基于载流子色散效应的硅基光子器件若干问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代信息量的迅猛增长,单核处理器的性能已跟不上人们的需求。因此,现有的处理器大都采用多核结构,而且单片集成的多核处理器的含核数量随着时间的推移而增加。因而,如何在多核处理器之间以及核处理器与外部的存储器之间实现高效的互连成为了关键的技术。
     硅是地壳中含量第二大的元素,已成为现代成熟微电子技术的基础材料。硅材料在红外波段有着良好的导波特性,同时其具有很强的载流子色散效应,弥补了没有一阶电光效应的缺陷。以Intel公司为代表的研究与研发单位已进行了卓有成效的研究工作,证实了硅基光子器件在硅基光互连和高速光通信中具有大带宽、低功耗的特性,可为解决互连和通信的瓶颈提供有效的途径。基于此,本论文对基于载流子色散效应硅基光子器件的若干问题作了探索研究。本论文主要贡献在于以下几个方面:
     (1)建立起电学结构仿真模型,从物理层面上直观反映硅基光子器件电学结构对硅基光子器件光学性能的影响,改进了其分析计算方法,进而指导硅基光子器件的设计。本文通过Silvaco的器件仿真工具Atlas,对硅基光子器件的电学结构进行静态和动态仿真分析,再建立Atlas与Matlab之间的接口,结合有限差分数值方法分析计算电流引起的器件光学性能的改变,并加以实验验证,为之后的器件设计打下基础。
     (2)以上述理论研究为基础,采用0.8μm工艺,设计并制作了基于pin结的硅基光开关及其阵列和模块,改善了传统MZ光开关由载流子色散效应引起,随电流增加而减小的串扰。其中,无阻塞2×2光开关阵列的串扰小于-16.1dB,支持35nm的公共带宽(1525nm-1560nm),且单个2x2MMI-MZ光开关的最小功耗仅为1.40mW。而提出的4端口双工光开关模块中任意连接两个端口的路径都不会对连接另外两个端口的路径有影响作用。该器件的串扰小于-11.8dB,支持40nm的公共带宽(1525nm-1565nm),总的功耗小于42.6mW。
     (3)建立基于反向pn结的硅基微环谐振腔结构的光功能器件模型,并利用Optisystem搭建硅基高速有效传输系统的仿真平台,实现了l0Gbit/s基于硅基微环调制器不同调制格式传输系统的模拟,研究了电学结构对系统性能的影响,为实现高速较大规模集成打下了理论与实验基础。
     该仿真平台同样适用其他硅基光子集成器件。
Due to the effects of increasing power consumption wire delay and memory latency, multiple processor cores on a die coupled in various ways are used in modern processor architectures to make use of data and thread-level parallelism. Photonic Networks-on-Chip (NoC) architectures and high-speed optical communications capable of achieving efficient connection among cores and memories in chip multiprocessors (CMP) are currently studying. As the prevailing technology, silicon photonics provides an attractive option for realizing low-loss, chip-scale and CMOS-compatible optical interconnects and optical communications.
     So, in this thesis, silicon optical waveguide devices and systems based on the FCD effect is theoreticly and experimentally investigated. The main contributions of the thesis are as follows:
     (1) In order to study how FCD effect affects the performance of the intergrated optoelectronic devices and systems, a reasonable electrical model is needed to build up. A two-demensional simulation package. Atlas from Silvaco. was employed to achieve the electrical calculations. Then according to the simulation results, FD (Finite-Difference) numerical method was adopted to calculate and analysis the changes of the equivalent refractive index、loss and field. Finally, photonic devices with the same structure were used to experimentally revise the simulation parameters.
     (2) As a key component for realizing NoCs, the optical switch should have a broad bandwidth, a low crosstalk level, a fast switching speed. In this thesis, on the basis of the carrier dispersion effect and the electrical model, we designed and demonstrated the Mach-Zender-based optical swithes、optical switch matrix and optical switching module fabricated by a0.8-μm standard commercial CMOS line. The2×2non-blocking switch matrix has low crosstalk level less than-16.1dB and a common spectral bandwidth of35nm. The power consumption of the2x2switching elements is as low as1.40mW. The switching module has a crosstalk lower than-11.8dB under a common spectral bandwidth of40nm.
     (3) We builded up the models of optical functional devices, which were based on the micro-ring resonator. Then, the models were employed in forming a silicon-based high-speed optical transmission system simulation platform. On this platform,10Gbit/s silicon-based optical transmission systems using different modulation formats were achieved, and the influence of the FCD in these systems were analyzed. The simulation platform is also applicable to other silicon-based integrated photonic devices.
引文
[1].任海兰,刘德明.光通信信号处理.北京:电子工业出版社,2006.
    [2].M. M. Forrest, III, "Alexander Graham Bell and the photophone:the centennial of the invention of light-wave communications,1880-1980," Opt. News,1980,6(1):8-16.
    [3].A. Jenkins, "The road to nanophotonics," Nature Photon.2008,2 (2008),258-260.
