分布式MIMO信道质量估计关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分布式MIMO信道质量,如信道衰落程度、接收信干噪比、载波间干扰等,是空时解码、纠错码译码以及自适应编码调制的必备参数,其估计的准确性将直接影响系统链路的吞吐率,是无线通信系统进行资源分配和管理的重要参考量。
     在下一代移动通信系统如LTE-A中,用于信道质量表征和状态估计的参考量,其设计优化以及估计质量提升还有很大的空间。概括起来主要包括以下几个方面:第一,发射天线数目越多,用于信道估计的导引符号占用的频谱资源越高;第二,对于信干噪比估计,实际工程中需要一种高精度低复杂度的估计方法;第三,在天线分布部署的LTE-A场景中,存在异种多普勒成为可能,因此需要重新考虑载波间干扰的计算。
     为了进一步提高频谱利用率,论文围绕上述系统存在的不足,对分布式MIMO信道质量的估计和优化展开研究,具体包括:导引符号位置设计、天线数目选择、信干噪比估计以及载波间干扰分析。
     首先,在分布式MIMO下行链路中,提出了为实现满频率复用的导引设计方法:利用分布式信道大尺度衰落的不平衡特性,安排相邻天线的导引符号在时频域上相互正交,相隔较远天线的导引符号复用;基于最小化信道估计均方误差准则,对导引密度进行了优化。在三发两收,天线间距500米以及多径瑞利衰落信道条件下进行仿真,结果表明,当信道估计的区域平均均方误差为102时,与基于集中式MIMO的导引位置安排方法相比,论文方法有1.2dB的信噪比增益。
     其次,在线形小区分布式天线系统的下行链路,给出了发射天线数目选择方法:在不同的接收位置上,比较了单天线满功率发射波形与双天线Alamouti发射波形的性能,基于最小化误比特率准则选择发射天线数目。仿真结果表明,在发射天线间距500米,阴影标准差8dB以及移动台与发射天线距离小于80米条件下,当链路的区域平均误比特率为102时,发射天线数目经优化后,发射功率可以减少1.5dB。
     再次,在频率选择性瑞利衰落信道中,针对LTE-A提出一种利用频域相关性的信干噪比估计方法:利用子载波之间的相关性构造降秩矩阵,提取其协方差矩阵的最小特征值估计信干噪比。仿真结果表明,当信干噪比小于30dB时,该方法只需要利用连续4个导引符号载波,便可实现估计误差小于0.2dB,且该方法对多普勒频移不敏感。
     最后,在分布式MIMO上行链路中,各接收天线地理位置分布的不同可能导致其多普勒功率谱类型的不同。针对这一场景,分析了多普勒扩展对载波间干扰的影响:先给出在迫零检测下的瞬时接收信干噪比,然后分析了系统链路的载干比性能。在两发两收、子载波个数为256以及子载波间隔7.81kHz条件下进行数值分析,结果表明,平坦谱相对两径谱的载干比性能有4.8dB的增益。
     针对分布式环境下的信道质量估计问题,论文研究了导引符号位置设计、天线数目选择、信干噪比估计以及载波间干扰分析,研究成果可用于基于分布式多天线的宽带接入、数字广播、移动通信等无线通信系统中。
The channel quality in multiple input multiple output (MIMO) with distributedantennas, such as the extent of channel fading, the received signal to interference plusnoise ratio (SINR) and the inter-carrier interference (ICI), etc., are the essentialparameters of space-time decoding, error correction code decoding and adaptive codedmodulation. The accuracy of the channel quality estimation have a direct impact on thethroughput of the system link, thus the channel quality are the key reference of thewireless resource allocation and management.
     There are a lot of room for improvement on channel quality estimation andoptimization in the next generation mobile communication systems such as LTE-A. Themainly aspects are summed up. Firstly, the larger the number of transmit antennas, themore the spectrum resources occupied by pilot symbols. Secondly, a high precision andlow complexity method for the SINR estimation is needed in the actual project. Thirdly,in the LTE-A scenarios with distribted antennas, the existence of heterogeneous Dopplerbecomes possible, therefore the calculation of ICI need to be reconsidered.
     In order to further improve the spectrum utilization, around the shortcomingsdescribed above, this thesis focuses on the study of estimation and optimizationmethods for channel quality in distributed MIMO, including: location design for pilotsymbols, antenna number selection, SINR estimation, and ICI analysis.
     Firstly, pilot design for achieving full frequency reuse is proposed in downlinkdistributed MIMO systems. Using the imbalance of the large-scale fading of distributedchannel, the pilot symbols of adjacent antennas are orthogonal in time and frequencydomains, and the pilot symbols of distant antennas are multiplexed. Based onminimizing the mean squared error of channel estimation, the pilot density is optimized.Under the condition of orthogonal space-time block coding with three transmit and tworeceive antennas, multipath Rayleigh fading channels, and antenna spacing of500meters, at the area averaged mean square error of102, the proposed methodoutperforms the centralized MIMO based method by1.2dB in signal to noise ratio.
