-Analysis and Design (2ndEdition). Wiley-Interscience,2005.
    [65] G. Stein, M. Athans. The LQG/LTR Procedure for Multivariable Feedback Control Design.IEEE Transactions on Automatic Control,1987,32(2):105-113.
    [66] N. Antequera, M. Santos, J. M. De la Cruz. A Helicopter Control Based on EigenstructureAssignment. IEEE Conference Emerging Technologies and Factory Automation,2006:719-724.
    [67] A. Pomfret, S. Griffin, T. Clarke. Eigenstructure Assignment for Helicopter Hover Control.Proceedings of the17thWorld Congress, the International Federation of Automatic Control,2008:5776-5781.
    [68] A. Q. Khan, G. Mustafa, N. Iqbal. LQG/LTR Based Controller Design for Three Degree ofFreedom Helicopter/Twin Rotor Control System.9th International Multitopic Conference,IEEE INMIC,2005:1-5.
    [69] Balázs KULCSáR. LQG/LTR Controller Design for an Aircraft Model. PeriodicaPolytechnica SER. TRANSP. ENG,28(1),2000:131-142.
    [70] J. Zarei, A. Montazeri, M. R. J. Motlagh, et al. Design and Comparison of LQG/LTR andH Controllers for a VSTOL Flight Control System. Journal of the Franklin Institute,344(2007):577-594.
    [71] G. Papageorgiou, K. Glover. H Loop-Shaping: Why is a Sensible Procedure forDesigning Robust Flight Controllers. Presebted at the1999AIAA Guidance, Navigation andControl Conference,1999.
    [72] B. Andrievsky, D. Peaucelle, A. L. Fradkov. Adaptive Control of3DOF Motion for LAASHelicopter Benchmark: Design and Experiments. Proceedings of the2007American ControlConference,2007:3312-3316.
    [73] A. S. Krupadanam, A. M. Annaswamy, R. S. Mangoubi. A Multivariable Adaptive ControlDesign with Applications to Autonomous Helicopters. Proceedings of the American ControlConference,2002:2052-2057.
    [74] A. R. Nemati, M. H. Zarif, M. M. Fateh. Helicopter Adaptive Control with ParameterEstimation Based on Feedback Linearization. World Academy of Science, Engineering andTechnology,2007:229-234.
    [75] H. Tam, H. H. T. Liu, C. A. Rabbath, et al. Modeling and Real-time Simulation ofMulti-Objective Control for an UAV Example, AIAA-2004-4914:1-10.
    [76] G. Bouwer, K. B. Hibert. A Piloted Simulator Investigation of Decoupling Helicopters byUsing a Model-following Control System. Annual Forum of the American HelicopterSociety40th,1984:49-65.
    [77] K. B. Hibert, G. Bouwer. The Design of a Model-following Control System for Helicopters.AIAA-84-1941:601-612.
    [78] K. B. Hilbert, J.V. Lebacqz. Flight Investigation of a Multivariable Model-Following ControlSystem for Rotorcraft. AIAA-86-9779:1-13.
    [79]杨一栋,袁锁中.直升机显模型跟踪解耦控制研究,上海交通大学学报,1996,30(2):153-157.
    [80]黄一敏.直升机飞行控制技术研究,[博士学位论文].南京:南京航空航天大学,1999.
    [81]袁涛.显模型跟踪控制技术在舰载无人直升机姿态控制中的应用.海军航空工程学院学报,2009,24(5):543-546.
    [82] G. Bouwer. Design and Flight Testing of a Model Following Control System for Helicopters.IFAC10thTriennial World Congress,1987:117-123.
    [83]军用旋翼飞行器驾驶品质要求.美国陆军航空设计标准性能规范, ADS-33E-PRF.南京航空航天大学(译),2002.
    [84] S. I. Alswailem. Application of Robust Control in Unmanned Vehicle Flight Control SystemDesign,[博士学位论文]. Cranfield University, College of Aeronautics,2004.
    [85] S. Kaitwanidvilai, M. Parnichkun. Design of Structured Controller Satisfying H LoopShaping Using Evolutionary Optimization: Application to a Pneumatic Robot Arm.Engineering Letters,2008:193-201.
    [86]王伟,李晓理.多模型自适应控制.北京:科学出版社,2001.
    [87] Y. C. Lai, S. S. Jan, F. B. Hsiao. Development of a Low-Cost Attitude and HeadingReference System Using a Three-Axis Rotating Platform. Sensors,2010,10(4):2472-2491.
    [88] D. Jurman, M. Jankovec, R. Kamnik, et al. Calibration and Data Fusion Solution for theMiniature Attitude and Heading Reference System. Sensors and Actuators2007, A138:411-420.
    [89] Y. Luo, C. C. Tsang, G. Zhang, et al. An Attitude Compensation Technique for a MEMSMotion Sensor Based Digital Writing Instrument. Proceedings of1stIEEE InternationalConference on Nano/Micro Engineered and Molecular Systems,2006:909-914.