    [4].S. E. Miller, "Integrated optics:an introduction," Bell Syst. Tech. J.,1969,48:2059-2069.
    [5].余金中,“支撑光网络发展的硅基光电子技术研究,”物理,2003,32(12):810-815.
    [6].http://h yperphysics.phy-astr.gsu.edu/hbase/tables/elabund.html.
    [7].B. Jalaii, S.Yegnanarayanan, T.Yoon, et al, "Advances in silicon-on-insulator optoelectronic ", IEEE J. Sel. Top. Quantum Electron.,1998,4(6):938-947.
    [8].R. A. Soref and J. P. Lorenzo, "Single-crystal silicon:a new material for 1.3 and 1.6μm integrated-optical components," Electron. Lett.,1985,21:953-954.
    [9].D. X. Dai, X. Fu, Y. C. Shi, and S. He," Experimental demonstration of an ultracompact Si-nanowire-based reflective arrayed-waveguide grating (de)multiplexer with photonic crystal reflectors" Opt. Lett.,2010,35:2594-2596.
    [10].M. Wood, P. Sun, and R. M. Reano, "Compact cantilever couplers for low-loss fiber coupling to silicon photonic integrated circuits" Opt Express 2012,20(1):164-172.
    [11].W. N. Ye, D. X. Xu, S. F. Janz, P. Waldron, P. Cheben, and N. G. Tarr, "Passive broadband silicon-on-insulator polarization splitter" Opt. Lett.,2007,32:1402-1404.
    [12].A. Koster, E. Cassan, S. Laval, L. Vivien, and D. Pascal, "Ultracompact splitter for submicrometer silicon-on-insulator rib waveguides" J. Opt. Soc. Am. A,2004,21:2180-2185.
    [13].S. J. Xiao, M. H. Khan, H. Shen, and M. H. Qi, "Multiple-channel silicon micro-resonator based filters for WDM applications" Opt Express 2007,15(12):7489-7498.
    [14].D. Taillaert, F. V. Laere, M. Ayre, W. Bogaerts, D. V. Thourhout, P. Bienstman, and R. Baets, "Grating Couplers for Coupling between Optical Fibers and Nanophotonic Waveguides" Japanese Journal of Applied Physics,2006,45 (3):6071-6077.
    [15].周海峰,新型硅基集成光子器件的研究[博士学位论文],浙江大学博士学位论文,2009.
    [16].L. Pavesi, and D. J. Lockwood, "Silicon photonics ". Springer Verlag,2004.
    [17].M. Dinu, and F. Quochi, H. Garcia, "Third-order nonlinearities in silicon at telecom wavelength"Appl. Phys. Lett.,2003,82(18):2954-2956.
    [18].R. Claps, D. Dimitropoulos, Y. Han, and B. Jalali, "Observation of Raman emission in silicon waveguides at 1.54 μm, Opt. Express,2002,10:1305-1313.
    [19].A. Liu, R. Jones, L. Liao, D. Rubio, D. Rubin, O. Cohen, R. Nicolaescu and M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,' Nature.2004,427:615-618.
    [20]. V. R. Almeida, C. A. Barrios, R. R. Panepucci and M. Lipson, "All-optical control of light on a silicon chip," Nature,2004,431:1081-1084.
    [21].H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A Fang and M. Paniccia, "An all silicon Raman laser," Nature,2005,433:292-294.
    [22].H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A Fang and M. Paniccia, "A continuous-wave silicon Raman laser," Nature,2005,433:725-728.
    [23].Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, "Micrometre-scale silicon electro-optic modulator," Nature,2005,435:325-327.
    [24].M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson. and A. L. Gaeta. "Broad-band optical parametric gain on a silicon photonic chip." Nature,2006,441:960-963.
    [25].F. N. Xia, L. J. Sekaric, and Y. Vlasov, "Ultracompact optical buffers on a silicon chip,' Nature Photon,2007,1:65-71.
    [26].A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, "Electrically pumped hybrid AlGaInAs-silicon evanescent laser," Opt Express 2006,14(20):9203-9210.
    [27].L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, "40Gbit/s silicon optical modulator for high-speed applications," Electron. Lett. 2007,43,1196-1197.
    [28].J. F. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng. L. C. Kimerling and J. Michel, "Ultralow energy, intergrated GeSi Electroabsorption modulators on SOI," Group IV Photonics,2008 5th IEEE International Conference,2008,10-12
    [29].Y. Kang, H. D. Liu, M. Morse, et al. "Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product," Nature Photon,2008,3(1):59-63.
    [30].T. Chu, H. Yamada, S. Ishida and Y. Arakawa, "Compact 1×N thermo-optic switches based on silicon photonic wire waveguides," Opt. Express,2005,13(25):10109-10114
    [31].A. Shinya, S. Mitsugi, E. Kuramochi and M. Notoni, "Ultrasmall multi-port channel drop filter in two-dimensional photonic crystal on silicon-on-insulator substrate," Opt. Express, 2006,14(25):12394-12400.
