新型光纤的设计与制作工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,计算机网络及数据业务爆炸式的增长,提出了巨大的传输带宽需求。增加传输速率,拓展石英光纤的工作波长,增加通信信道是提高传输容量的优选方法。提高光纤性能主要体现在增加色散系数,降低色散斜率、降低本征损耗、增大有效面积、拓展工作波长等方面。而现有的光放大技术不能很好地满足对新工作波长有效增益需求。因此,研制全面优化的新型传输光纤,开发新型宽带近红外发光光纤材料,已成为光纤技术研究领域的热点课题。
     为此,本文开展了非零色散位移光纤(NZDSF)结构设计与制造工艺研究,在SiO2-Al2O3-GeO材料中,进行了掺铋光纤和铒铋共掺预制棒的研制,完成的主要工作包括:
     1.深入了解光纤通信技术的发展趋势,详细阐述了NZDSF设计与制造工艺相关基础知识,包括光纤的基本性能、结构、标准、常规产品主要性能指标,用以指导光纤产品设计与制造工艺研究。归纳总结了光放大器的种类与现状,为掺铋光纤和铒铋共掺预制棒材料的研制奠定了理论基础。
     2.设计了一种降低芯层折射率差的NZDSF结构模型,系统研究了构成折射率剖面的各个参数对光纤波导性能的影响,通过调整结构参数,给出了系列大有效面积NZDSF设计,包括两种同时满足G.655D及G.656标准,G.655E及G.656标准的正色散和一种负色散的NZDSF产品。优化了1550nm色散系数和色散斜率,将零色散波长由1500nm附近移到1450nm以下,可支持S+C+L工作波长的密集波分复用系统。
     3.详细阐述了MCVD工艺原理和设备,进行了MCVD+OVD混合制造工艺的实验研究和光纤性能评价。为提高光纤生产效率,提出了一种新的MCVD+VAD混合预制棒工艺技术,系统研究了采用新工艺制造NZDSF的工艺过程,详细分析了新工艺方法的关键环节,并全面测试了光纤的光学性能、抗弯曲性能、熔接性能、机械环境性能。
     4.阐述了MCVD结合溶液掺杂制造有源光纤的工艺,研究了掺铋光纤的制作工艺,获得具有超宽带近红外发光的掺铋光纤系列,实验观测了光纤与预制棒的发光性能,分析讨论了铋的发光起源,1100nm波段的发光可归于Bi0的2D3/2(1)→S3/2跃迁,1300nm波段的发光可归于Bi+的3P1→3P0跃迁。所得光纤有望成为宽带放大和调谐激光器的理想增益介质。
     5.制备了铒铋共掺的光纤预制棒,观测到铒铋共同发光现象,实验结果对于开发新型宽带放大光纤材料有指导意义,所制备的铒铋共掺预制棒可望用于1.3um窗口和S波段新型放大器的研究。
In recent years, the explosive growth of computer network and data service provided substantial demands on transmission bandwidth. To increase transmission rate, expand the operation wavelength of silica optical fiber and increase communication channels are the preferred methods for increasing transmission capacity. The increase of optical fiber performance is mainly reflected by the increase of dispersion coefficient, decrease of dispersion slope, decrease of intrinsic loss, increase of effective area, expansion of operation wavelength, etc. The existing light amplification technology cannot well meet the demands on effective gain on new operation wavelength. Therefore, developing the new comprehensively optimized transmission fiber and new broadband near-infrared luminescent fiber has become the hot spot of fiber optic technology research.
     For this purpose, the thesis studies on the structural design and manufacturing process of Non-zero dispersion shifted fiber (NZDSF) and on the development of bismuth-doped optical fiber and erbium and bismuth co-doped preform rod for SiO2-Al2O3-GeO2material. The major completed work includes:
     1. Deeply understood the development trend of fiber-optical communication technology and elaborated relevant elementary knowledge on NZDSF design and manufacturing process in details, including the basic performance, structure and standards of optical fiber and main performance indexes of conventional products, which are used for guiding the study on design and manufacturing process of optical fiber products; concluded and summarized the variety and status quo of optical amplifiers, laying a theoretical foundation for the development of bismuth-doped optical fiber and erbium and bismuth-doped preform rods.