     Secondly, a method for antenna number selection is presented in the line-shaped cell downlink distributed antenna systems. In the different position, the performance iscompared between single transmit antenna with full power and the Alamouti scheme.The antenna number is selected based on minimizing the bit error probability. Under thecondition of distance between transmit antennas500meters and standard deviation ofshadowing8dB, when the distance between mobile station and transmit antenna is lessthan80meters, at the area averaged bit error probability of102, the transmit power canbe reduced by1.5dB after optimization for antenna number selection.
     Thirdly, a SINR estimation method is proposed for LTE-A over frequency-selectiveRayleigh fading channels. A reduced-rank matrix is constructed utilizing the correlationbetween subcarriers, and the smallest eigenvalue of the covariance matrix is extracted toestimate SINR. The simulation results show that, when SINR is less than30dB, theproposed method requires only continuous four pilot subcarriers for realizing estimationerror is less than0.2dB, and that the proposed method is insensitive to the Doppler shift.
     Finally, the different locations of receiving antennas may lead to different types ofDoppler power spectrum in uplink distributed MIMO. For this scene, the efforts ofDoppler spreading on ICI are analyzed. The instantaneous SINR is presented usingzero-forcing detector at first, and then the carrier-to-interference ratio (CIR) expressionis derived. The numerical results show that, under the conditions of two transmit andtwo received antennas,256subcarriers and subcarrier spacing of7.81kHz, the CIRperformance of the flat spectrum has4.8dB gains relative two-path spectrum.
     This thesis studies the location design for pilot symbols, antenna number selection,SINR estimation, and ICI analysis for the channel quality estimation problem indistributed channel envirenment. The research results can be used in the broadbandaccess based on a distributed multi-antenna, the mobile communications and thewireless communication systems.
引文
[1]尤肖虎.FuTURE B3G研究开发及关键技术进展[J].移动通信,2006,2(6):18–22
    [2]曹淑敏.第三代移动通信的发展现状与趋势[J].当代通信,2004,2(10):31–33
    [3]陈明,尤肖虎.B3G移动通信系统的研究框架[J].中兴通讯技术,2006,12(2):27–31
    [4]李建东,杨家玮.个人通信[M].北京:人民邮电出版社,1998,76–134
    [5] T. S. Rappaport. Wireless Communications: Principles and Practice[M]. New York: AddisonWesley Pearson,2004,69–192
    [6]3rd Generation Partnership Project. Physical channels and modulation,3GPP TS36.211V.10.5.0[S]. France,3GPP Organizational Partners,2012
    [7]3rd Generation Partnership Project. Radio frequency (RF) system scenarios,3GPP TR36.942V.10.3.0[S]. France,3GPP Organizational Partners,2012
    [8] A. Saleh, A. Rustako, R. Roman. Distributed antennas for indoor radio communications[J].IEEE Trans. Commun.,1987,35(12):1245–1251
    [9] K. J. Kerpez. A radio access system with distributed antennas[J]. IEEE Trans. Veh. Technol.,1996,45(2):265–275
    [10] S. Zhou, M. Zhao, X. Xu, et al. Distributed wireless communication system: a newarchitecture for future public wireless access[J]. IEEE Commun. Mag.,2003,41(3):108–113
    [11] H. Xia, A. B. Herrera, S. Kim, et al. A CDMA-distributed antenna system for in-buildingpersonal communications services[J]. IEEE J. Sel. Areas Commun.,1996,14(4):644–650
    [12] G. L. Stüber, J. R. Barry, S. W. Mclaughlin, et al. Broadband MIMO-OFDM wirelesscommunications[J]. Proc. IEEE,2004,92(2):271–294
    [13] H. B lcskei, D. Gesbert, A. J. Paulraj. On the capacity of OFDM-based spatial multiplexingsystems[J]. IEEE Trans. Commun.,2002,50(2):225–234
    [14] A. van Zelst, T. C. W. Schenk. Implementation of a MIMO OFDM-based wireless LANsystem[J]. IEEE Trans. Signal Process.,2004,52(2):483–494
    [15] H. Sampath, S. Talwar, J. Tellado, et al. A fourth-generation MIMO-OFDM broadbandwireless system: design, performance, field trial results[J]. IEEE Commun. Mag.,2002,38(9):143–149
    [16] W. C. Jakes. Microwave Mobile Communications[M]. New York: IEEE Press, reprinted,1994,1–76