    [90] J. A. Rios, E. White. Fusion Filter Algorithm Enhancements for a MEMS GPS/IMU.Proceeding of the2002National Technical Meeting of th Institute of Navigation, San Diego,CA,2002:126-137.
    [91] X. Yun, E. R. Bachmann, R. B. McGhee. A Simplified Quaternion-Based Algorithm forOrientation Estimation from Earth Gravity and Magnetic Field Measurements. IEEETransactions on Instrumentation and Measurement,2008,57(3):638-648.
    [92] Y. Li, A. Dempster, B. Li, et al. A Low-Cost Attitude Heading Reference System byCombination of GPS and Magnetometers and MEMS Inertial Sensors for MobileApplications. Journal of Global Positioning System,2006,5(1):88-95.
    [93] G. Welch, G. Bishop. An Introduction to the Kalman Filter. UNC-Chapel Hill, TR95-041,July24,2006:1-15.
    [94] M. S. Grewal, A. P. Andrews. Kalman Filter: Theory and Practice Using MATLAB, SecondEdition. A Wiley-Interscience Publication,2001.
    [95] D. Simon, T. L. Chia. Kalman Filtering with State Equality Constraints. IEEE Transactionson Aerospace and Electronic Systems,2002, vol.39:128-136.
    [96] J. L. Marins, X. Yun, E. R. Bachmann, et al. An Extended Kalman Filter forQuaternion-Based Orientation Estimation Using MARG Sensors. Proceedings of the2001IEEE/RSJ, International Conference on Intelligent Robots and Systems,2001, vol.4:2003-2011.
    [97] T. Gao, Z. Gong, J. Luo, et al. An Attitude Determination System for a Small UnmannedHelicopter Using Low-Cost Sensors. Proceedings of the2006IEEE, InternationalConference on Robotics and Biomimetics,2006:1203-1208.
    [98] S. A. Banani, M. A. Masnadi-Shirazi. A New Version of Unscented Kalman Filter. WorldAcademy of Science, Engineering and Technology,2007, vol.2:192-197.
    [99] S. C. Hsieh, L. K. Wang, F. B. Hsaio, et al. Airborne Attitude/Ground Target LocationDeterminations Using Unscented Kalman Filter. Proceedings of the2004IEEE, AerospaceConference,2004, vol.3:1561-1568.
    [100]秦永元.惯性导航.北京:科学出版社,2006.
    [101] D. H. Titterton, J. L. Weston. Strapdown Inertial Navigation Technology (2ndEdition).Progress in Astronautics and Aeronautics Series, AIAA,2004.
    [102] X. Kong. INS Algorithm Using Quaternion Model for Low Cost IMU. Robotics andAutonomous Systems,2004, vol.46:221-246.
    [103]魏晓虹,张春熹,朱奎宝.一种高精度角速率圆锥补偿算法.北京航空航天大学学报,2005,31(12):1312-1315.
    [104]袁信,俞济祥,陈哲.导航系统.北京:航空工业出版社,1993.
    [105] N. H. Q. Phuong, H. J. Kang, Y. S. Suh, et al. A DCM Based Orientation EstimationAlgorithm with an Inertial Measurement Unit and a Magnetic Compass. Journal of UniversalComputer Science,2009,15(4):859-876.
    [106] R. Zhu, D. Sun, Z. Zhou, et al. A Linear Fusion Algorithm for Attitude Determination UsingLow Cost MEMS-Based Sensors. Measurement,2007, vol.40:322-328.
    [107] Z. Gao, X. Niu, M. Guo. Quaternion-Based Kalman Filter for Micro-Machined StrapdownAttitude Heading Reference System. Chinese Journal of Aeronautics,2002,15(3):171-175.
    [108] Y. Zhai, X. Wang, Z. Zhou. Micro Attitude Determination System Based on MEMS InertialSensors. Nanotechnology and Precision Engineering,2009,7(4):375-379.
    [109]薛亮,姜澄宇,常洪龙等.基于状态约束的MIMU/磁强计组合姿态估计滤波算法.中国惯性技术学报,2009,17(3):338-343.
    [110] G. E. Demoz, H. E. Gabriel, J. D. Powell et al. A Gyro-Free Quaternion-Based AttitudeDetermination System Suitable for Implementation Using Low Cost Sensors. Proceeding ofthe IEEE Position Location and Navigation Symposium,2000:185-192.
    [111] J. Bijker, W. Steyn. Kalman Filter Configurations for a Low-Cost Loosely Integrated InertialNavigation System on an Airship. Control Engineering Practice,2008, vol.16:1509-1518.
    [112]谢勇,陈照海,陈万法.某无人直升机高度测量系统融合方法.兵工自动化,2010,29(2):85-90.
