西藏雄村斑岩型铜金矿遥感地质成矿信息提取研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
雄村铜金矿床位于冈底斯成矿带的中段,冈底斯中新生代火山-岩浆弧东段南缘,雅江深大断裂的北缘,岩浆弧与昂仁-日喀则中-新生代弧前盆地转换部位,属于超大型细脉浸染型铜金矿,既斑岩型矿床。近年来大批的斑岩型铜金矿的发现,使得冈底斯成矿带备受关注。通过对斑岩型铜矿成矿机制的研究发现,围岩蚀变与成矿的关系密切,是寻找斑岩型铜矿床的主要标志。利用西部高寒山区良好的气象以及浅覆盖的优势,运用遥感技术对斑岩型铜矿成矿信息提取的方法进行了较为深入的研究,为雄村铜金矿周边发掘找矿潜力提供依据。
     本文利用ASTER遥感数据,在斑岩型铜矿成矿规律的指导下,结合已有勘查资料,对蚀变矿物波谱特征进行分析,提出各类蚀变的提取方案并进行蚀变提取。在分析区域地质特征的基础上,利用ETM数据对研究区的线环构造进行解译,分析与构造相关的成矿有利位置,最后将各类遥感成矿信息集成到统一的地理信息系统平台下,在综合分析遥感地质成矿信息后,对研究区进行斑岩型铜金矿的成矿预测。本文主要研究内容如下:
     (1)本文在完成对ASTER数据预处理以及去除干扰信息的基础上,利用ASTER数据在近红外、短波对矿物光谱识别的优势,在斑岩型铜矿典型的围岩蚀变分带模式的指导下,提出了基于主成分分析的蚀变提取方案。并对典型蚀变带在研究区内分布集中区所表现的分带普遍模式进行分析总结。
     (2)通过对雄村铜金矿已有勘查资料的分析,以及典型蚀变带提取的结果,对蚀变的提取进行深化,确定需要补充提取的蚀变类型,剔除典型蚀变带中对成矿影响不大的类型,最终确定了5类蚀变作为与雄村矿床成矿相关信息,分别为:钾化、似千枚岩化、青磐岩化、黄铁绢英岩化、硅化,通过对5类蚀变结果的叠加分析得出矿区内蚀变的普遍分布特征:钾化-钾化+似千枚岩化-似千枚岩化。
     (3)利用ETM数据在741波段遥感地质解译的成熟经验,在研究区开展地质信息目视解译工作,主要为线性、环形构造解译,对遥感地质解译结果进行数量化分析,分析构造集中区,构造主要方位;并利用线-环交切矿床定位最佳模式分析成矿有利部位。
     (4)对遥感成矿信息进行综合分析,首先将蚀变、线环构造集成到统一的地理信息平台下,得到遥感成矿要素图。制作线环构造密度图,对蚀变类型进行打分,制作蚀变密度图,通过试验确定最佳权重值,对两类成矿要素密度图进行栅格叠加运算,得到有利成矿区分级图,在有利成矿区分级图上圈定了10个斑岩铜矿成矿预测区,圈定的一处成矿预测区与雄村铜金矿位置相吻合,验证了遥感成矿信息提取的有效性。
Xiongcun copper-gold deposit is superlarge porphyry copper-gold deposit,which located in the middle of gangdese metallogenic belt, the southern margin of the eastern section of gangdise mesozoic and cenozoic volcanic-magmatic arc, southern edge of the brahmaputra discordogenic fault,magmatic arc and angren-xigaze cenozoic fore-arc basin conversion parts. In recent years,because of a large number of porphyry copper-gold deposits were discovered,gangdese metallogenic belt received much concern.Wall rock alteration is the main indicator of looking for porphyry copper deposit due to intimately associated with mineralization by study for metallogenic mechanism of porphyry copper deposits.Make use of good weather conditions in western alpine mountain areas,and the advantages of shallow overburden,using of remote sensing technology study about porphyry copper mineralization information extraction method,and provide the basis for prospecting potential in perimeter zone of xiongcun copper-gold deposit.