    [17] J. K. Cavers. Analysis of pilot symbol assisted modulation for Rayleigh fading channels[J].IEEE Trans. Veh. Technol.,1991,40(11):686-693
    [18] J.-J. van de Beek, O. Edfors, M. Sandell, et al. On channel estimation in OFDM systems[C].IEEE45th Vehicular Technology Conference (VTC’45), Chicago, USA,1995,2:815–819
    [19] S. G. Kang, Y. M. Ha, E. Kyeong. A comparative investigation on channel estimationalgorithms for OFDM in mobile communications[J]. IEEE Trans. Broadcast.,2003,49(2):142–149
    [20] I. Barhumi, G. Leus, M. Moonen. Optimal training design for MIMO OFDM systems inmobile wireless channels[J]. IEEE Trans. Signal Process.,2003,51(6):1615–1624
    [21] Y. Li, N. Seshadri, S. Ariyavisitakul. Channel estimation for OFDM systems with transmitterdiversity in mobile wireless channels[J]. IEEE J. Sel. Areas Commun.,1999,17(3):461–471
    [22] Y. Li. Simplified channel estimation for OFDM systems with multiple transmit antennas[J].IEEE Trans. Wireless Commun.,2002,1(1):67–75
    [23] J. H. Kotecha, A. M. Sayeed. Transmit signal design for optimal estimation of correlatedMIMO channels[J]. IEEE Trans. Signal Process.,2004,52(2):546–557
    [24] H. Zhang, Y. Li, A. Reid, et al. Optimal training symbol design for MIMO OFDM incorrelated fading channels[J]. IEEE Trans. Wireless Commun.,2006,5(9):2343–2347
    [25] X. Gao, B. Jiang, X. You, et al. Efficient channel estimation for MIMO single-carrier blocktransmission with dual cyclic timeslot structure[J]. IEEE Trans. Commun.,2007,55(11):2210–2223
    [26] Z. Zhang, W. Zhang, C. Tellambura. MIMO-OFDM channel estimation in the presence offrequency offsets[J]. IEEE Trans. Wireless Commun.,2008,7(6):2329–2339
    [27] Q. Huang, M. Ghogho, S. Freear. Pilot design for MIMO OFDM systems with virtualcarrier[J]. IEEE Trans. Signal Process.,2009,57(5):2024–2029
    [28] H. Minn, D. Munoz. Pilot designs for channel estimation of MIMO OFDM systems withfrequency-dependent I/Q imbalances[J]. IEEE Trans. Commun.,2010,58(8):2252–2010
    [29] C. Vithanage, R. Cepeda, J. Coon, et al. MIMO-OFDM pilot placement algorithms forwideband indoor communications[J]. IEEE Trans. Commun.,2011,59(2):466–476
    [30] J. K. Tugnait, W. Luo. On channel estimation using superimposed training and first-orderstatistics[J]. IEEE Commun. Lett.,2003,7(9):413–415
    [31] X. Meng, J. K. Tugnait. MIMO channel estimation using superimposed training[C].2004IEEE International Conference on Communications (ICC’04), Paris, France, vol.5:2663–2667
    [32] J. Wang, X Wang. Superimposed training-based noncoherent MIMO systems[J]. IEEE Trans.Commun.,2006,54(7):1267–1276
    [33] S. He, J. K. Tugnait, X. Meng. On superimposed training for MIMO channel estimation andsymbol detection[J]. IEEE Trans. Signal Process.,2007,55(6):3007–3021
    [34] V. Nguyen, H. D. Tuan, H. H. Nguyen. Optimal superimposed training design for spatiallycorrelated fading MIMO channels[J]. IEEE Trans. Wireless Commun.,2008,7(8):3206–3217
    [35] N. N. Tran, H. D. Tuan, H. H. Nguyen. Superimposed training designs for spatially correlatedMIMO-OFDM systems[J]. IEEE Trans. Wireless Commun.,2010,9(3):876–880
    [36] J. P. Nair, R. V. R. Kumar. Improved superimposed training-based channel estimation methodfor colesd-loop multiple input multiple output orthogonal frequency division multiplexingsystems[J]. IET Commun.,2011,5(2):209–221
    [37] J, K. Tugnait. Blind estimation and equalization of MIMO channels via multidelaywhitening[J]. IEEE J. Sel. Areas Commun.,2001,19(8):1507–1519
    [38] H. B lcskei, R. W. Heath Jr., A. J. Paulraj. Blind channel identification and equalization inOFDM-based multiantenna systems[J]. IEEE Trans. Signal Process.,2002,50(1):96–109
    [39] J. Choi. Equalization and semi-blind channel estimation for space-time block coded signalsover a frequency-selective fading channel[J]. IEEE Trans. Signal Process.,2004,52(3):774–785
    [40] Y. Zeng, T. S. Ng. A semi-blind channel estimation method for multiuser multiantenna OFDMsystems[J]. IEEE Trans. Signal Process.,2004,52(5):1419–1429
