火星探测器自主光学着陆导航方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
探测器自主着陆能力对于星体安全着陆与采样返回至关重要,已经成为深空探测任务重要的设计目标。由于火星距离地球遥远,探测器着陆时间短,火星环境复杂多变,对探测器自主实时着陆导航提出了新的挑战。本文以火星探测器下降着陆段为研究背景,对探测器位姿估计中涉及到的基础理论和关键技术进行了深入的研究,致力于发展新一代精度高、自主性强、环境适应能力强的着陆导航方法,论文的主要内容包括以下几个方面:
     研究了基于视线矢量观测的探测器姿态确定方法。针对非线性测量模型选取问题,利用微分几何曲率测量理论,定量比较了两种测量模型的非线性强度大小。考虑到利用路标特征点测量信息的姿态确定问题,发展了基于视线矢量观测的姿态四元数估计算法。首先从信息融合的角度出发,将约束扩展卡尔曼滤波算法应用到状态矢量部分受约束的乘性姿态估计中,设计了一种乘性姿态约束滤波算法。然后借鉴QUEST(Quaternion Estimator)批处理算法结构,构建广义二次约束优化目标函数,通过求解特征值/特征矢量问题,提出了一种扩展QUEST最优姿态估计算法。
     结合火星轨道器获得的高分辨率特征点三维位置信息,研究了基于光学与惯性测量信息融合的绝对导航方法。详细推导了着陆点固连坐标系中的高精度系统动力学模型和测量模型。针对不同测量频率的敏感器信息融合,提出了一种处理测量延迟的状态矢量增广算法。并将6自由度相对位姿参数作为状态进行实时估计,解决了敏感器之间的空间校准。利用李导数可观性矩阵秩条件作为数学工具,从理论上分析了组合导航系统的可观性。最后对着陆导航算法的精度影响因素进行了仿真验证。
     研究了探测器在陌生环境和有限观测条件下的着陆导航方法。通过将相对运动测量与惯性导航相融合,提出了一种基于帧间单应变换的着陆导航算法。针对单应矩阵分解过程带来的数值病态问题,直接将单应矩阵估计值作为测量值,构建了与状态显性相关的测量模型。运用图像拼接来增加图像重叠区域,提高了可利用的特征点测量信息。针对导航系统的强非线性和乘性噪声问题,通过对采样空间进行解耦,消除了随机变量之间的相关性。
     研究了基于多帧图像特征点跟踪的着陆导航算法。首先对基于即时定位与地图构建(Simultaneous localization and mapping, SLAM)的导航算法进行了改进,利用固定滞后平滑原理,自适应调节状态矢量维数,提出了一种基于多帧滑动窗口优化的着陆导航算法。为了便于在着陆过程中进行实时反馈控制,通过增加一个特征点位置延迟初始化过程,将导航求解过程和地图构建过程解耦,设计了一种基于多目几何约束的着陆导航滤波算法。构建了描述多帧几何约束关系的测量模型,并借助于零空间投影方法进一步降低了算法计算复杂度。
Spacecraft autonomous landing capability, a critical prerequisite for Mars safelanding and sample return, has been considered as the important design goal for theMars exploration missions. Due to the large distance between the Mars and earth,the short landing time, and the complex and changeable Mars environment, newchallenges for spacecraft autonomous real-time landing navigation are proposed.After an in-depth investigation of the Mars probe descent and landing phase, thebasic theory and key technology involved in spacecraft pose estimation are studiedin this dissertation in order to develop the new generation autonomoushigh-precision landing navigation method with strong adaptive capacity to thechange of environment. The major research contents of this dissertation are given asfollows:
     The attitude determination methods based on line-of-sight vector observationsare studied. According to the choice of nonlinear vector measurement models, thenonlinearity of two measurement models were compared using the differentialgeometry curvature nonlinearity measure theory. Considering the determinationproblem using the landmark features measurement information, the attitudequaternion estimation algorithms are developed based on line-of-sight vectormeasurements. By applying the constrained extended Kalman filter algorithm to thepart constrained multiplicative attitude estimation, a multiplicative quaternionconstrained filter algorithm is first designed from the view of information fusion.Then a generalized optimization object function under quadratic constraints isdeveloped through borrowing the traditional QUEST batch algorithm framework,and an extended QUEST optimal attitude estimation algorithm is presented bysolving the eigenvalue-eigenvector problem.