    [113]浦黄忠,胡勇,王道波.无人机高精度容错高度测量系统设计.传感器与微系统,2007,26(8):84-86.
    [114]高同跃.超小型无人直升机飞控系统及自主滞空飞行的研究,[博士学位论文].上海:上海大学,2008.
    [115] Y. Bao, G. Chen, X. Cheng. An Economic Full Attitude Detector for Aerial Vehicle withPrecomputed Trajectory. Measurement,2009, vol.42:208-213.
    [116] S. K. Hong. Fuzzy Logic Based Closed-Loop Strapdown Attitude System for UnmannedAerial Vehicle (UAV). Sensors and Actuators A: Physical,2003,107(2):109-118.
    [117] C. Tsai. Navigation System for a Helicopter UAV,[硕士学位论文]. Canada: Simon FraserUniversity,2004.
    [118]唐磊,曹云峰,曹美文等.某型MAV的自主导航算法及飞行试验.指挥控制与仿真,2007,29(4):93-96.
    [119] J. M. Roberts, P. I. Corke, G. Buskey. Low-Cost Flight Control System for a SmallAutonomous Helicopter. Proceedings of Australasian Conference on Robotics andAutomation,2002:71-76.
    [120] B. Godbolt, N. I. Vitzilaios, A. F. Lynch. Experimental Validation of a Helicopter AutopilotDesign Using Model-Based PID Control. Journal of Intelligent and Robotic System,2013,vol.70:385-399.
    [121] J. Del-Cerro, A. Barrientos, J. Artieda, et al. Embedded Control System Architecture Appliedto an Unmanned Aerial Vehicle. IEEE International Conference on Mechatronics,2006:254-259.
    [122] K. Sprague, V. Gavrilets, D. Dugail, et al. Design and Applications of an Avionics Systemfor a Miniature Acrobatic Helicopter. DASC20thConference on Digital Avionics Systems,2001, vol.1:1-10.
    [123] C. M. Vélez, A. Agudelo. Modeling, Simulation and Rapid Prototyping of an UnmannedMini-Helicopter. Modeling and Simulation Technologies Conference and Exhibit,AIAA-2006-6737,2006:1-10.
    [124] G. Cai, L. Feng, B. M. Chen, et al. Systematic Design Methodology and Construction ofUAV Helicopters. Mechatronics,2008, vol.18:545-558.
    [125]徐玉.微小型无人直升机飞控平台与姿态融合算法研究,[博士学位论文].浙江:浙江大学,2008.
    [126] E. Pastor, J. Lopez, P. Royo. A Hardware/Software Architecture for UAV Payload andMission Control. IEEE/AIAA Conference on Digital Avionics Systems,2006:1-8.
    [127] B. H. Sababha, O. A. Rawashdeh, W. A. Sa’deh. A Real-Time Gracefully DegradingAvionics System for Unmanned Aerial Vehicles. IEEE National Conference on Aerospaceand Electronics,2012:171-177.
    [128] L. Olson, L. Burns. A Common Architecture Prototype for Army Tactical and FCS UAVS.DASC,24thConference on Digital Avionics Systems,2005, vol.2:1-11.
    [129] K. Schulze, J. Buescher. A Scalable, Economic Autonomous Flight Control and GuidancePackage for UAVs. AIAA2nd“Unmanned Unlimited” Systems, Technologies, andOperations-Aerospace, AIAA-2003-6505:1-10.
    [130] Z. Taha, Y. R. Tang, K. C. Yap. Development of an Onboard System for Flight DataCollection of a Small-Scale UAV Helicopter. Mechatronics,2011, vol.21:132-144.
    [131] D. Abbott. Linux for Embedded and Real-Time Applications (Second Edition). ElsevierScience Ltd, Newnes,2006.
    [132] G. S. Doukas, K. C. Thramboulidis. A Real-Time Linux Execution Environment forFunction-Block Based Distributed Control Applications. IEEE3rdInternational Conferenceon Industrial Informatics,2005:1-6.
    [133] S. H. Park, S. Choi, J. M. Ahn, et al. Research Flight Control Computer Development for theFlight Control Switching Mechanism. International Conference on Control, Automation andSystem,2007:1247-1250.
    [134] D. L. Boling. Programing Microsoft Windows CE.Net (3nd Edition). Microsoft Press,2003.
    [135] J. J. Labrosse. MicroC/OS-II the Real Time Kernel2ndEdition. Lawrence Kan, CMP Books,2002.
    [136]于明,范书瑞,曾祥烨. ARM9嵌入式系统设计与开发教程.北京:电子工业出版社,2006.
    [137]韦东山.嵌入式Linux应用开发完全手册.北京:人民邮电出版社,2008.
    [138] H. D. Fu, H. Wang, W Yang. Application of Mixed Programming between Matlab and VisualC++on Circles Detection. IHMSC International Conference on Intelligent Human-MachineSystems and Cybernetics,2009, vol.2:53-57.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700