    [41] C. Shin, R. W. Heath Jr., E. J. Powers. Blind channel estimation for MIMO-OFDM systems[J].IEEE Trans. Veh. Technol.,2007,56(2):670–685
    [42] Q. Ling, T. Li. Blind-channel estimaton for MIMO systems with structured transmit delayscheme[J]. IEEE Trans. Circuits and Syst. I, Reg. Papers,2008,55(8):2344–2355
    [43] N. Sarmadi, S. Shahbazpanahi, A. B. Gershman. Blind channel estimation in orthogonallycoded MIMO-OFDM systems: a semidefinite relaxation approach[J]. IEEE Trans. SignalProcess.,2009,57(6):2354–2364
    [44] F. Wan, W. Zhu, M. N. S. Swamy. Semiblind sparse channel estimation for MIMO-OFDMsystems[J]. IEEE Trans. Veh. Technol.,2011,60(6):2569–2582
    [45] G. J. Foschini. Layered space-time architecture for wireless communication in a fadingenvironment when using multielement antennas[J]. Bell Lab. Tech. J.,1996,1(2):41–59
    [46] G. J. Foschini, M. J. Gans. On limits of wireless communications in a fading environmentwhen using multiple antennas[J]. Wireless Pers. Commun.,1998,6(3):311–335
    [47] I. E. Telatar. Capacity of multi-antenna Gaussian channels[J]. Eur. Trans. Tel.,1999,10(6):585–595
    [48] V. Tarokh, N. Seshadri, A. R. Calderbank. Space-time codes for high data rate wirelesscommunication: performance criterion and code construction[J]. IEEE Trans. Inf. Theory,1998,44(2):744–765
    [49] V. Tarokh, H. Jafarkhani, A. R. Calderbank. Space-time block codes from orthogonaldesigns[J]. IEEE Trans. Inf. Theory,1999,45(5):1456–1467
    [50] D. Gore, R. W. Heath Jr., A. Paulraj. On performance of the zero forcing receiver in presenceof transmit correlation[C].2002IEEE International Symposium on Information Theory(ISIT’02), Lausanne, Switzeland,159
    [51] Z. Xu, R. D. Murch. Performance analysis of maximum likelihood detection in a MIMOantenna system[J]. IEEE Trans. Commun.,2002,50(2):187–191
    [52] R. W. Heath Jr., S. Sandhu, A. Paulraj. Antenna selection for spatial multiplexing systems withlinear receivers[J]. IEEE Commun. Lett.,2001,5(4):142–144
    [53] D. A. Gore, R. W. Heath Jr., A. J. Paulraj. Transmit selection in spatial multiplexing systems[J].IEEE Commun. Lett.,2002,6(11):491–493
    [54] A. Gorokhov, D. A. Gore, A. J. Paulraj. Receive antenna selection for MIMO spatialmultiplexing: theory and algorithm[J]. IEEE Trans. Signal Process.,2003,51(11):2796–2807
    [55] I. Berenguer, X. Wang. MIMO antenna selection with lattice-reduction-aided linear receiver[J].IEEE Trans. Veh. Technol.,2004,53(5):1289–1302
    [56] R. W. Heath Jr., D. J. Love. Multimode antenna selection for spatial multiplexing systems withlinear receivers[J]. IEEE Trans. Signal Process.,2005,53(8):3042–3056
    [57] C. Mun. Transmit-antenna selection for spatial multiplexing with orderedsuccessiveinterference cancellation[J]. IEEE Trans. Commun.,2006,54(3):423–429
    [58] Z. Shi, H. Leib. Transmit antenna selected V-BLAST systems with power allocation[J]. IEEETrans. Veh. Technol.,2008,57(4):2293–2304
    [59] P. Shang, G. Zhu, L. Tan, et al. Transmit antenna selection for the distributed MIMOsystems[C]. International Conference on Networks Security, Wireless Communications andTrusted Computing (NSWCTC’09), Wuhan, China,2009, vol.2:449–453
    [60] T. Ahmad, S. Al-Ahmadi, H. Yanikomeroglu, et al. Downlink linear transmission schemes in asingle-cell distributed antenna system with port selection[C]. IEEE73rd Vehicular TechologyConference (VTC’11), Budapest, Hungary,2011,1–5
    [61] B. Maham, O. Tirkkonen. Transmit antenna selection OFDM systems with transceiver I/Qimbalance[J]. IEEE Trans. Veh. Technol.,2012,61(2):865–871
    [62] S. M. Alamouti. A simple transmitter diversity scheme for wireless communications[J]. IEEEJ. Sel. Areas Commun.,1998,16(8):1451–1458
    [63] X.-B. Liang. Orthogonal designs with maximal rates[J]. IEEE Trans. Inf. Theory,2003,49(10):2468–2503
    [64] H. Jafarkhani. A quasi-orthogonal space-time block code[J]. IEEE Trans. Commun.,2001,49(1):1–4