     2. Designed a NZDSF structural model to reduce the refractivity of core, systematically researched the impact of refractive index profile's parameters on the waveguide performance of optical fiber and provided NZDSF design with large effective area, including two NZDSF products with positive dispersion and one NZDSF product with negative dispersion that meet the G.655D&G.656and G.655E&G.656standards; optimized1550nm abbe number and dispersion slope, and moved zero dispersion wavelength from near1500nm to below1450nm to support the dense wavelength division multiplexing system with the S+C+L operation wavelength.
     3. Elaborated the principle of MCVD technology and equipment in details, conducted experimental study on MCVD+OVD mixed manufacturing technology and evaluated the performance of optical fiber; proposed a new mixed technology for MCVD+VAD preform rod to enhance the production efficiency of optical fiber, systematically studied the NZDSF manufacturing process with a new technology, analyzed the critical links of new process in details and comprehensively tested the optical performance, anti-bend performance, welding performance and mechanical environment performance of optical fiber.
     4. Elaborated the process of manufacturing active optical fiber with MCVD and solute doping, studied the manufacturing process of bismuth-doped optical fiber to obtain the near-infrared luminescent bismuth-doped optical fiber series with ultra wide band, experimentally observed the luminescent properties of optical fiber and preform rod, analyzed and discussed the luminescent source of bismuth; the luminescence of1100nm wave band is attributable to the transition of Bi0from2D32(1) to4S32and1300nm wave band to the transition of Bi+from3P1to3P0. The obtained optical fiber is expected to become the ideal gain medium for wideband amplification and tuned laser.
     5. Prepared the erbium and bismuth-doped optical fiber preform rod and observed the common luminous phenomenon of erbium and bismuth; the experimental results are of instructive significance for developing new wideband amplification optical fiber materials and the prepared erbium and bismuth-doped optical fiber preform rod is expected to be used for the study on the new amplifier with1.3um window and S wave band.
引文
[1]K.C. Kao and G.A. Hockham, Dielectric-fibre Surface Waveguides for Optical Frequencies, IEE PROCEEDINGS, Vol.133, Pt. J, No.3, JUNE 1986 Proc, IEEE,1966,113:1151-115
    [2]A.R Charplyvy. Impact of nonlinarities on lightwave systems, Optics and Photonics News, 1994,5:16-21
    [3]G.P. Agrawal, Nonlinear Fiber Optics,2nd edition, San Diego:Academic Press,1995. 535-541
    [4]Y. Liu. Single mode dispersion shifted fibers with large effective area for amplified systems. IOOC'95,1995, Post deadline paper PD-19. Hong Kong
    [5]Shriaki K, Ohashi M, Scattering property of fluorine-doped silica glasses [J]. Electron. Lett. 1992,28:1565-1566.
    [6]Ohashi M, Tajima K. Optical loss property of silica-based single-mode fibers [J]. J. Lightwave Tech.1992,10:539-543.
    [7]Sakagushi S, Todoroki S, et al. Rayleigh scattering in silica glass with heat treatment, J. J. Non-Cryst. Solids,1997,220:178-186.
    [8]Lines M E. Scattering losses in optical fiber materials. I. A new parametrization, J. Appl. Phys.1984,55:4052-4057.
    [9]K.Tsujikawa, M.Ohashi K.Shiraki,et al,Scattering Property of F and GeO2 codeped silica glasses, Electro. Lett.,1994,30:351-352.
    [10]Shibata N., Braun R. P.,Waarts R. G., Phase-mismatch dependence of efficiency of wave generation through four-wave mixing in a single-mode optical fiber, IEEE J.Quantum Electron,1987,7:1205-1210.