    [32].A. W Fang, E. Lively, Y. Kuo, D. Liang and J. E. Bowers, "A distributed feedback silicon evanescent laser,"Opt. Express,2008,16(7):4413-4419.
    [33].Y. Qian, J. Song, S. H. Kim, W. Hu and G. P. Nordin, "Compact waveguide splitter networks, Opt. Express,2008,16(7):4981-4990.
    [34].S. Tao, Q. Fang, J. Song, M. Yu, G. Q. Lo and D. L. Kwong, "Cascade wide-angle Y-junction 1×16 optical power splitter based on silicon wire waveguides on silicon-on-insulator," Opt. Express,2008,16(26):21456-21461.
    [35].A. Liu, L. Liao, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, D. W. Kima, A. Barkaib, R. Jonesa, N. Elekb, R. Cohenb, N. Izhakyb and M. Panicciaa, "Silicon photonic integration for high-speed applications," Proc. SPIE,2008,6898:1-10.
    [36]."The 50Gbps Si Photonics Link," www.intel.com,2010.
    [37]."Made in IBM Labs:Holey Optochip First to Transfer on Trillion Bits of Information per Second Using the Power of Light," www-03.ibm.com,2012.
    [38].朱京平,平面单片集成声光波导光开关科学出版社,2008
    [39].黄章勇,光通信用新型光无源器件北京邮电大学出版社,2003.
    [40].Y. Li, J. Yu, S. Chen, Y. Li, and Y. Chen," Submicrosecond rearrangable nonblocking silicon-on-insulator thermooptic 4×4 switch matrix," Opt. Lett.2007,32:603-605.
    [41].王帆.硅基的环形谐振腔光调制器和光开关的研究.浙江大学学位论文,2009
    [42].G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, "Silion optical modulators,' Nature Photon.,2010,4:518-527.
    [43].J. P. Lorenzo, and R. A. Soref, "1.3μm electro-optic silicon switch," Appl. Phys. Lett.1987, 51(1):6-8.
    [44].J. V. Campenhout, W. M. J. Green, S. Assefa, and Y. A. Vlasov, "Low-power,2×2 silicon electro-optic switch with 110-nm bandwidth for broadband reconfigurable optical networks,' Opt Express 2009,17(26):24020-24029.
    [45].G. Calo, A. D'Orazio, and V. Petruzzelli, "Broadband Mach-Zehnder switch for photonic networks on chip," IEEE Photon. Technol. Lett.2012,30(7):944-952.
    [46].B. A. Small, B. G. Lee. K. Bergman, Q. Xu, and M. Lipson, "Multiple-wavelength integrated photonic networks based on microring resonator devices," J. Opt. Nerw.2007,6,112-120.
    [47].F. Xia, M. Rooks, L. Sekaric, and Y. Vlasov, "Ultra-compact high order ring resonator filters using submicron silicon photonic wires for on-chip optical interconnects," Opt. Express 2007, 15,11934-11941.
    [48].S. T. Chu, B. E. Little, W. Pan, T. A. Kaneko, S. A. Sato, and Y. A. Kokubun, "An eight-channel add-drop filter using vertically coupled microring resonators over a cross grid," IEEE Photon. Technol. Lett.1999,11,691-693.
    [49].B. E. Little, S. T. Chu, W. Pan, and Y. A. K. Y. Kokubun, "Microring resonator arrays for VLSI photonics," IEEE Photon. Technol. Lett.2000,12,323-325.
    [50].L. Zhang. M. Yang, Y. Jiang, E. Regentova, and E. Lu, "Generalized Wavelength Routed Optical Micronetwork in Network-on-Chip," Proceedings of the 18 th IASTED International Conference on Parallel and Distributed Computing and Systems.2000.
    [51].T. Hu. H. Y. Qiu, P. Yu, C. Qiu. W. J. Wang, X. Q. Jiang, M. Yang, and J. Y. Yang, "Wavelength-selective 4×4 nonblocking silicon optical router for networks-on-chip," Opt Lett. 2011,36(23):4710-4712.
    [52].N. Sherwood-Droz, H. Wang, L. Chen, B. G. Lee, A. Biberman, K. Bergman, and M. Lipson, "Optical 4×4 hitless silicon router for optical networks-on-chip (NoC)," Opt. Express 2008, 16(20),15915-15922.
    [53].M. Yang, W. M. J. Green, S. Assefa, J. V. Campenhout, B. G. Lee, C. V. Jahnes, F. E. Doany, C. L. Schow, J. A. Kash, and Y. A. Vlasov, "Non-blocking 4×4 electro-optic silicon switch for on-chip photonic networks," Opt Express 2011,19(1):47-54.
    [54].H. L. R. Lira, S. Manipatruni, and M. Lipson, "Broadband hitless silicon electro-optic switch for on-chip optical networks," Opt. Express 2009,17(25),22271-22280.