     The absolute navigation method based on optical and inertial measuremeninformation fusion is studied by combination of high resolution3D feature pointslocation information from Mars orbiter. For the information fusion of sensors withdifferent measurement frequency, a state vector augmentation algorithm is presentedto deal with the measurement delay and the six degrees-of-freedom sensorscalibration parameters are also estimated in real-time. Then the observability of theintegrated navigation system is investigated theoretically by the observability matrixrand condition based on Lie derivatives, and the landing navigation algorithm’sperformance under various operational conditions are validated by simulation.
     The landing navigation method in unknown environment and limitedobservation condition is studied. By fusing relative motion measurement and inertial navigation, a landing navigation algorithm based on inter-frame homographytransformation is proposed. The homography matrix estimation is directly fed intothe filter as vision measurement to solve the poorly conditioned problem inhomography decomposition. Then the measurement model explicitly related to thestate of the lander is provided. The image mosaicking processes are used to enlargethe images overlap regions and therefore increase the available feature measurementinformation. In view of the strongly nonlinear and multiplicative noise problem oflanding navigation system, the correlation between random variables is eliminatedby decoupling the sample space.
     The landing navigation algorithms based on multi-frame feature tracking arestudied from the perspectives of batch processing and filtering. First of all, thenavigation algorithm based on simultaneous localization and mapping (SLAM) isimproved. The dimensions of the state vectors are adaptively regulated by thefixed-lag smoothing principle, and a landing navigation algorithm based onmulti-frame sliding windows optimization is presented. In order to realize thereal-time feedback control during the landing process, the navigation system andmap construction processes are decoupled by adding a delayed initializationestimation of the features position, and a landing navigation filter algorithm basedon multi-view geometry constraint is designed. A measurement model relating themulti-frame geometric constraint is proposed and the computational complexity ofthe navigation algorithm is further reduced with the null space projection method.
引文
[1] Christian J A, Wells G, Lafleur J M, et al. Extension of Traditional EntryDescent and Landing Technologies for Human Mars Exploration[J]. Journal ofSpacecraft and Rockets.2008,45(1):130-141.
    [2] Li S, Zhang L. Autonomous Navigation and Guidance Scheme for Precise andSafe Planetary Landing[J]. Aircraft Engineering and Aerospace Technology.2009,81(6):516-521.
    [3]李爽,彭玉明,陆宇平.火星EDL导航、制导与控制技术综述与展望[J].宇航学报.2010,31(3):621-627.
    [4] Levesque J F. Advanced Navigation and Guidance for High-Precision PlanetaryLanding on Mars[D]. Quebec: Universite de Sherbrooke,2006.
    [5] Trawny N, Mourikis A I, Roumeliotis S I, et al. Vision-Aided InertialNavigation for Pin-Point Landing Using Observations of Mapped Landmarks[J].Journal of Field Robotics.2007,24(5):357–378.
    [6] Li J R, Li H Y, Tang G J, et al. Research on the Strategy of Angles-OnlyRelative Navigation for Autonomous Rendezvous[J]. Science ChinaTechnological Sciences.2011,54(7):1865-1872.
    [7] Maessen D, Gill E. Relative State Estimation and Observability Analysis forFormation Flying Satellites[J]. Journal of Guidance Control and Dynamics.2012,35(1):321-326.
    [8] Crassidis J L, Alonso R, Junkins J L. Optimal Attitude and PositionDetermination from Line-of-Sight Measurements[J]. The Journal of theAstronautical Sciences.2000,48(2-3):391-408.
    [9] Braun R D, Manning R M. Mars Exploration Entry Descent and LandingChallenges[J]. Journal of Guidance Control and Dynamics.2007,44(2):310-323.