    [11]Kazuhiko Aikawa, Takaaki Suzuki, Kuniharu Himeno, Akira Wada, New dispersion-flattened hybrid optical fiber link composed of medium-dispersion large-effective-area fiber and negative dispersion fiber,2001 OSA/OFC 2001, TuH6-1.
    [12]L.N.NG, Taylor E.R., Nilsson J.,795nm and 1064nm dual pump thulium-doped tellurite fiber for S-ban amplification. Electron. Lett,2002 38(21):1246-1247.
    [13]Belahlou A, Bickham S. Chowdhury D.et al..Fiber Design Considerations for 40Gb/s Systems, J.Lightwave Technol.,2002,20.2290-2305.
    [14]Dirk van den Borne, Vincent A. J. M. Sleiffer, Mohammad S. Alfiad, et al., POLMUX-QPSK modulation and coherent detection:the challenge of long-haul 100G transmission, ECOC'2009.3.4.1.
    [15]M. S. Alfiad, D. van den Borne, S. L. Jansen, et al.,111-Gb/s POLMUX-RZ-DQPSK Transmission over LEAF:Optical versus Electrical Dispersion Compensation, OFC/NFOEC 2009, paper OThR4.
    [16]Rong Chen, Maurice O'Sullivan, Charles Ward, et al., Next Generation Transmission Fiber for Coherent Systems, OFC/NFOEC,2010,OTuIl.
    [17]Jindong Wu, Liuhua Chen, Qingguo Li, et al., Dispersion-optimized optical fiber for high-speed long-haul dense wavelength division multiplexing transmission, Applied Optics,2011,50(20),3538-3546.
    [18]Masatoshi Suzuki and Noboru Edagawa, Dispersion-managed high-capacity ultra-long-haul transmission,J. Lightwave Technol.,2003,21,916-929.
    [19]吴金东,彭明华,段林峰,孙可元等,制备光纤预制棒的ACVD工艺方法,光通信研究,2003(3)38-40.
    [20]Masuda H, Kawai S, Aida K. Ultra-wideband hybrid amplifier comprising distributed Raman amplifier and erbium-doped fiber amplifier, J. Electron. Lett.,1998, 34(13),1342-1343.
    [21]Xie Y, Pan Z, Willner A E, et al. Spectrally efficient C+L band ED FA having a seamless inter band channel region using sampled FBGs,[J]. Electron. Lett.,2001,13 (5), 436-438.
    [22]Mori A, Ohishi Y, Sudo S. Erbium-doped tellurite glass fiber laser and amplifier, J. Electron. Lett.,1997,33(10),863-864
    [23]Kuroiwa Y, Sugimoto N, Ochiai K, et al., Fusion splice-able and high efficient Bi2O3 based EDF for short length and broadband application pumped at 1480nm, OFC'01, TuI521.
    [24]Jeong H., Oh K., Han S.R. and Morse T. F. Characterization of broadband amplified spontaneous emission from an Er3+-Tm3+co-doped silica fiber. Chem. Phys. Lett.,2003, 367(3-4),507-511.
    [25]Huang L.H. JhaA., Shen S.X. and Liu X. B. Broadband emission in Er3+-Tm3+ co-doped tellurite fiber. Opt. Express,2004,12(11),2429-2434.
    [26]Y. Fujimoto, M. Nakatsuka, Infrared Luminescence from Bismuth-Doped Silica Glass, Jpn. J. Appl. Phys.2001(40),279-281.
    [27]V.V. Dvoyrin, V.M. Mashinsky, E.M. Dianov, et al., Absorption fluorescence and optical amplification in MCVD bismuth-doped silica glass optical fiber, ECOC,2005,4, Th 3.3.5.
    [28]Dianov E M, Dvoyrin V V, Mashinsky V M, et al. CW bismuth fiber laser. Quantum Electronics,2005,35(12),1083-1084.
    [29]Young Seok Seo, Fujimoto, Masahiro Nakatsuka, Optical amplification in a bismuth-doped silica fiber, Proc of SPIE Vol.6351.