    [65] C. B. Papadias, G. J. Foschini. Capacity-approaching space-time codes for systems employingfour transmitter antennas[J]. IEEE Trans. Inf. Theory,2003,49(3):726–732
    [66] O. Tirkkonen, A. Boariu, A. Hottinen. Minimal non-orthogonality rate1space-time blockcode for3+Tx antennas[C]. IEEE6th International Symposium on Spread SpectrumTechniques and Applications (ISSSTA’00), Parsippany, USA,2000,2:429–432
    [67] D. A. Gore, A. J. Paulraj. MIMO antenna subset selection with space-time coding[J]. IEEETrans. Signal Process.,2002,50(10):2580–2588
    [68] W. H. Wong, E. G. Larsson. Orthogonal space-time block coding with antenna selection andpower allocation[J]. Electron. Lett.,2003,39(4):379–381
    [69] X. N. Zeng, A. Ghrayeb. Performance bounds for space-time block codes with receive antennaselection[J]. IEEE Trans. Inf. Theory,2004,50(9):2130–2137
    [70] Q. Ma, C. Tepedelenlio lu. Antenna selection for unitary space-time modulation[J]. IEEETrans. Inf. Theory,2005,51(10):3620–3631
    [71] L. Yang, J. Qin. Performance of STBCs with antenna selection: spatial correlation and keyholeeffects[J]. IEE Proc.-Commun.,2006,153(1):15–20
    [72] C.-Y. Chen, A. Sezgin, J. M. Cioffi, et al. A low-complexity algorithm for antenna selection inspace-time block coded systems[C]. IEEE Global Telecommunications Conference(GLOBECOM’07), Washington, USA,2007,4221–4225
    [73] C.-Y. Chen, A. Sezgin, J. M. Cioffi, et al. Antenna selection in space-time block codedsystems: performance analysis and low-complexity algorithm[J]. IEEE Trans. Signal Process.,2008,56(7):3303–331
    [74] J. Joung, A. H. Sayed, Y. H. Lee. Antenna selection with superposition for4×2DSTTDsystems[J]. IEEE Commun. Lett.,2009,13(7):483–485
    [75] L. Yang, W. Liu. On the throughput of MIMO relay wireless network with receive antennaselection[J]. IEEE Commun. Lett.,2011,15(6):626–628
    [76] A. Sezgin, T. J. Oechtering. On the outage probability for quasi-orthogonal space-timecodes[C].2004IEEE Information Theory Workshop (ITW’04), San Antonio, USA,381–386
    [77] K. Balachandran, S. R. Kadaba, S. Nanda. Channel quality estimation and rate adaption forcellular mobile radio[J]. IEEE J. Sel. Areas Commun.,1999,17(7):1244–1256
    [78] T. A. Summers, S. G. Wilson. SNR mismatch and online estimation in turbo decoding[J].IEEE Trans. Commun.,1998,46(4):421–423
    [79] S. Boumard. Novel noise variance and SNR estimation algorithm for wireless MIMO OFDMsystems[C]. IEEE Global Telecommunications Conference (GLOBECOM’03),2003, SanFrancisco, USA,3:1330–1334
    [80] X. Xu, Y. Jing, X. Yu. Subspace-based noise variance and SNR estimation for OFDMsystems[C]. IEEE Wireless Communications and Networking Conference (WCNC’05), NewOrleans, USA,2005,1:23–26
    [81] H. Xu, G. Wei, J. Zhu. A novel SNR estimation algorithm for OFDM[C]. IEEE61th VehicularTechnology Conference (VTC’05), Stockholm, Sweden,2005,5:3068–3071
    [82] A. Wisesl, J. Godlberg, H. Messer-Yaron. SNR estimation in time-varying fading channels[J].IEEE Trans. Commun.,2006,54(5):841–848
    [83] F. Jiao, G. Ren, Z. Zhang. A new noise variance and post detection SNR estimation method forMIMO OFDM systems[C].11th IEEE International Conference on CommunicationTechnology Proceedings (ICCT’08), Hangzhou, China,2008,179–182
    [84] G. Ren, H. Zhang, Y. Chang. SNR estimation algorithm based on the preamble for OFDMsystems in frequency selective channels[J]. IEEE Trans. Commun.,2009,57(8):2230–2234
    [85] M. A. Boujelben, F. Bellili, S. Affes, et al. SNR estimation over SIMO channels from linearlymodulated signals[J]. IEEE Trans. Signal Process.,2010,58(12):6017–6028
    [86] K.-T. Shr, Y.-H. Huang. SNR estimation based on metric normalization frequency in Viterbidecoder[J]. IEEE Commun. Lett.,2011,15(6):668–670
    [87] D. R. Pauluzzi, N. C. Beaulieu. A comparison of SNR estimation techniques for the AWGNchannel[J]. IEEE Trans. Commun.,2000,48(10):1681–1691
    [88] P. Gao, C. Tepedelenlio lu. SNR estimation for non-constant modulus constellations[C]. IEEEWireless Communications and Networking Conference (WCNC’04), Atlanta, UAS,2004,1:24–29.