    [10] Christensen D, Geller D. Terrain-Relative and Beacon-Relative Navigation forLunar Powered Descent and Landing[J]. The Journal of the AstronauticalSciences.2011,58(1):121-151.
    [11]李爽.基于光学测量的相对导航方法及在星际着陆中的应用研究[D].哈尔滨:哈尔滨工业大学,2007.
    [12] Steinfeldt B A, Grant M J, Matz D A, et al. Guidance Navigation and ControlSystem Performance Trades for Mars Pinpoint Landing[J]. Journal of Spacecraftand Rockets.2010,47(1):188-198.
    [13] Howard A M, Jones B M and Serrano N. Integrated Sensing for Entry Descentand Landing of a Robotic Spacecraft[J]. IEEE Transactions on Aerospace andElectronic Systems.2011,47(1):295-304.
    [14] Prakash R, Burkhart P D, Chen A, et al. Mars Science Laboratory Entry Descentand Landing System Overview[C]. IEEE Aerospace Conference, Montana, USA2008:1-18.
    [15]崔平远,于正湜,朱圣英.火星进入段自主导航技术研究现状与展望[J].宇航学报.2013,34(4):447-456.
    [16] Spencer D A, Blanchard R C, Braun R D, et al. Mars Pathfinder Entry Descent,and Landing Reconstruction[J]. Journal of Spacecraft and Rockets.1999,36(3):357-366.
    [17] Maimone M, Johnson A, Cheng Y, et al. Autonomous Navigation Results fromthe Mars Exploration Rover(MER) Mission[J]. Experimental robotics IX,2006:3-13.
    [18] Desai P N, Prince J L, Queen E M, et al. Entry Descent and LandingPerformance of the Mars Phoenix Lander[J]. Journal of Spacecraft and Rockets.2011,48(5):798-808.
    [19] Prince J L, Desai P N, Queen E M, et al. Mars Phoenix Entry Descent andLanding Simulation Design and Modeling Analysis[J]. Journal of Spacecraftand Rockets.2011,48(5):756-764.
    [20] Way D W. Preliminary Assessment of the Mars Science Laboratory EntryDescent and Landing Simulation[C]. IEEE Aerospace Conference, Montana,USA,2013:1-16.
    [21] Golombek M, Grant J, Kipp D, et al. Selection of the Mars Science LaboratoryLanding Site[J]. Space Science Reviews.2012,170(1-4):641-737.
    [22] Lefferts E J, Markley F L and Shuster M D. Kalman Filtering for SpacecraftAttitude Estimation[J]. Journal of Guidance Control and Dynamics.1982,5(5):417-429.
    [23] Markley F L. Attitude Error Representations for Kalman Filtering[J]. Journal ofGuidance Control and Dynamics.2003,26(2):311-317.
    [24] Crassidis J L, Markley F L. Survey of Nonlinear Attitude Estimation Methods[J].Journal of Guidance Control and Dynamics.2007,30(1):12-28.
    [25] Shuster M D. A Survey of Attitude Representations[J]. The Journal of theAstronautical Sciences.1993,41(4):439-517.
    [26] Shuster M D. Constraint in Attitude Estimation Part Ⅰ: ConstrainedEstimation[J]. The Journal of the Astronautical Sciences.2003,51(1):51-74.
    [27] Shuster M D. Constraint in Attitude Estimation Part Ⅱ: UnconstrainedEstimation[J]. The Journal of the Astronautical Sciences.2003,51(1):75-101.
    [28] Pittelkau M E. An Analysis of the Quaternion Attitude Determination Filter[J].The Journal of the Astronautical Sciences.2003,51(1):103-120.
    [29] Wahba G. A Least Squares Estimate of Satellite Attitude[J]. SIAM Review.1965,7(3):409
    [30] Markley F L, Mortari D. Quaternion Attitude Estimation Using VectorObservations[J]. Journal of the Astronautical Sciences.2000,48(2):359-380.
    [31] Shuster M D, Oh S D. Three-Axis Attitude Determination from VectorObservations[J]. Journal of Guidance Control and Dynamics.1981,4(2):70-77.