     Making use of ASTER remote sensing data,under the guidance of regularity of ore formation of porphyry copper deposits,and combined with existing reconnaissance material,analysis for spectral characteristics of alteration mineral, and then to determine the best extracting method in connection with various types of alteration.Based on the analysis of regional geological features,using of ETM data to interpret linear and ring structure,analysis of the mineralization vantage point associated with the construction,finally,the various types of remote sensing mineralization information were integrated into a unified geographic information system platform,and then comprehensive analysis of remote sensing geological mineralization information, finally to metallogenic prognosis for the study area.The main content of this paper as follow:
     (1)Based on the completion of the ASTER data pre-processing and removal of interference information,using of the spectral recognition advantages of ASTER data in the near infrared,short wave,under the guidance of porphyry copper deposit’s typical alteration zoning mode,proposed the method of altered extraction is based on principal component analysis.Analysis and summarized the typical distribution pattern of the alteration zone in distribution of clusters of the study area.
     (2)Analysis for existing reconnaissance material of xiongcun copper-gold deposit and extracted results of typical alteration zoning,determine the additional alteration types which need extracted,excluding the typical alteration zone has little effect on mineralization,ultimately five category of alteration as mineralization information, which are potassium alteration,quartz-sericitization,beresitization, siliconization,and obtained the general distribution characteristics by the superposition of five category of the alteration results:potassium alteration- potassium alteration+quartz sericitization-quartz sericitization.
     (3)Making use of the mature experience at remote sensing geological interpretation for ETM data that consists of band 741,carry on remote sensing visual interpretation of geological information in the study area,mainly include that linear and ring structure interpretation,and quantitative analysis for the result of remote sensing geological interpretation,analysis of structure concentrated area and main orientation,than though linear-ring structure model for ore deposit loeation to decide the favored site of mineralization.
     (4)Comprehensive analysis for remote sensing geological mineralization information,first,alteration and linear-ring strueture were integrated into a unified geographic information system platform,and recevied the remote sensing metallogenic factor map. Production linear-ring strueture density map, evaluation for every alteration types and production alteration density map.By testing determine the best weights and use of raster calculator for two types metallogenic factor, and obtained favorable metallogenic classification map.Based on favorable metallogenic classification map, ten predicting areas of porphyry copper deposit were delineated.The position of predicting area is coincide with xiongcun copper-gold deposit’s,this result validate the effectiveness of remote sensing geological mineralization information extraction.
引文
[1] A.M.Baldridge,S.J.Hook,The ASTER spectral library version 2.0[J].Remote Sensing of Environment 113(2009):711-715.
    [2] Ambrams M J,Ashley R P,Brown L C,etal.MaPPing of hydrothermal alteration in the CuPrite mining distriet,Nevada,sing aireraft seanning image s for the spectral region 0.46 to 2.36 mm [J].Geology,1977(5):713-718.
    [3] Ambrams M J.Landsat thematic mapper and thematic mapper simulator data for a Porphyry copper deposit [J].Photogranunetric Engineering and RemoteSensing,1984,14:128~136.
    [4] Barnaby W. Rockwell and Albert H. Hofstra. Mapping argillic and advanced argillic alteration in volcanic rocks,quartzites, and quartz arenites in the western Richfield 1 degrees X 2 degrees quadrangle,southwestern Utah, using ASTER satellite data,Abstracts with Programs-Geological Society of America (May 2009), 41(6):39
    [5] CROWLEY James K,HUBBARD Bemard E,and MARS John C.Hydrotherm Alteration on the cascade stratovoleanoes:A remote sensing survey [J].Geologic Society of Ameriea Abstracts with Programs,2003,35(6):552.
    [6] Enton Bedini, Mineral mapping in the Kap Simpson complex, central East Greenland, using HyMap and ASTER remote sensing data Original Research Article Advances in Space Research, In Press,Corrected Proof, Available online 21 August 2010.
    [7] Green A.A.,and M.D.Graig,1985.Analysis of Aircraft spectrometer dada with logarithmic residuals,Proceedings of Airborne Imaging Spectrometer data analysis Workshop,JPL Publication,85(41): 111-119.
    [8] Imbroane,A.;Melenti,C.Gorgan,D.Mineral explorations by landsat image ratios Symbolic and Numerie Algorithms for Seientific Computing,2007.Page(s):335-340.