    [55].P. Dong, S. Liao, H. Liang, R. Shafiiha, D. Z. Feng, G. L. Li, X. Z. Zheng, A. V. Krishnamoorthy, and M. Asghari, "Submilliwatt, ultrafast and broadband electro-optic silicon switches," Opt. Express 2010,18(24),252251-252257.
    [56].B. G. Lee, A. Biberman, N. Sherwood-Droz, C. B. Poitras, M. Lipson, and K. Bergman, "High-speed 2×2 switch for multiwavelength silicon-photonic networks-on-chip," J. Lightwave Technol.,2009,27(14),2900-2907.
    [57].Y. T. Li, J. Z. Yu, S. W. Chen, Y. P. Li and Y. Y. Chen, "Submicrosecond rearrangeable non-blocking silicon-on-insulator thermo-optic 4×4 switch matrix," Opt. Lett.,2007,32(6), 603-604.
    [58].R. Ji, L. Yang, L. Zhang, Y. Tian, J. Ding, H. Chen, Y. Lu, P. Zhou, and W. Zhu, "Five-port optical router for photonic networks-on-chip," Opt. Express,2011,19(21),20258-20268.
    [59].R. A. Soref, and B. R. Bennett, "Kramers-Kronig analysis of electro-optical switching in silicon.1987 ", Proc. SPIE Integrated Optical Circuit Engineering IV 704,32-37.
    [60].L. Liao, et al. "High speed silicon Mach-Zehnder modulator." Opt. Express 2005,13, 3129-3135.
    [61].S. Manipatruni, X. Qianfan, B. Schmidt, J. Shakya, and M. Lipson, "High speed carrier injection 18 Gb/s silicon micro-ring electro-optic modulator." IEEE Proc. Lasers and Electro-Optics Soc.2007,537-538.
    [62].M. Soljacic, et al. "Photonic-crystal slow-light enhancement of nonlinear phase sensitivity." J. Opt. Soc. Am. B 200219,2052-2059.
    [63].Y. Jiang, W. Jiang, L. Gu, X. Chen, and R. T. Chen, "80-micron interaction length silicon photonic crystal waveguide modulator." Appl. Phys. Lett.200587,221105
    [64].L. Gu, W. Jiang, X. Chen, L. Wang, and R. T. Chen, "High speed silicon photonic crystal waveguide modulator for low voltage operation." Appl. Phys. Lett.2007 90,071105
    [65].T. Tanabe, K. Nishiguchi, E. Kuramochi, and M. Notomi, "Low power and fast electro-optic silicon modulator with lateral p-i-n embedded photonic crystal nanocavity." Opt. Express 2009 17,22505-22513.
    [66].X. Chen, Y. S. Chen, Y. Zhao, W. Jiang, and R. T. Chen, "Capacitor-embedded 0.54 pJ/bit silicon-slot photonic crystal waveguide modulator." Opt. Lett.200934,602-604.
    [67].J. Li, T. P. White, L. O'Faolain, A. Gomez-Iglesias, and T. F. Krauss, "Systematic design of flat band slow light in photonic crystal waveguides." Opt. Express 200816,6227-6232.
    [68].A. Brimont, P. Sanchis, and J. Marti, "Strong electro-optical modulation enhancement in a slow wave corrugated waveguide." Opt. Express 200917,9204-9211.
    [69].W. M. Green, M. J. Rooks, L. Sekaric, and Y. A. Vlasov, "Ultra-compact, low RF power,10 Gb/s silicon Mach-Zehnder modulator." Opt. Express 2007 15,17106-17113.
    [70].Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, "12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators." Opt. Express 2007 15,430-436
    [71].P. Dong, et al. "Ultralow-energy, compact, high-speed silicon electrooptic modulator." Opt. Express 2009 17,22484-22490
    [72].L. Chen, K. Preston, S. Manipatruni. and M. Lipson, "Integrated GHz silicon photonic interconnect with micrometer-scale modulators and detectors." Opt. Express 2009 17, 15248-15256.
    [73].W. R. Watts, D. C. Trotter, R. W. Young, and A. L. Lentine," Ultralow power silicon microdisk modulators and switches." Proc.5th IEEE Int. Conf. Group Ⅳ Photonics 4-6 2008.
    [74].A. Liu, et al. "High-speed optical modulation based on carrier depletion in a silicon waveguide." Opt. Express 2007 15,660-668.
    [1].R. A. Soref and B. R. Bennett, "Electrooptical effects in silicon," IEEEJ. Quantum Electron., 1987,23(1):123-129.
    [2].R. A. Soref and J. P. Lorenzo, "All-silicon active and passive guided-wave components for λ=1.3 and λ=1.6 μm," IEEE J. Quantum Electron.,1986,22(6):873-879.
    [3].S. R. Giguere, L. Friedman, R. A. Soref and J. P. Lorenzo, "Simulation studies of silicon electro-optic waveguide devices,",Appl. Phys. Lett.,1990,68(10):4964-4970.