    [32] Markley F L. Attitude Determination from Vector Observation and the SingularValue Decomposition[J]. Journal of the Astronautical Science.1988,36(3):245-258
    [33] Mortari D. ESOQ: A Closed-Form Solution to the Wahba Problem[J]. Journal ofthe Astronautical Sciences.1997,45(2):195-204.
    [34] Shuster M D. A Simple Kalman Filter and Smoother for Spacecraft Attitude[J].The Journal of the Astronautical Sciences.1989,37(1):89-106.
    [35] Bar-Itzhack I Y. REQUEST: A Recursive QUEST Algorithm for SequentialAttitude Determination[J]. Journal of Guidance Control and Dynamics.1996,19(5):1034-1038.
    [36] Shuster M D. Filter QUEST or REQUEST[J]. Journal of Guidance Control andDynamics.2009,32(2):643-645.
    [37] Choukroun D, Bar-Itzhack I Y and Y. Oshman. Optimal-REQUEST Algorithmfor Attitude Determination[J]. Journal of Guidance Control and Dynamics.2004,27(3):418-425.
    [38] Markley F L. Attitude Determination and Parameter Estimation Using VectorObservations: Theory[J]. The Journal of the Astronautical Sciences.1989,37(1):41-58.
    [39] Markley F L. Attitude Determination and Parameter Estimation Using VectorObservations: Application[J]. The Journal of the Astronautical Sciences.1991,39(3):367-381.
    [40] Psiaki M L. Attitude-Determination Filtering via Extended QuaternionEstimation[J]. Journal of Guidance Control and Dynamics.2000,23(2):206-214.
    [41] Christian J A, Lightsey E G. Sequential Optimal Attitude Recursion Filter[J].Journal of Guidance Control and Dynamics.2010,33(6):1787-1800.
    [42] Bar-Itzhack I Y. Optimum Normalization of a Computed Quaternion ofRotation[J]. IEEE Transactions on Aerospace and Electronic Systems.1971,7(2):401-402.
    [43] Giardina C R. Comments on “Optimum Normalization of a ComputedQuaternion of Rotation”[J]. IEEE Transactions on Aerospace and ElectronicSystems.1974,10(3):392-393.
    [44] Psiaki M L, Theiler J, Bloch J, et al. ALEXIS Spacecraft AttitudeReconstruction with Thermal Flexible Motions Due to Launch Damage[J].Journal of Guidance Control and Dynamics.1997,20(5):1033-1041.
    [45] Psiaki M L, Klatt E M, Kintner P M, et al. Attitude Estimation for a FlexibleSpacecraft in an Unstable Spin[J]. Journal of Guidance Control and Dynamics.2002,25(1):88-85.
    [46] Crassidis J L, Markley F L. Unscented Filtering for Spacecraft AttitudeEstimation[J]. Journal of Guidance Control and Dynamics.2003,26(4):536-542.
    [47] Oshman Y, Carmi A. Attitude Estimation from Vector Observations Using aGenetic-Algorithm-Embedded Quaternion Particle Filter[J]. Journal ofGuidance Control and Dynamics.2006,29(4):879–891.
    [48] Carmi A, Oshman Y. Robust Spacecraft Angular Rate Estimation from VectorObservations Using Interlaced Particle Filtering[J]. Journal of Guidance Controland Dynamics.2007,30(6):1729-1741.
    [49] Carmi A, Oshman Y. Fast Particle Filtering for Attitude and Angular-RateEstimation from Vector Observations[J]. Journal of Guidance Control andDynamics.2009,32(1):70-78.
    [50] Carmi A, Oshman Y. Adaptive Particle Filtering for Spacecraft AttitudeEstimation from Vector Observations[J]. Journal of Guidance Control andDynamics.2009,32(1):232-241.
    [51] Markley F L, Cheng Y, Crassidis J L, et al. Averaging Quaternions[J]. Journal ofGuidance Control and Dynamics.2007,30(4):1193–1196.
    [52] Cheng Y, Crassidis J L. Particle Filtering for Attitude Estimation Using aMinimal Local-Error Representation[J]. Journal of Guidance Control andDynamics.2010,33(4):1305-1310.