    [89] T. Cui, C. Tellambura. Power delay profile and noise variance estimation for OFDM[J]. IEEECommun. Lett.,2006,10(1):25–27
    [90] R. López-Valcarce, C. Mosquera. Sixth-order statistics-based non-data-aided SNRestimation[J]. IEEE Commun. Lett.,2007,11(4):351–353
    [91] F.-X. Socheleau, A. A ssa-El-Bey, S. Houcke. Non data-aided SNR estimation of OFDMsignals[J]. IEEE Commun. Lett.,2008,12(11):813–815
    [92] M. álvarez-Díaz, R. López-Valcarce, C. Mosquera. SNR estimation for multilevelconstellations using higher-order moments[J]. IEEE Trans. Signal Process.,2010,58(3):1515–1526
    [93] S. A. Kim, D. G. An, H.-G. Ryu, et al. Efficient SNR estimation in OFDM system[C]. IEEERadio and Wireless Symposium (RWS’11), Phoenix, USA,2011,182–185
    [94] J. Yang, S. Roy. On joint transmitter and receiver optimization for multiple-inputmultiple-output (MIMO) transmission systems[J]. IEEE Trans. Commun.,1994,42(12):3221–3231
    [95] D. Chizhik, F. Rashid-Farrokhi, J. Ling, et al. Effect of antenna separation on the capacity ofBLAST in correlated channels[J]. IEEE Commun. Lett.,2000,4(11):337–339
    [96] D. Sun, Y. Tang, S. Shao. A differential modulation scheme for MIMO links with distributedtransmit antenna[J]. IEEE Commun. Lett.,2007,11(11):892–894
    [97] D. Castanheira, A. Gameiro. Distributed antenna system capacity scaling[J]. IEEE WirelessCommun.,2010,17(3):68–75
    [98] J. Chen, Y. Tang, S. Li. A subspace blind channel estimation method for distributed MISOsystems[C]. International Conference on Communications, Circuits and Systems Proceedings(ICCCAS’06), Guilin, China,2006,2:1058–1062
    [99] Y. Yu, A. P. Petropulu, H. V. Poor. Blind identification of distributed antenna systems withmultiple carrier frequency offsets[C]. IEEE8th Workshop on Signal Processing Advances inWireless Communicaitons (SPAWC’07), Helsinki, Finland,2007,1–5
    [100] J. Xu, J. Zhang, J. Han. Multi-user joint Doppler spread estimation in generalized distributedantenna system[C]. IEEE66th Vehicular Technology Conference (VTC’07), Baltimore, USA,2007,735–739
    [101] M. Kamoun, S. Yang, M. De Courville. Multi-RAU pilots for ROF enabled distributedantenna systems[C].1st International Conference on Wireless Communication, VehicularTechnology, Information Theory and Aerospace&Electronic Systems Technology,(WirelessVITAE’09), Aalborg, Denmark,2009,177–181
    [102] Y. Wang, W. Feng, S. Zhou, et al. Transmit antenna selection in multi-cell multi-userdistributed antenna systems with channel correlation[C]. International Conference onComputer Application and System Modeling (ICCASM’10), Taiyuan, China,2010, vol.12:51–55
    [103] F. Xiong, X. Gao. Distributed generalized layered space time codes and antenna selectionalgorithms in correlated fading channels[C].2010International Conference on WirelessCommunications and Signal Processing (WCSP’10), Suzhou, China,1–5
    [104] G. A. Ali, S. Manzoor, V. Jeoti. Speed and angle estimation of mobile terminal in distributedantenna systems[C].3rd International Conference on Intelligent and Advanced Systems(ICIAS’10), Kuala Lumpur, Malaysia,2010,1–5
    [105]罗涛,乐光新.多天线无线通信原理与应用[M].北京:北京邮电大学出版社,2005,40–65
    [106] J. M. Peha. Sharing Spectrum through spectrum policy reform and cognitive radio[J]. Proc.IEEE,2009,97(4):708–719
    [107] H. Huang, M. Trivellato, A. Hottinen, et al. Increasing downlink cellular throughput withlimited network MIMO coordination[J]. IEEE Trans. Wireless Commun.2009,8(6):2983–2989
    [108] H. Sari, S. Sezginer, E. Vivier. Full frequency reuse in mobile WiMax and LTE networks withsectored cells[C]. IEEE Mobile WiMAX Symposium (MWS’09), California, USA,2009,42–45
    [109] S. Sezginer, H. Sari. Full frequency reuse in OFDMA-based wireless networks with sectoredcells[C]. IEEE Wireless Communications and Networking Conference (WCNC’09), Budapset,Hungary,2009,1–4
    [110] J. Liang, H. Yin, H. Chen, et al. A novel dynamic full frequency reuse scheme in OFDMAcelluar relay networks[C].74th IEEE Vehicular Technology Conference (VTC’11Fall), SanFrancisco, USA,2011,1–5