    [9] Jet Propulsion Laboratory. ASTER User Handbook Version 2 Pasadena[M].
    [10] Loughlin.W P.Principal component analysis for ralteration mapping [J].Photogrammetric Engineering and RemoteSensing,1991,57:1163~1169.
    [11] Philip R.Christensen. A thermal emission spectral library of rock-forming minerals[J]. Journal of Geophysical Research.2000,105(4):9735-9739.
    [12] Roberts D.A.,Gardner M.,et al,1997,Mapping chaparral in the Santa Monica Mountains using multipleendmember spectral mixing models,Remote Sens.Environ.,65:267-279.
    [13] Rokos D.Structural Analysis for Goldmineralization Using Remote Sensing and Geoehemieal Techniques in a GIS Environment:Island of Lesvos,Hellas[J].Natural Resources Researeh,2000,9(4):101-105.
    [14] Rowan L.C.,Goetz A.F.H.,Ashley,R.P.Discrimination of hydrothermally altered and rocks in visible and near infrared multispectral images.Geophysics,1977(42):522-535.
    [15] Tangestani m H and Moore F.Comparisonof three prineipal component analysis techniques to Porphyry copper alteration mapping:Aeasestudy,Meidu area,Kerman,Iran[J].Canadian Joumal of remote Sensing,2001(27):176-181.
    [16] Timothy M Kusky,Talaat M Ramdadan.Structural controls on Neoprotero zoic mineralization in the South Eastem Desert,EgyPt:an integrated field,Landsat-TM,andSIR-C/X SAR approach [J].Joumal of African Earth Sciences 2002,35:107-121.
    [17]陈百友,王增润,彭省临,等.澜沧老厂银铅锌铜多金属矿床成因探讨[J]..云南地质, 2000, 21(2):134-144..
    [18]陈建平,等.康滇地轴中南段区域构造格架的遥感地质统计分析[J].成都理工学院学报,1999,26(1):78-81.
    [19]陈江,付建飞.先进星载热发射和反射辐射仪(ASTER)—地质学家的最佳选择[J].地质通报,2006,25(5):650-652.
    [20]陈立春,陈桂华,等.柯坪塔格推覆系活动构造的ETM+影像特征与解译[J].地震地质, 2006, 26(2): 289-296.
    [21]陈松岭,卢福宏,等.华北地台北缘内蒙古段金矿围岩蚀变的遥感识别.国土资源遥感.2001, (2)13一18.
    [22]代晶晶,曲晓明,等.基于ASTER遥感数据的西藏多龙矿集区示矿信息的提取[J].地质通报,2010,29(5):752-759.
    [23]邓书斌.ENVI遥感图像处理方法[M].科学出版社,2010,274-275.
    [24]二宫芳树,傅碧宏,等.帕米尔东北缘ASTER多光谱热红外遥感数据的岩性信息提取[J].新疆地质,2003,21(1):24-28.
    [25]范森葵,成永生,等.桂北甲龙矿区锡铜多金属遥感地质与找矿预测[J].矿业研究与开发,2010,30(4):10-21.
    [26]冯雨林,时建民,等.ETM+遥感影像矿化蚀变信息的提取与找矿实践[J].地质与资源, 2008, 17(1): 20-23.
    [27]傅文杰,洪金益,朱谷昌.基于光谱相似尺度的支持向量机蚀变信息提取[J].地质勘探,2006, (03):69-73.
    [28]甘甫平.遥感岩矿信息提取基础与技术方法研究[D].中国地质大学(北京),2001,1-4.
    [29]甘甫平,王润生,等.遥感地质信息提取集成与矿物遥感地质分析模型[J].遥感学报,2003,7(3):207-212.
    [30]耿新霞,杨建民,等. ASTER数据在浅覆盖区蚀变遥感异常信息提取中的应用[J].地质论评,2008,54(2):184-190.
    [31]郭亚东,史舟.先进星载热发射和反射辐射仪(ASTER)的特点及应用[J].遥感技术与应用,2003,18(5):346-351.
    [32]韩玲,谢秋昌.遥感技术对新疆西天山地区矿化蚀变信息的提取[J].遥感应用,2007,18(2): 49-51.