    [53] Zanetti R, Majji M, Bishop R H, et al. Norm-Constrained Kalman Filtering[J].Journal of Guidance Control and Dynamics.2009,32(5):1458-1465.
    [54] Leeghim H, Choi Y and Jaroux B A. Uncorrelated Unscented Filtering forSpacecraft Attitude Determination[J]. Acta Astronautica.2010,67(2):134-144.
    [55] Richards P W. Constrained Kalman Filtering Using Pseudo Measurement[C].IEE Colloquium on Algorithms for Target Tracking, Piscataway, USA,1995:75-79.
    [56] Simon D, Chia T L. Kalman Filtering with State Equality Constraints[J]. IEEETransactions on Aerospace and Electronic Systems.2002,38(1):128-136.
    [57] Chun Y, Blasch E. Kalman Filtering with Nonlinear State Constraints[J]. IEEETransactions on Aerospace and Electronic Systems.2009,45(1):70-84.
    [58] Tahk M, Speyer J L. Target Tracking Problems Subject to KinematicConstraint[J]. IEEE Transactions on Automatic Control.1990,35(3):324–326.
    [59] Geeter J D, Brussel H V, Schutter J D, et al. A Smoothly Constrained KalmanFilter[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence.1997,(19)10:1171-1177.
    [60] Azuma R. Predictive Tracking for Augmented Reality[D]. Chapel Hill:University of North Carolina.1995.
    [61] Yung C, Blasch E. Kalman Filtering with Nonlinear State Constraints[J]. IEEETransactions on Aerospace and Electronic Systems.2009,45(1):70-84.
    [62] Julier S J, LaViola J J. On Kalman Filtering with Nonlinear EqualityConstraints[J]. IEEE Transactions on Signal Processing.2007,55(6):2774-2784.
    [63] Lightsey G E, Christian J A. Onboard Image-Processing Algorithm for aSpacecraft Optical Navigation Sensor System[J]. Journal of Spacecraft andRockets.2012,49(2):337-352.
    [64] Bhaskaran S, Nandi S, Broschart S, et al. Small Body Landings UsingAutonomous Onboard Optical Navigation[J]. The Journal of the AstronauticalSciences.2011,58(3):409-427.
    [65]邵巍.基于图像信息的小天体参数估计及探测器自主导航研究[D].哈尔滨:哈尔滨工业大学,2009.
    [66] Sun D, Crassidis J L. Observability Analysis of Six-Degree-of-FreedomConfiguration Determination Using Vector Observations[J]. Journal ofGuidance Control and Dynamics.2002,25(6):1149-1157.
    [67] Mortari D, Rojas J and Junkins J L. Attitude and position estimation from vectorobservations[C]. AAS/AIAA Space Flight Mechanics Meeting. Maui, USA,AAS2004-140.
    [68] Chu C C. Development of Advanced Entry Descent and Landing Technologiesfor Future Mars Missions[C]. IEEE Aerospace Conference, Montana, USA,2006:685-692.
    [69] Cheng Y, Ansar A. Landmark Based Position Estimation for Pinpoint Landingon Mars[C]. Proceedings of IEEE International Conference on Robotics andAutomation. Barcelona, Spain,2005:4470-4475.
    [70] Johnson A E, Willson R, Cheng Y, et al. Design Through Operation of anImage-Based Velocity Estimation System for Mars Landing[J]. InternationalJournal of Computer Vision.2007,74(3):319-341.
    [71] Janschek K, Tchernykh V and Beck M. Performance Analysis for VisualPlanetary Landing Navigation Using Optical Flow and DEM Matching[C].AIAA Guidance, Navigation and Control Conference and Exhibit. Keystone,USA, AIAA2006-6706.
    [72] De Lafontaine J, Neveu D and Lebel K. Autonomous Planetary Landing Using aLIDAR Sensor: The Closed-Loop Functions[C]. Proceedings of6thInternational ESA Conference on Guidance Navigation and Control Systems,Loutraki, Greece,2005:166821.