    [4].J. P. Lorenzo and R. A. Soref, "1.3 μm electro-optic silicon switch," Appl. Phys. Lett.,1987, 51(1):6-8.
    [5].Q. Yan. J. Yu, J. Xia and Z. Liu, "High-speed electrooptical VOA integrated in silicon-on-insulator," Chin. Opt. Lett.,2003,1(4):217-219.
    [6].G. V. Treyz, P. G. May and J. M. Halbout, "Silicon optical modulators at 1.3 um based on free-carrier absorption," IEEE Electron Dev. Lett.,1991,12(6):276-278.
    [7].B. R. Hemenway, O. Solgaard, and D. M. Bloom, "All-silicon integrated optical modulator for 1.3μm fiber-optic interconnects,Appl. Phys. Lett.,1989,55(4):349-350.
    [8].G. Treyz. P. May and J. Halbout, "Silicon Mach-Zehnder waveguide interferometers based on the plasma dispersion effect,"Appl. Phys. Lett.,1991,59(7):771-773.
    [9].Y. Liu, E. Liu, S. Zhang, G. Z. Li and J. S. Luo, "Silicon 1×2 digital optical switch using plasma dispersion," Electron. Lett.,1994,30(2):130-131.
    [10].C. Z. Zhao, A. H. Chen, E. K. Liu, and G. Z. Li, "Silicon-On-Insulator Asymmetric Optical Switch Based on Total Internal Reflection," IEEE Photon. Technol. Lett.,1997,9(8): 1113-1115.
    [11].P. Dainesi, A. Kung, M. Chabloz, A. Lagos, Ph. Fluckiger, A. Ionescu, P. Fazan, M. Declerq, Ph. Renaud and Ph. Robert, "CMOS compatible fully integrated Mach-Zehnder interferometer in SOI technology," IEEE Photon. Technol. Lett.,2000,12(6):660-662.
    [12].Q. Xu, B. Schmidt, S. Pradhan and M. Lipson, "Micrometre-scale silicon electro-optic modulator," Nature,2005,435:325-327.
    [13].S. Manipatruni, Q. Xu, B. Schmidt, J. Shakya and M. Lipson, "High speed carrier injection 18 Gb/s silicon micro-ring electro-optic modulator," Lasers and Electron-Optics Society, 2007:537-538.
    [14].J. V. Campenhout, W. M. J. Green, S. Assefa, and Y. A. Vlasov, "Low-power,2×2 silicon electro-optic switch with 110-nm bandwidth for broadband reconfigurable optical networks,' Opt Express 2009,17(26):24020-24029.
    [15].A. Liu, R. Jones, L. Liao, D. Rubio, D. Rubin, O. Cohen, R. Nicolaescu and M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature,2004,427:615-618.
    [16].L. Liao, D. Rubio, M. Morse, A. Liu and D. Hodge, "High speed silicon Mach-Zehnder modulator," Opt. Express,2005,13(8):3129-3135.
    [17].A. Irace, G. Coppola, G. Breglio, and A. Cutolo, "Fast silion-on-silicon Optoelectronic router based on a BMFET device," IEEE J. Sel. Top. Quant. Electron,2000,6(1):14-18.
    [18].A. Sciuto, S. Libertino, A. Alessandria, S. Coffa and G. Coppola, "Design, fabrication, and testing of an integrated Si-based light modulator," J. Lightwrne Technol.,2003,21(1): 228-235.
    [19].J. Basaka, L. Liao, A. Liu. D. Rubin. Y. Chetrit, H. Nguyen. D. Samara-Rubio, R. Cohen, N. Izhaky and M. Paniccia, "Developments in gigascale silicon optical modulators using free carrier dispersion mechanisms," Advances in Opt. Technol.,2008, Article ID 678948 (10pp).
    [20].F. Gardes, G. T. Reed, N. G. Emerson and C. E. Png, "A sub-micron depletion-type photonic modulator in silicon-on-insulator," Opt. Express,2005,13(22):8845-8854.
    [21].A. Huang, C. Gunn, G. Li, Y. Liang, S. Mirsaidi, A. Narasimha and T. Pinguet, "A 10Gb/s photonic modulator and WDM MUX/DEMUX integrated with electronics in 0.13∴m SOI CMOS." 2006 IEEE International Solid-State Circuits Conferenc,2006:922-929.
    [22].A. Liu, L. Liao. D. Rubin. H. Nguyen. B. Ciftcioglu, Y. Chetrit, N. Izhaky and M. Paniccia, "High-speed optical modulation based on carrier depletion in a silicon waveguide," Opt. Express.2007,15(2):660-668.
    [23].A. Liu, L. Liao, D. Rubin. J. Basak, H. Nguyen, Y. Chetrit, R. Cohen, N. Izhaky and M. Paniccia. "High-speed silicon modulator for future VLSI interconnect," Optical Society of America.2007.
    [24].P. Dong, et al. "Ultralow-energy, compact, high-speed silicon electrooptic modulator." Opt. Express 200917,22484-22490
    [25].www.silvaco.com
    [26].K. Kawano, and T. Kitoh, "Introduction to Optical Waveguide Analysis:Solving Maxwell's Equations and the Schrodinger Equation ". John Wiley & Sons.,2002.