    [30]Razdobreev I, Bigot L, Pureur V, et al. Efficient all-fiber bismuth-doped laser. Appl. Phy. Lett.,2007,90(3),031103.
    [31]Bufetov I A, Dianov E M. Bi-doped fiber lasers. Laser Phys. Lett.,2009,6(7),487-504.
    [32]LA. Bufetov, S.V. Firstov, V.F. Khopin, et al., Bi-doped fiber lasers and amplifiers for a spectral region of 1300-1470nm, Opt. Lett.,2008,33,2227-2229.
    [33]Bufetov I A, Dianov E M. Bi-doped fiber lasers. Laser Phys. Lett.,2009,6(7),487-504.
    [34]Kivisto S, Puustinen J, Guina M, et al., Pulse dynamics of a passively mode-locked Bi-doped fiber laser. Opt. Exp.,2010,18(2),1041-1048.
    [35]Meng X G, Qiu J R, Peng M Y, et al. Near infrared broadband emission of bismuth-doped aluminophosphate glass. Opt. Exp.,2005,13(5):1628-1634.
    [36]Fujimoto Y. Local structure of the infrared bismuth luminescent center in bismuth-doped silica glass. J. Am. Ceram. Soc.,2010,93(2),581-589.
    [37]Peng M Y, Qiu J R, Cheng D P, et al. Super-broadband 1310nm emission from bismuth and tantalum codoped germanium oxide glasses. Opt. Lett.,2005,30(18):2433-2435.
    [38]J. Ren, L. Yang, J. Qiu, et al., Effect of various alkaline-earth metal oxides on the broadband infrared luminescence from bismuth-doped silicate glasses, Solid State Communications,2006,140,38-41.
    [39]V.V. Dvoyrin, V.M. Mashinsky, E.M. Dianov, et al., Absorption, Fluorescence and Optical Amplification in MCVD Bismuth-Doped Silica Glass Optical Fibers, in Proc.31st ECOC, 2005,4(949),Th 3.3.5.
    [40]Sharonov M Y, Bykov A B, Petricevic V, et al. Spectroscopic study of optical centers formed in Bi-, Pb-, Sb-, Sn-, Te-and In-doped germanate glasses. Opt. Lett.,2008,33(18): 2131-2133.
    [41]V. G. Truong, L. Bigot, A. Lerouge, and M. Douay, Study of thermal stability and luminescence quenching properties of bismuth-doped silicate glasses for fiber laser applications, APPLIED PHYSICS LETTERS 92,041908,2008.
    [42]叶培大,吴彝尊,光波导技术基本理论,第一版.北京人民邮电出版社,1983
    [43]张立永,吴兴坤,羊荣金,光纤色散性能的微分迭代解法,光子学报,2007.11:2079-2082.
    [44]G. P. Agrawal, Fiber-Optic Communication Systems.2002,3rd ed. (Wiley).
    [45]K.Petermann, Constraints for fundamental-mode spot size for broadband dispersion-compensated single-mode fibers, Electron. Lett.,1983,19,712-714.
    [46]伊泽立男著,胡先志何书平译.光导纤维[M].武汉:武汉工业大学出版社,1994.46-60
    [47]S. Gringeri, R. Egorov, B. Basch, G. Wellbrock, Real-Time 127-Gb/s Coherent PM-QPSK Transmission over 1000km NDSF with>10 Cascaded 50GHz ROADMs, ECOC'2010,P4.09.
    [48]E. D. Palik, Handbook of Optical Constants of Solids, Academic Press, New York (1985)
    [49]F. Gan, Optical properties of fluoride glasses:a review, J. Non-Cryst. Solids,1995,184, 9-20
    [50]G. P. Agrawal, Nonlinear Fiber Optics,3rd Edition, Elsevier,2006.
    [51]Ramanand Tewari, Velko Tzolov, and Jan Jakubczyk, A Novel Fiber Design with Characteristics Similar to LEAF, Proceedings of SPIE Vol.4833,2002,1002-1008.