    [73] Wolf A A, Acikmese B, Cheng Y, et al. Toward Improved Landing Precision onMars[C]. IEEE Aerospace Conference, Montana, USA,2011:1-8.
    [74]冯军华.月球探测器软着陆自主光学导航方法研究[D].哈尔滨:哈尔滨工业大学,2010.
    [75] Mourikis A I, Trawny N, Roumeliotis S I, et al. Vision-Aided InertialNavigation for Spacecraft Entry Descent, and Pin-Point Landing[J]. IEEETransactions on Robotics.2009,25(2):264-279.
    [76] McEwen A S, Banks M E, Baugh N, et al. The High Resolution Imaging ScienceExperiment (HiRISE) During MRO’s Primary Science Phase (PSP)[J]. Icarus.2010,205(1):2-37.
    [77] Li S, Cui P Y, Cui H T. Vision-Aided Inertial Navigation for Pinpoint PlanetaryLanding[J]. Aerospace Science and Technology.2007,11(6):449-506.
    [78] Wu A, Johnson A E and Proctor A. Vision-Aided Inertial Navigation for FlightControl[C]. AIAA Guidance Navigation and Control Conference, San Francisco,California,2005: AIAA-5998.
    [79] Van Pham B, Lacroix S, Devy M, et al. Visual Landmark ConstellationMatching for Spacecraft Pinpoint Landing[C]. AIAA Guidance Navigation andControl Conference, Chicago, USA, AIAA2009-5663.
    [80] Van Pham B, Lacroix S and Devy M. Vision-Based Absolute Navigation forDescent and Landing[J]. Journal of Field Robotics.2012,29(4):627-647.
    [81] Cocaud C, Kubota T. SLAM-Based Navigation Scheme for Pinpoint Landing onSmall Celestial Body[J]. Advanced Robotics.2012,26(15):1747-1770.
    [82] Nilsson J O, Zachariah D, Jansson M, et al. Realtime Implementation ofVisual-Aided Inertial Navigation Using Epipolar Constraints[C]. IEEE/IONPosition Location and Navigation Symposium, South Carolina, USA,2012:711-718.
    [83] Indelman V, Gurfil P, Rivlin E, et al. Graph-Based Cooperative NavigationUsing Three-View Constraints: Method Validation[C]. IEEE/ION PositionLocation and Navigation Symposium, South Carolina, USA,2012:769-776.
    [84] Zhao S, Lin F, Peng K, et al. Homography-Based Vision-Aided InertialNavigation of UAVs in Unknown Environments[C]. AIAA Guidance Navigationand Control Conference, Minneapolis, USA, AIAA2012-5033.
    [85] Weiss S, Scaramuzza D and Siegwart R. Monocular-SLAM–Based Navigationfor Autonomous Micro Helicopters in GPS-Denied Environments[J]. Journal ofField Robotics.2011,28(6):854-874.
    [86] Strasdat H, Montiel J M M and Davison A J. Real-Time Monocular Slam: WhyFilter[C]. IEEE International Conference on Robotics and Automation,Anchorage USA,2010:2657-2664.
    [87] Williams B, Klein G and Reid I. Automatic Relocalization and Loop Closing forReal-Time Monocular SLAM[J]. IEEE Transactions on Pattern Analysis andMachine Intelligence.2011,33(9):1699-1712.
    [88] Soloviev A, de Haag M U. Three-Dimensional Navigation with Scanning Ladars:Concept&Initial Verification[J]. IEEE Transactions on Aerospace andElectronic Systems.2010,46(1):14-31.
    [89] Strelow D, Singh S. Motion Estimation from Image and InertialMeasurements[J]. The International Journal of Robotics Research.2004,23(12):1157-1195.
    [90] Kelly J, Sukhatme G S. Visual-Inertial Sensor Fusion: Localization Mappingand Sensor-to-Sensor Self-Calibration[J]. The International Journal of RoboticsResearch.2011,30(1):56-79.
    [91] Jones E S, Soatto S. Visual-Inertial Navigation Mapping and Localization: AScalable Real-Time Causal Approach[J]. The International Journal of RoboticsResearch.2011,30(4):407-430.