    [33]侯增谦.初论大陆环境斑岩铜矿[J].现代地质, 2007, 21(2):332-351.
    [34]黄照强,等:基于ASTER和ETM+数据的蚀变信息提取比较研究—以西藏泽当矿田为例[J].地质与勘探,2009,45(5):606-611
    [35]慧典市场研究报告.中国西藏矿产资源开发前景分析报告[EB/OL].[2006-09-6 ]. http://www.hdcmr.com/6348.html.
    [36]矫东风,吕新彪.基于GIS空间分析的成矿预测[J].地质找矿论丛,2003,18(4):269-274.
    [37]郎兴海,陈毓川,等.西藏谢通门县雄村斑岩型铜金矿床成因讨论—来自元素的空间分布特征的证据[J].地质论评,2010,56(3):384-400.
    [38]李昌国,张玉君.试用主分量分析方法提取澜沧江兰坪地区铜矿化蚀变遥感信息[J].国土资源遥感,1997,(1):20-30.
    [39]李东.内蒙古北山地区矿化蚀变遥感异常提取研究及应用[D].北京:中国地质大学.2008
    [40]李海涛,田庆久.ASTER数据产品的特性及其计划介绍[J].遥感信息,2004(3):53-55.
    [41]李建国,毛德宝.基于ETM+与ASTER数据的矿化蚀变信息提取方法研究———以满都拉地区为例[J].地质调查与研究,2007,30(3):234-239.
    [42]李培军,龙玄耀,等.基于ASTER数据的蛇绿岩组分识别:以德尔尼矿区为例[J].岩石学报,2007,23(5):1175-1180.
    [43]刘成,王丹丽,李笑梅.用混合像元线性模型提取中等植被覆盖区的粘土蚀变信息[J].遥感技术与应用,2003,18(2):95-95.
    [44]刘刚.东昆仑五龙沟金矿围岩蚀变的遥感识别[J].国土资源遥感, 2002(4): 60-62.
    [45]刘素红,马建文,蔺启忠.通过Gram-schmidi投影方法在高山区提取TM数据中含矿蚀变带信息[J].地质与勘探,2000,36(5):62-65.
    [46]刘岩松.里伍铜矿遥感找矿信息提取及外围找矿远景分析[D].成都:成都理工大学.2008.
    [47]刘燕君.遥感找矿的原理和方法[M].北京:冶金工业出版社,1991.
    [48]吕凤军,郝跃生等.多光谱蚀变遥感异常提取方法研究[J].遥感应用,2007(04):98-101.
    [49]罗慧芬,苗放,等.基于FLAASH模型的ASTER卫星影像大气校正[J].安徽农业科学, 2009,37 (17):1801-1802.
    [50]马建文.利用TM数据快速提取含矿蚀变带方法研究[J].遥感学报,1997,l(3):208-213.
    [51]木合塔尔·扎日,郭瑞清,依玛木·塔伊尔.基于GIS空间分析进行多源信息成矿预测—以东天山土屋-延东铜矿床预测为例[J].新疆地质,2006,24(3):314-317.
    [52]曲晓明,辛洪波,等.西藏雄村特大型铜金矿床容矿火山岩的成因及其对成矿的贡献[J].地质学报2007,81(7):964-971.
    [53]曲晓明,侯增谦,黄卫等,冈底斯斑岩铜矿(化)带:西藏第二条“玉龙”铜矿带?[J],矿床地质,2001,20(4) :355-362.
    [54]芮宗瑶,侯增谦,等.冈底斯斑岩铜矿成矿模式[J].地质论评,2006,52(4):459-466.
    [55]唐菊兴,等.西藏自治区谢通门县雄村铜矿勘探地质报告[R].2006
    [56]隋志龙,等.断裂构造的遥感研究方法综述[J].地理学与国土研究,2002,18(3):34-37.
    [57]王建平.基于遥感的河南卢氏西部地区蚀变信息提取与分析[J].地球信息科学,2007,6(9):111-115.
    [58]王瑞雪.云南澜沧老厂铅锌矿影像线-环构造矿床定位模式研究[D].昆明:昆明理工大学.2007:23-25.