    [27].S. P. Pogossian, L. Vescan and A. Vonsovici, "The single mode condition for semiconductor rib waveguides with large cross section," J. Lightwave Technol.,1998,16(10):1851-1853.
    [28].S. P. Chan, C. E. Png, S. T. Lim, G. T. Reed and V. M. N. Passaro, "Single-mode and polarization-independent silicon-on-insulator waveguides with small cross section," J. Lightwave Technol.,2005,23(6):2103-2111.
    [29].www.matlab.com
    [1].A. Biberman et al, "Broadband operation of nanophotonic router for silicon photonic networks-on-chip," IEEE Photon. Technol. Lett.2010,22(12):926-928.
    [2].B. G. Lee, A. Biberman, J. Chan, and K. Bergman, "High-performance modulators and switches for silicon photonic networks-on-chip," IEEE J. Sel. Top. Quantum Electron.2010, 16(1):6-22.
    [3].R. Ji, L. Yang, L. Zhang, Y. Tian, J. Ding, H. Chen, Y. Lu, P. Zhou, and W. Zhu, "Five-port optical router for photonic networks-on-chip," Opt. Express,2011,19(21):20258-20268.
    [4].N. Sherwood-Droz et al, "Optical 4×4 hitless silicon router for optical networks-on-chip (NoC)," Opt. Express,2008,16(20):15915-15922.
    [5].Y. Y. Chen, Y. P. Li, F. Sun, D. Yang, S. W. Chen, and J. Z. Yu, "SOI-based 16×16 thermo-optic waveguide switch matrix," Chinese Phys. Lett.,2006,23(7):1823-1825.
    [6].M. Yang et al, "Non-Blocking 4x4 Electro-Optic Silicon Switch for On-Chip Photonic Networks," Opt. Express,2010,19(1):47-54.
    [7].L. B. Soldano and E. C. M. Pennings, "'Optical multi-mode interference devices based on self-imaging:principles and applications,"J. Lightwave Technol.,1995,13(4):615-627.
    [8].J. Xiao, X. Liu and X. Sun, "Design of an ultracompact MMI wavelength demultiplexer in slot waveguide structures," Opt. Express,2007,15(13):8300-8308.
    [9].S.-Y. Tseng, C. Fuentes-Hernandez, D. Owens and B. Kippelen, "Variable splitting ratio 2*2 MMI couplers using multimode waveguide holograms," Opt. Express,2007,15(14): 9015-9021.
    [10].R. Yin, J. Teng and S. Chua, "A 1×2 optical switch using one multimode interference region," Opt. Commun.,2008,281(18):4616-4618.
    [11].L. Pavesi and G. Guillot, "Optical interconnects:the silicon approach," Springer-Verlag, Berlin Herdeberg,2006.
    [12].G. Treyz, P. May and J. Halbout, "Silicon Mach-Zehnder waveguide interferometers based on the plasma dispersion effect," Appl. Phys. Lett.,1991,59(7):771-773.
    [13].L. Liao, D. Rubio, M. Morse, A. Liu and D. Hodge, "High speed silicon Mach-Zehnder modulator," Opt. Express,2005,13(8):3129-3135.
    [14].C. Zhao, G. Li, E. Liu, Y. Gao and X. Liu, "Silicon on insulator Mach-Zehnder waveguide interferometers operating at 1.3μm," Appl.Phys. Lett.,1995,67 (17):2448-2449.
    [15].S. Somekh, E. Garmire, A. Yariv, H. L. Garvin and R. G. Hunsperger, "Channel optical waveguide directional couplers,"Appl. Phys. Lett.,1973,22(2):46-47.
    [16].A. M. Streltsov and N. F. Borrelli, "Fabrication and analysis of a directional coupler written in glass by nanojoule femtosecond laser pulses," Opt. Lett.,2001,26(1):42-43.
    [17].M. Thorhauge, L. H. Frandsen and P. I. Borel, "Efficient photonic crystal directional couplers," Opt. Lett.,2003,28(17):1525-1527.
    [18].M. Rangaraj and S. Kawakami, "Low loss integrated optical Y-branch," J. Lightwave Technol.,1989,7(5):753-758.
    [19].S. Abdalla, S. Ng, P. Barrios, D. Celo, A. Delage, S. El-Mougy, I. Golub, J. He, S. Janz, R. McKinnon, P. Poole, S. Raymond, T. J. Smy and B. Syrett, "Carrier injection-based digital optical switch with reconfigurable output waveguide arms," IEEE Photon. Technol. Lett., 2004,16(4):1038-1040.
    [20].Y. Sakamaki, T. Saida, T. Hashimoto and H. Takahashi, "Low-loss Y-branch waveguides designed by wavefront matching method," J. Lightwave Technol.,2009,27(9):1128-1134.