    [111] D. Tse, P. Viswanath. Fundamentals of Wireless Communication[M]. New York: CambridgeUniversity Press,2005,120–127
    [112] J. Hwang, J. Kim, T. Kim, et al. A periodic frequency band rotation scheme for multi-cellcoordination clustering[J]. IEEE Commun. Lett.,2011,15(9):956–958
    [113] W. Yu, T. Kwon, C. Shin. Multicell coordination via joint scheduling, beamforming and powerspectrum adaptation[C].30th IEEE International Conference on Computer Communications(INFOCOM’11), Shanghai, China,2011,2570–2578
    [114] J. Moon, D, Cho. Efficient cell selection algorithm in hierarchical cellular networks:multi-user coordination[J]. IEEE Commun. Lett.,2010,14(2):157–159
    [115] C. Botella, G. Pinero, A. Gonzalez, et al. Coordination in a multi-cell multi-antenna multi-userW-CDMA system: a beamforming approach[J]. IEEE Trans. Wireless Commun.,2008,7(11):4479–4485
    [116] W. Wang, J. Cai, Z. Guo, et al. Four-antenna based structure for cellular networks withfrequency reuse factor of one[C]. IEEE International Conference on Communications(ICC’09), Dresden, Germany,2009,1–5
    [117] J. Park, E. Song, W. Sung. Capacity analysis for distributed antenna systems using cooperativetransmission scheme in fading channels[J]. IEEE Trans. Wireless Commun.,2009,8(2):586–592
    [118] C. Vithanage, R. Cepeda, J. Coon, et al. MIMO-OFDM pilot placement algorithms forwideband indoor communications[J]. IEEE Trans. Commun.,2011,59(2):466–475
    [119] H. Muhaidat, M. Uysal, R. Adve. Pilot-symbol-assisted detection scheme for distributedorthogonal space-time block coding[J]. IEEE Trans. Wireless Commun.,2009,8(3):1057–1061
    [120] Y. Zhao, A. Huang. A novel channel estimation method for OFDM mobile communicationsystems based on pilot signals and transform-domain processing[C]. IEEE47th VehicularTechnology Conference (VTC’97), Phoenix, USA,1997, vol.3:2089–2093
    [121] B. Vucetic, J. Yuan. Spac-Time Coding[M]. New York: Wiley,2003,103–104
    [122] Y. Gong, K. B. Letaief. On the error probability of orthogonal space-time block codes overkeyhole MIMO channels[J]. IEEE Trans. Wireless Commun.,2007,6(9):3402–3409
    [123] H. Z. Zhao, Y. Gong, Y. L. Guan, et al. Performance analysis of MPSK/MQAM modulatedorthogonal space-time block codes in keyhole channels[J]. IEEE Trans. Veh. Technol.,2009,58(2):1036–1043.
    [124] J. G. Andrews, A. Ghosh, R. Muhamed. Fundamentals of WiMAX: Understanding BroadbandWireless Networking[M]. Upper Saddle River, NJ: Prentice Hall,2007,70–73
    [125] P. H eher, S. Kaiser, P. Robertson. Two-dimensional pilot-symbol-aided channel estimation byWiener filtering[C].1997IEEE International Conference on Acoustic, Speech, and SignalProcessing (ICASSP’97), Munich, Germany, vol.3:1845–1848
    [126] Y. Shen, Y. Tang, T. Kong, et al. Optimal antenna location for STBC-OFDM downlink withdistributed transmit antennas in linear cells[J]. IEEE Commun. Lett.,2007,11(5):387–389
    [127] S. Zhou, M. Zhao, X. Xu, et al. Distributed wireless communication system: a newarchitecture for future public wireless access[J]. IEEE Commun. Mag.,2003,41(3):108–113
    [128] S. M. Alamouti. A simple transmit diversity technique for wireless communications[J]. IEEE J.Sel. Areas Commun.,1998,16(8):1451–1458
    [129] M. K. Simon, M. S. Alouini. Digital Communications over Fading Channels: A UnifiedApproach to Performance Analysis[M]. New York: Wiley,2000,18–20
    [130] K. V. Lever. New derivation of Craig’s formula for the Gaussian probability function[J].Electron. Lett.,1998,34(19):1821–1822
    [131] M. Abramowitz, I. A. Stegun. Handbook of Mathematical Function with Formular, Graphs,and Mathematical tables[M]. New York: Dover Press,1972,294
    [132] L. Vandendorpe, J. Louveaux. ML co-channel interference estimation from SINRmeasurements for multicell ofdm downlink: Bounds and performance analysis[C]. IEEEInternational Conference on Acoustics Speech and Signal Processing (ICASSP’10),2010,3298–3301
    [133] H. H. Choi. Optimal handover decision algorithm for throughput enhancement in cooperativecellular networks[J]. IEEE Commun. Lett.,2010,14(9):851–853