    [52]陈根祥.光波技术基础[M].北京:中国铁道出版社,2000,67.
    [53]M. Mazharul Islam, M. Anwar Zahid, Nazina B. Jamal, et al. Wavelength Dependence of Guiding Properties in Highly Birefringent Elliptical Ring Core Optical Fiber, Journal of Electrical Engineering The Institution of Engineers, Bangladesh,Vol. EE 36, No. Ⅱ, December 2009.
    [54]M. Ohashi, K. Shiraki, and K.Tajima, Optical loss property of silica-based single-mode fibers, J. Lightwave Technol.10,539-543 (1992)
    [55]Lines M E. Scattering losses in optical fiber materials. I. A new parametrization [J], J. Appl. Phys.1984,55:4052-4057.
    [56]Mitsuhiro Tateda, Masaharu Ohashi, Katsusuke Tajima. et al. Design of Viscosity-Matched Optical Fibers,Photonics technology lett.,1992,4,1023-1025.
    [57]Gambling W A, Matsumura H, Ragdate C M. Wave Propagation in a Single-mode Fiber with Dip in the Refractive Index. Opt Quantum Electron.1978,10 (6):301-309
    [58]Hussey CD, Pask C. Theory of the Profile Moments Description of Single-mode Fibers, Proc Inst Elect Eng,1982,129:123-134
    [59]T. Okoshi, K. Oyamada. High-accuracy numerical data of dispersion and group delay characteristics of a-power graded-core fibers. IEEE Trans. On M. T. T.,1980.10:1113-1118
    [60]K. Okamoto, T. Okoshi. Computer-aided sysnthesis of the optimum refractive index profile for a multimode fiber. IEEE Trans.,1977,3:213-221
    [61]R. Yamada, Y. Inaba. Guided waves along graded-index dielectric rod. IEEE Trans..1974.8: 813-814
    [62]K. Okamoto. T. Okoshi. Vectorial wave analysis of inhomogeneous optical fibers using finite element method. IEEE trans.,1978,2:109-114
    [63]K. Kurokawa. Electromagnetic waves in waveguides with wall impedance. IRE Trains.On M.T.T.9,1962,2:31-320
    [64]W SnyderJ.D.Love.Optical waveguide theory.London:Chapman and Hall,1983
    [65]Monerie M. Propagation in Doubly Clad single-mode fibers. UEEE J Quantum Electron, 1982, QE-18:535-542
    [66]Mammel W L, Cohen L G. Numerical Prediction of Fiber Transmisson Characteristics from Arbitory Refractive Index Profiles. Appl Opt,1982,21:699-703
    [67]CAO Z Q, Yi J, Chen Y L, et al. Analytical Investigations of Planar Optical Waveguides with Arbitory Index Profile. Optical and Quantum Electrinics,1999,31:637-644
    [68]Goel A. Wideband Optical Waveguides with Arbitrary Index Profile:Propagation Solution by Quadratic Finite Element Approach. SPIE,1998,3420:346-354
    [69]宋宁,殷宗敏,葛文萍.光纤传输特性的理论计算.光子学报,2002,31(5):566-569
    [70]] A. Safaai-Jazi, H. T. Hattori, J.A. Baghdadi, Large effective-area fibers, SPIE Vol.3666-0277-786X/99/:30-39.
    [71]]张晓帆,田祥庆,张晓萍,大有效面积环型单模光纤的色散特性,兰州大学学报(自然科学版),2007,46(6):61-65.
    [72]Xiaoqiang Jiang and Ruichun Wang, Non-zero dispersion-shifted optical fiber with ultra-large effective area and low dispersion slope for terabit communication system, Optics Communications,2004,236,69-74.
    [73]]张晓萍,田祥庆,三包层wⅠ和WⅡ型单模光纤波导色散特性的研究[J],光学学报,2003,23(5):581-586.
    [74]]成煜,赵修建.李诗愈等,控制色散的波导结构分析[J],光学与光电技术,2006,4(5):43-45.