    [21].郭福源,王明华,“星形光波导耦合器的耦合特性分析,”光学学报,2006,26(12):1797-1803.
    [22].P. A. Besse, M. Bachmann, H. Melchior, L. B. Soldano, M. K. Smit, "Optical bandwidth and fabrication tolerances of multimode interference couplers," J. Lightwave Technol.,1994, 12(6):1004-1009.
    [23].张慧剑.左萌,钟锦舜,顾畹仪,“高速密集波分复用系统中的二级调制格式研究,”中国激光,2005,32(6):815-819.
    [24].S. P. Chan, C. E. Png, S. T. Lim, G. T. Reed and V. M. N. Passaro, "Single-mode and polarization-independent silicon-on-insulator waveguides with small cross section," J. Lightwave Technol.,2005,23(6):2103-2111.
    [25].S. P. Pogossian, L. Vescan and A. Vonsovici, "The single mode condition for semiconductor rib waveguides with large cross section," J. Lightwave Technol.,1998,16(10):1851-1853.
    [26].A. Himeno, R. Nagase, T. Ito, K. Kato, and M. Okuno, "Photonic intermodule connector using 8×8 optical switches for near-future electronic switching systems," IEICE Trans. Commun.,1994, E77-B(2),155-162.
    [27].K. Okamoto, M. Okuno, A. Himeno, and Y. Ohmori, "16-channel optical add/drop multiplexer consisting of arrayed-waveguide gratings and double-gate switches," Electron. Lett.,1996,32(16),1471-1472.
    [28].Y. T. Li, J. Z. Yu, S. W. Chen, Y. P. Li and Y. Y. Chen, "Submicrosecond rearrangeable non-blocking silicon-on-insulator thermo-optic 4×4 switch matrix," Opt. Lett.2007,32(6), 603-604.
    [29].赵勇.载流子色散型硅基光波导器件研究.浙江大学学位论文,2011.
    [1].R. G. J. Heebner, T. Ibrahim, Optical microresonators:theory, fabrication, and applications Springer,2008.
    [2].D. G. Rabus, Integrated ring resonators Springer,2007.
    [3].R. Grover, V. Van, T. A. Ibrahim, P. P. Absil, L. C. Calhoun, F. G. Johnson, J. V. Hryniewicz, and P. T. Ho, "Parallel-cascaded semiconductor microring resonators for high-order and wide-FSR filters," 2002, J Lightwave Technol 20(5):872-877.
    [4].G. Griffel, "Vernier effect in asymmetrical ring resonator arrays," 2000, IEEE Photonic Tech L 12(12):1642-1644.
    [5].S. J. Xiao, M. H. Khan, H. Shen, and M. H. Qi, "A highly compact third-order silicon microring add-drop filter with a very large free spectral range, a flat passband and a low delay dispersion," 2007, Opt Express 15(22):14765-14771.
    [6].J. K. S. Poon, J. Scheuer, S. Mookherjea, G. T. Paloczi, Y. Y. Huang, and A. Yariv, "Matrix analysis of microring coupled-resonator optical waveguides," 2004, Opt Express 12(1): 90-103.
    [7].F. Cuesta-Soto, A. Martinez, J. Blasco, and J. Marti, "Numerical analysis of the performance of Mach-Zehnder interferometric logic gates enhanced with coupled nonlinear ring-resonators," 2007, Opt Express 15(5):2323-2335.
    [8].A. F. Jezierski, and P. J. R. Laybourn, "Integrated Semiconductor Ring Lasers," 1988, IEE Proc-J 135(1):17-24.
    [9].D. G. Rabus, Z. X. Bian, and A. Shakouri, "A GaInAsP-InP double-ring resonator coupled laser," 2005, IEEE Photonic Tech L 17(9):1770-1772.
    [10].Q. F. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, "12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators," 2007, Opt Express 15(2): 430-436.
    [11].P. Rabiei, W. H. Steier, C. Zhang, and L. R. Dalton, "Polymer micro-ring filters and modulators," 2002, J Lightwave Technol 20(11):1968-1975.
    [12].K. Preston, S. Manipatruni, A. Gondarenko, C. B. Poitras, and M. Lipson, "Deposited silicon high-speed integrated electro-optic modulator," 2009, Opt Express 17(7):5118-5124.
    [13].D. Rezzonico, M. Jazbinsek, A. Guarino, O. P. Kwon, and P. Gunter, "Electro-optic Charon polymeric microring modulators," 2008, Opt Express 16(2):613-627.
    [14].B. A. Block, T. R. Younkin, P. S. Davids, M. R. Reshotko, P. Chang, B. M. Polishak, S. Huang, J. D. Luo, and A. K. Y. Jen, "Electro-optic polymer cladding ring resonator modulators," 2008, Opt Express 16(22):18326-18333.
    [15].J. Y. Yang, F. Wang, X. Q. Jiang. H. C. Qu. M. H. Wang, and Y. L. Wang, "Influence of loss on linearity of microring-assisted Mach-Zehnder modulator," 2004, Opt Express 12(18): 4178-4188.