    [59]王润生,丁谦,张幼莹,等.遥感色调异常分析的协同优化策略[J].地球科学—中国地质大学学报,1999,24(5):498-502.
    [60]王润生,等.遥感线性体场的数量化分析[J].国土资源遥感,1992(13):49-53.
    [61]王晓鹏,谢志清.伍跃中西昆仑塔什库尔干地区遥感找矿异常提取方法研究[J].地质找矿丛论,2002,17(2):136-139.
    [62]魏冠军,党亚民等.GIS的信息量法在澜沧老厂成矿预测中的应用[J].测绘科学,2010,35(6),217-218.
    [63]吴昀昭,田庆久,陈骏,等.新疆哈密黄山地区多金属矿床遥感地质信息提取与找矿模式研究[J].高校地质学报,2004,10(1):114-120.
    [64]向美琳,陈建国,等.乌拉山地区遥感蚀变信息提取研究[J].地质学刊,2010,34(1):28-32.
    [65]闫柏琨,刘圣伟,王润生等.2006.热红外遥感定量反演地表岩石的SiO2含量[J].地质通报,25 (5):15-19.
    [66]燕守勋.中国西部喀喇昆仓明铁盖多金属矿化区的卫星遥感勘查[J].遥感学报,2001,5(4): 306-311.
    [67]杨佳佳,姜琦刚,等,基于ASTER和ETM+数据的遥感蚀变信息提取[J].吉林大学学报(地球科学版),2008,11:153-156.
    [68]杨建民.张玉君,等.遥感找矿信息在新疆罗东镍矿发现中的主导作用[J].岩石学报,2007,23(10):2647-2652.
    [69]杨日红,于学政.藏东三江地区多金属矿产遥感信息综合找矿预测[J].地质与勘探, 2005, 41(3): 59-60.
    [70]杨校军,陈雨时,等.FLAASH模型输入参数对校正结果的影响[J].遥感信息2008,6:32-37.
    [71]姚凤良,孙丰月,等,.矿床学教程.地质出版社[M],2006 :91-92.
    [72]姚佛军,杨建民,三种不同类型矿床分类型蚀变遥感异常提取及其应用[J].岩石学报,2009, 25 (4):971-976.
    [73]冶金工业部地质研究所,中国斑岩铜矿[M].科学出版社,1984.
    [74]叶天竺,等.矿床模型综合地质信息预测技术研究[J].地学前缘,2007,14(5):11-19.
    [75]游远航,杨建中,等.找矿信息量法在成矿预测中的应用—以武当西缘铅锌铜矿预测为例[J].地质找矿论丛,2006,21(1):58-62.
    [76]张丽,唐菊兴,等.西藏谢通门县雄村铜(金)矿矿石物质成分研究及其意义[J].成都理工大学学报(自然科学版).2007,34(3):318-325.
    [77]张满郎.金矿蚀变信息提取中的主成份分析[J].遥感技术与应用,1996,11(3):1-6.
    [78]张瑞江.基于遥感技术的成矿预测方法和程序研究[J].国土资源遥感,2010,3:58-64.
    [79]张玉君.基岩裸露区蚀变岩遥感信息的提取方法[J].国土资源遥感,1998,36(2).47-53.
    [80]张玉君,姚佛军.应用多光谱ASTER数据对ETM遥感异常的定性判别研究一以东昆仑五龙沟为例[J].岩石学报,2009,25(4):964-970.
    [81]张玉君,曾朝铭,陈薇. ETM+(TM)蚀变遥感异常提取方法研究与应用-方法选择和技术流程[J].国土资源遥感,2003, 2: 44-50.
    [82]张远飞,杨自安,等.遥感图像蚀变信息检测中的光谱数据空间结构分析[J].遥感信息,2009,1:3-9.
    [83]赵元洪,张福祥,陈南峰等.波段比值主成份复合在热液蚀变信息提取中的应用[J].国土资源遥感,1991,3:12-1
    [84]郑有业.西藏冈底斯巨型斑岩铜矿带勘查研究最新进展[J].中国地质, 2007, 34(2):324-33.
    [85]朱小鸽.多重主成分分析及在地质构造信息提取中的应用[J].遥感学报,2000,4(4):299-303

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700