    [75]] Kato M,Kurokawa K,Miyajima Y, A new design for dispersion shifted fiber with efffective area larger than 100 um2 and good bending characteristics,In:Jose eds. Paper Thkl,OFC'1998,California:1998,22-27.
    [76]蒋小强,王瑞春,大容量长距离传输用低非线性效应非零色散位移光纤[J],光学学报,2004,24(7):893-896.
    [77]] Katsunori Imamura, Kazunori Mukasa, Masateru Tadakuma, Ryuichi Sugizaki Takeshi Yag, Novel NZDSF for Submarine Transmission Systems without Discrete Dispersion Compensation, OFC/NFOEC 2008, OTuJ4.
    [78]张树强,一种正非零色散位移单模光纤,中国,发明专利号:ZL 03125210.9,授权公告日期:2005.09.14.
    [79]S. Matsuo, S. Tanigawa, K. Himeno, and K. Harada, New medium-dispersion fiber with large effective area and low dispersion slope, OFC'02,2002,329-330.
    [80]L. Gruner-Nielsen, S. N. Knudsen, T. Veng, B. Edvold, et al., Design and manufacture of dispersion compensating fiber for simultaneous compensation of dispersion and dispersion slope, OFC/IOOC'99, WM132.
    [81]M. Suzuki, H. Kidorf, N. Edagawa, et al.,170 Gbit/s transmission over 10850 km using large core transmission fiber, OFC'98,PD17.
    [82]M. Vaa, B. Bakhshi, E. A. Golovchenko, Y. Chai, F. Heismann, et al., Demonstration of 640 Gbit/s 7000km submarine transmission system technology ready for field deployment, OFC'01, WF5.
    [83]Y. Yamada, S. Nakagawa, K. Takshina, et al.,25 GHz spacing ultra-dense WDM transmission experiment of 1 Tbit/s (100 WDM×10 Gbit/s) over 7300 km using non pre-chirped RZ format, Electron. Lett.1999,35,2212-2213.
    [84]K. L.Walker, F. T. Geyling, and S. R. Nagel, Thermophoretic deposition of small particles in the modified chemical vapor deposition (MCVD) process, J. Amer. Ceram. Soc.,1980,63(9-10),552-558
    [85]SUZANNE R. NAGEL, J. B. MACHESNEY, AND KENNETH L. WALKER, An Overview of the Modified Chemical Vapor Deposition (MCVD) Process and Performance MCVD, IEEE JOURNAL OF QUANTUM ELECTRONICS,1982,QE18(4),459-476.
    [86]吴金东,吴兴坤,卢卫民等,非零色散位移光纤的改进设计及制造,[J].光学学报,2009,29(10):2692-2697.
    [87]P.C. Becker, N.A. Olsson, J.R. Simpson, Academic Press,1999.
    [88]Elias Snitzer, journal of the Less Common Metals,1989,148,45.
    [89]J. Nilsson, W.A. Clarkson, R. Selvas, et al., Optical Fiber Technology,2004,10,5-30.
    [90]T. Liu, G.F. Fernando, Z.Y. Zhang, K.T.V. Grattan, Sensors and Actuators,2000,80,208.
    [91]S. B. Poole, D. N. Payne, M. E. Fermann,et al., Fabrication of low-loss optical fibers containing rare-earth ions, Electron. Lett.,1985,21,737.
    [92]J. E. Townsend, S. B. Poole, D. N. Payne, Solution-doping technique for fabrication of rare-earth-doped optical fibers, Electronics Letters,1987,23,329.
    [93]A. Dhar, A Pall, M.C. Paul, et al., OPTICS EXPRESS,2008,16,12835.
    [94]A.S.Webb,A.J.Boyland,R.J.Standish,J. Non-Crystalline Solids,2010,356,848.
    [95]Morse, L. Reinhart, A. Kilian, W. Risen, et al.,Aerosol doping technique for MCVD and OVD, in Fiber Laser Sources and Amplifiers, M.J. F. Digonnet, Ed., Proc. SPIE,1989,1171,72-79.