    [16].Q. F. Xu, B. Schmidt, S. Pradhan, and M. Lipson, "Micrometre-scale silicon electro-optic modulator," 2005, Nature 435(7040):325-327.
    [17].S. Y. Cho, and R. Soref, "Interferometric microring-resonant 2x2 optical switches," 2008, Opt Express 16(17):13304-13314.
    [18].S. J. Emelett, and R. Soref, "Design and simulation of silicon microring optical routing switches." 2005, J Lightwave Technol 23(4):1800-1807.
    [19].S. J. Chang, C. Y. Ni, Z. P. Wang, and Y. J. Chen, "A compact and low power consumption optical switch based on microrings," 2008, IEEE Photonic Tech L 20(9-12):1021-1023.
    [20].P. Dong, S. F. Preble, and M. Lipson, "All-optical compact silicon comb switch," 2007, Opt Express 15(15):9600-9605.
    [21].Y. Goebuchi, M. Hisada, T. Kato, and Y. Kokubun, "Optical cross-connect circuit using hitless wavelength selective switch," 2008, Opt Express 16(2):535-548.
    [22].R. A. Soref, and B. E. Little, "Proposed N-wavelength M-fiber WDM crossconnect switch using active microring resonators," 1998, IEEE Photonic Tech L 10(8):1121-1123.
    [23].B. E. Little, H. A. Haus, J. S. Foresi, L. C. Kimerling, E. P. Ippen, and D. J. Ripin, "Wavelength switching and routing using absorption and resonance," 1998, IEEE Photonic Tech L 10(6):816-818.
    [24].B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, "Microring resonator channel dropping filters," 1997, J Lightwave Technol 15(6):998-1005.
    [25].B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, "Ultra-compact Si-SiO2 microring resonator optical channel dropping filters," 1998, IEEE Photonic Tech L 10(4):549-551.
    [26].H. Takahashi, R. Inohara, K. Nishimura, and M. Usami, "Expansion of bandwidth of tunable dispersion compensator based on ring resonators utilizing negative group delay," 2006, J Lightwave Technol 24(6):2276-2286.
    [27].G. Lenz, and C. K. Madsen, "General optical all-pass filter structures for dispersion control in WDM systems," 1999, J Lightwave Technol 17(7):1248-1254.
    [28].H. F. Zhou, X. Q. Jiang, J. Y. Yang, Q. Zhou, T. B. Yu, and M. H. Wang, "Wavelength-Selective Optical Waveguide Isolator Based on Nonreciprocal Ring-Coupled Mach-Zehnder Interferometer," 2008. J Lightwave Technol 26(17-20):3166-3172.
    [29].D. X. Dai, and S. L. He, "Highly sensitive sensor based on an ultra-high-Q Mach-Zehnder interferometer-coupled microring," 2009, J Opt Soc Am B 26(3):511-516.
    [30].D. X. Dai, and S. L. He, "Highly-sensitive sensor with large measurement range realized with two cascaded-microring resonators," 2007, Opt Commun 279(1):89-93.
    [31].M. T. Hill, H. J. S. Dorren, T. de Vries, X. J. M. Leijtens, J. H. den Besten, B. Smalbrugge, Y. S. Oei, H. Binsma, G. D. Khoe, and M. K. Smit, "A fast low-power optical memory based on coupled micro-ring lasers," 2004, Nature 432(7014):206-209.
    [32].Y. C. Chung, D. G. Kim, and N. Dagli, "Reflection properties of coupled-ring reflectors." 2006, J Lightwave Technol 24(4):1865-1874.
    [33].O. Schwelb, "Band-limited optical mirrors based on ring resonators:Analysis and design," 2005, J Lightwave Technol 23(11):3931-3946.
    [34].Q. F. Xu, D. Fattal, and R. G. Beausoleil, "Silicon microring resonators with 1.5-mu m radius," 2008, Opt Express 16(6):4309-4315.
    [35].Q. F. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, "12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators," 2007, Opt Express 15(2): 430-436.
    [36].Q. F. Xu, "Chapter2:microring resonators," Cornell University Doctoral Dissertation,2007.
    [37].J. Y. Yang, Q. J. Zhou, F. Zhao, X. Q. Jiang, B. Howley, M. H. Wang, and R. T. Chen, "Characteristics of optical bandpass filters employing series-cascaded double-ring resonators," 2003,Opt Communications 22891-98.
    [38].J. M. Kahn, and K. P. Ho, "Spectral efficiency limits and modulation/detection techniques for DWDM systems," 2004,IEEE J Sel Top Quant 10(2):259-272.
    [39].P. J. Winzer, and R. J. Essiambre, "Advanced modulation formats for high-capacity optical transport networks," 2006, J Lightwave Technol 24(16):4711-4728.
    [40].www.optiwave.com
    [41].樊昌信,张甫翊,徐炳祥,吴成柯.通信原理(第5版).北京:国防工业出版社,2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700