    [92] Nemra A, Aouf N. Robust Airborne3D Visual Simultaneous Localization andMapping with Observability and Consistency Analysis[J]. Journal of Intelligentand Robotic Systems.2009,55(4-5):345-376.
    [93] Taylor C N, Veth M J, Raquet J F, et al. Comparison of Two Image and InertialSensor Fusion Techniques for Navigation in Unmapped Environments[J]. IEEETransactions on Aerospace and Electronic Systems.2011,47(2):946-958.
    [94] Frapard B, Polle B, Flandin G, et al. Navigation for Planetary Approach andLanding[C]. Proceeding of the5th ESA International Conference on SpacecraftGuidance Navigation and Control Systems, Frascati, Italy.2003:159-168.
    [95] Hyun B, Singla P. Autonomous Navigation Algorithm for Precision Landing onUnknown Planetary Surfaces[C].18th AAS/AIAA Spaceflight MechanicsMeeting, Galveston, USA,2008: AAS08-239.
    [96] Hoffman B D, Baumgartner E T, Huntsberger T L, et al. Improved StateEstimation in Challenging Terrain[J]. Autonomous Robots.1999,6(2):113-130.
    [97] Webb T P, Prazenica R J, Kurdila A J, et al. Vision-Based State Estimation forAutonomous Micro Air Vehicles[J]. Journal of Guidance Control and Dynamics.2007,30(3):816-826.
    [98] Gurfil P, Rotstein H. Partial Aircraft State Estimation from Visual Motion Usingthe Subspace Constraints Approach[J]. Journal of Guidance Control andDynamics.2001,24(5):1016-1028.
    [99] Roumeliotis S I, Johnson A E and Montgomery J F. Augmenting InertialNavigation with Image-based Motion Estimation[C]. Proceedings of the IEEEInternational Conference on Robotics and Automation,2002,4:4326-4333.
    [100]Indelman V, Gurfil P, Rivlin E, et al. Navigation Aiding Based on CoupledOnline Mosaicking and Camera Scanning[J]. Journal of Guidance Control andDynamics.2010,33(6):1866-1882.
    [101]Indelman V, Gurfil P, Rivlin E, et al. Real-time Vision-Aided Localization andNavigation Based on Three-View Geometry[J]. IEEE Transactions on Aerospaceand Electronic Systems.2012,48(3):2239-2259.
    [102]Shakernia O, Vidal R, Sharp C, et al. Multiple View Motion Estimation andControl for Landing an Unmanned Aerial Vehicle[C]. Proceedings of IEEEInternational Conference on Robotics and Automation. Piscataway, USA,2002:2793-2798.
    [103]Mourikis A I, Roumeliotis S I. A Multi-State Constraint Kalman Filter forVision-Aided Inertial Navigation[C]. IEEE International Conference onRobotics and Automation, Piscataway, USA,2007:3565-3572.
    [104]Sibley G, Matthies L and Sukhatme G. Sliding Window Filter with Applicationto Planetary Landing[J]. Journal of Field Robotics.2010,27(5):587-608.
    [105]Bayard D S, Brugarolas P B. On-Board Vision-Based Spacecraft EstimationAlgorithm for Small Body Exploration[J]. IEEE Transactions on Aerospace andElectronic Systems.2008,44(1):243-260.
    [106]Johnson A E, Ansar A, Matthies L H, et al. A General Approach to TerrainRelative Navigation for Planetary Landing[C]. AIAA Aerospace InfotechConference, Rohnert Park, USA, AIAA2007-2854.
    [107]Mourikis A I, Trawny N, Roumeliotis S I, et al. Vision-Aided InertialNavigation for Spacecraft Entry Descent and Pin-Point Landing[J]. IEEETransactions on Robotics.2009,25(2):264-279.
    [108]Kailath T. A Review of Three Decades of Linear Filtering Theory[J]. IEEETransactions on Automatic Control.1974,20(2):1-69.
    [109]Giannitrapani A, Ceccarelli N, Scortecci F, et al. Comparison of EKF and UKFfor Spacecraft Localization via Angle Measurements[J]. IEEE Transactions onAerospace and Electronic Systems.2011,47(1):75-84.