    [134] M. Turkboylari, G. L. Stüber. An efficient algorithm for estimating the signal-to-interferenceratio in TDMA cellular systems[J]. IEEE Trans. Commun.,1998,46(6):728–731
    [135] D. Ramakrishna, N. B. Mandayam, R. D. Yates. Subspace-based SIR estimation for CDMAcellular systems[J]. IEEE Trans. Veh. Technol.,2000,49(5):1732–1742
    [136] Y. Yi, D. Qu, T. Jiang, et al. Low complexity iterative interference estimation and decoding forOFDM-based cognitive radio systems[C]. Fourth International Conference onCommunications and Networking in China (ChinaCOM’09),2009,1–5
    [137] R. Corvaja, A. G. Armada. SINR degradation in MIMO-OFDM systems with channelestimation errors and partial phase noise compensation[J]. IEEE Trans. Commun.,2010,58(8):2199–2203
    [138] S. Sorooshyari, C. W. Tan, H. V. Poor. On maximum-likelihood SINR estimation of MPSK ina multiuser fading channel[J]. IEEE Trans. Veh. Technol.,2010,59(8):4175–4181
    [139] R. V. Nee, R. Prasad. OFDM for Wireless Multimedia Communications[M]. Boston, Mass:Artech House Publishers,2000,33–47
    [140] C. Vithanage, R. Cepeda, J. Coon, et.al. MIMO-OFDM pilot placement algorithms forwideband indoor communications[J]. IEEE Trans. Commun.,2011,59(2):466–475
    [141] S. Coleri, M Ergen, A. Puri, et al. A study of channel estimation in OFDM systems[C]. IEEE56th Vehicular Technology Conference (VTC’02),2002, vol.2:894–898
    [142] A. Goldsmith. Wireless Communications[M]. UK: Stanford University,2005,75–77
    [143]张贤达.矩阵分析与应用[M].北京:清华大学出版社.2004,487–492
    [144] G. H. Golub等.矩阵计算[M].(袁亚湘等译).北京:科学出版社,2001:520–529
    [145] K. Deng, Y. Tang, S. Shao, et al. Correction of carrier frequency offsets in OFDM-basedspatial multiplexing MIMO with distributed transmit antennas[J]. IEEE Trans. Veh. Technol.,2009,58(4):2072–2077
    [146] M. Russel, G. L. Stüber. Interchannel interference analysis of OFDM in a mobileenvironment[C]. IEEE45th Vehicular Technology Conference (VTC’95), Chicago, USA,1995, vol.2:820–824
    [147] L. Wan, V. K. Dubey. Bit error probability of OFDM system over frequency nonselective fastRayleigh fading channels[J]. Electron. Lett.,2000,36(15):1306–1307
    [148] E. Chiavaccini, G. M. Vitetta. Error performance of OFDM signaling over doubly-selectiveRayleigh fading channels[J]. IEEE Commun. Lett.,2000,4(11):328–330
    [149] P. Robertson, S. Kaiser. Analysis of the loss orthogonality through Doppler spread in OFDMsystem[C]. IEEE Global Telecommunications Conference (GLOBECOM’99), Rio de Janeiro,Brazil,1999, vol.1B:701–706
    [150] P. Robertson, S. Kaiser. The effects of Doppler spreads in OFDM(A) mobile radio systems[C].IEEE50th Vehicular Technology Conference (VTC’99), Amsterdam, Netherlands,1999, vol.1:329–333
    [151] J. Li, M. Kavehrad. Effects of time selective multipath fading on OFDM systems forbroadband mobile applications[J]. IEEE Commun. Lett.,1999,3(12):332–334
    [152] Y. Li, L. J. Cimini. Bounds on the interchannel interference of OFDM in time-varyingimpairments[J]. IEEE Trans. Commun.,2001,49(3):401–404
    [153] T. Wang, J. G. Proakis, E. Masry, et al. Performance degradation of OFDM systems due toDoppler spreading[J]. IEEE Trans. Wireless Commun.,2006,5(6):1422–1432
    [154] K. A. Hamdi. Exact SINR analysis of wireless OFDM in the prensence of carrier frequencyoffsets[J]. IEEE Trans. Wireless Commun.,2010,9(3):975–979
    [155] K. A. Hamdi. Unified error-rate analysis of OFDM over time-varying channels[J]. IEEE Trans.Wireless Commun.,2011,10(8):2692–2702
    [156] A. Stamoulis, S. N. Diggavi, N. Al-Dhahir. Intercarrier interference in MIMO OFDM[J]. IEEETrans. Signal Process.,2002,50(10):2451–2464
    [157] R. Xu, F. C. M. Lau. Performance analysis of MIMO systems using zero forcing detetor overfading channels[J]. IEE Proc.-Commun.,2006,153(1):74–80
    [158] P. Hoeher. A statistical discrete-time model for the WSSUS multipath channel[J]. IEEE Trans.Veh. Technol.,1992,41(4):461–468

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700