    [110]Kluge S, Reif K and Brokate M. Stochastic Stability of the Extended Kalmanfilter with Intermittent Observations[J]. IEEE Transactions on AutomaticControl.2010,55(2):514-518.
    [111] Julier S J, Uhlmann J K and Durrant-Whyte H F. A New Method for theNonlinear Transformation of Means and Covariances in Filters andEstimators[J]. IEEE Transactions on Automatic Control.2000,45(3):477-482.
    [112]Ho Y C, Lee R K. A Bayesian Approach to Problems in Stochastic Estimationand Control[J]. IEEE Transactions on Automatic Control.1964,9:333-339.
    [113]Doucet A, Freitas N De and Gordon N J. Sequential Monte Carlo Methods inPractice[M]. New York: Springer.2001:32-45.
    [114]Gordon N J, Salmond D J and Smith A F. Novel Approach toNonlinear/Non-Gaussian Bayesian State Estimation[C]. IEE Proceedings F(Radar and Signal Processing). IET Digital Library,1993,140(2):107-113.
    [115]Gustafsson F, Gunnarsson F, Bergman N, et al. Particle Filters for Positioning,Navigation and Tracking[J]. IEEE Transactions on Signal Processing.2002,50(2):425~437.
    [116]Vathsal S. Spacecraft Attitude Determination Using a Second-Order NonlinearFilter [J]. Journal of Guidance Control and Dynamics.1987,10(6):559-566.
    [117]Bates D M, Watts D G. Nonlinear Regression Analysis and Its Application[M].New York: John Wiley,1988.
    [118]Mallick M, La Scala B F. Differential Geometry Measures of Nonlinearity forthe Video Tracking Problem[C]. SPIE Conference on Signal Processing SensorFusion and Target Recognition, Florida, USA,2006.
    [119]章仁为.卫星轨道姿态动力学与控制[M].北京:北京航空航天大学大学出版社,1998:139-149.
    [120]秦永元,张洪钺,汪叔华.卡尔曼滤波与组合导航原理[M].西安:西北工业大学出版社,1998:243-296.
    [121]Marschke J M, Crassidis J L and Lam Q M. Multipe Model Adaptive Estimationfor Inertial Navigation During Mars Entry[C]. AIAA/AAS AstrodynamicsSpecialist Conference and Exhibit, Honolulu, USA, AIAA2008-7352.
    [122]申娟,张广军,魏新国.基于卡尔曼滤波的星敏感器在轨校准方法[J].航空学报.2010,31(6):1220-1224.
    [123]Choi M, Choi J, Park J, et al. State Estimation with Delayed MeasurementsConsidering Uncertainty of Time Delay[C]. IEEE International Conference onRobotics and Automation, Kobe, Japan,2009:3987-3992.
    [124]常晓华,崔平远,王晓明,等.基于条件数的能观性度量方法及在自主导航系统中的应用[J].宇航学报.2010,31(5):1331-1337.
    [125]崔平远,常晓华,崔祜涛.基于可观测性分析的深空自主导航方法研究[J].宇航学报.2011,32(10):2115-2124.
    [126]Hermann R, Arthur J K. Nonlinear Controllability and Observability[J]. IEEETransactions on Automatic Control.1977,22(5):728-740.
    [127]Kaiser M K, Gans N R and Dixon W E. Vision-Based Estimation for GuidanceNavigation and Control of an Aerial Vehicle[J]. IEEE Transactions onAerospace and Electronic Systems.2010,46(3):1064-1077.
    [128]邸凯昌,万文辉,刘召芹.用于行星探测车定位的视觉测程新方法[J].遥感学报.2013,17(1):54-61.
    [129]宫晓琳,张蓉,房建成.固定区间平滑算法及其在组合导航系统中的应用[J].中国惯性技术学报.2012,20(6):687-693.
    [130]Civera J, Davison A J and Montiel J. Inverse Depth Parametrization forMonocular SLAM[J]. IEEE Transactions on Robotics.2008,24(5):932-945.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700