    [96]Tumminelli,R.P.McCollum,B.C.Snitzer,E.,Fabrication of High Concentration Rare-Earth Doped Optical Fibers Using Chelates, J. Light.Technol.1990,8 (11),1680-1683.
    [97]P. L. Bocko, Rare-earth-doped optical fibers by the outside vapor deposition technique, in Optical Fiber Communication Conference 1989,5,TUG2
    [98]S.Tammela, Direct Nanoparticle Deposition process for manufacturing very short high gain Er-doped silica glass fibers, Erbium Doped fibers and Waveguides 9.4.2,2002
    [99]Yigang Li, Jianping Huang, Yingfeng Li, et al., Optical Properties and Laser Output of Heavily Yb-Doped Fiber Prepared by Sol-Gel Method and DC-RTA Technique,J.Lightwave Technol.2008,26,3256-3260
    [100]A. Wada, D. Tanaka, T. Sakai, et al., Highly Er-doped alumino-silicate optical fiber synthesized by high temperature plasmas and its application to compact EDF coils, in Optical Amplifiers and Their Applications,1992,17,222-225.
    [101]Borut Lenardic, Miha Kveder, Herve Guillon, et al., Fabrication of Rare-Earth Doped Fibers by Flash Vaporization Method, Proc. of SPIE,2008,7134,71341K
    [102]S.Sneck, Evgeny Vanin, Pekka Soininen, et al., Atomic Layer Deposition as a New Method for Rare-Earth Doping of Optical Fibers,2008
    [103]Anirban Dhar, Mukul Ch. Paul, Mrinmay Pal, et al., Characterization of porous core layer for controlling rare earth incorporation in optical fiber, OPTICS EXPRESS,2006,149 (20), 9006-9015.
    [104]F.Z. Tang, P. McNamara, G.W. Barton, et al., Nano-scale characterization of silica soots and aluminum solution doping in optical fiber fabrication, Journal of Non-Crystalline Solids,2006,352,3799-3807.
    [105]Feng Z. Tangz and Pamela McNamara, Micro scale in-homogeneities in aluminum solution-doping of silica-based optical fibers, J. Am. Ceram. Soc,2007,90(1),23-28.
    [106]Anirban Dhar, Mukul Ch. Paul, Mrinmay Pal, et al., Characterization of porous core layer for controlling rare earth incorporation in optical fiber, OPTICS EXPRESS,2006,14(20), 9006-9015.
    [107]A. Dhar, M.C. Paul, M. Pal, et al, An improved method of controlling rare earth incorporation in optical fiber, Optics Communications,2007,277,329-334.
    [108]Y. H. Kim, U. C. Paek. and W. T. Han, Effect of soaking temperature on erbium doping of optical. Proceedings of SPIE,2001,4282,123-132.
    [109]Danping Chen, doctoral thesis entitled by "Studies on glass structure and optical properties of heavy metal oxide glasses containing Bi2O3", The graduate school of natural science and technology, Okayama University,1997
    [110]Volf, M.B. Chemical approach to glass, in "Glass Science and Technology",; Elsevier Science Publishing Company.1984(7),406-410 and 465-469.
    [111]J. Ren, G. Dong, S. Xu, et al., Inhomogeneous Broadening, Luminescence Origin and Optical Amplification in Bismuth-Doped Glass, J. Phys. Chem.,2008,A112,3036.
    [112]M. Peng, C. Zollfrank and L. Wondraczek, Origin of broad NIR photoluminescence in bismuthate glass and Bi-doped glasses at room temperature, J. Phys.:Condens. Matter,2009,21,285106.
    [113]M. Peng, B. Sprenger, M. A. Schmidt, et al., Broadband NIR photoluminescence from Bi-doped Ba2P2O7 crystals:Insights into the nature of NIR-emitting Bismuth centers, Opt. Express,2010,18,12852.
    [114]J. Qiu, M. Peng, J. Ren, et al., Novel Bi-doped glasses for broadband optical amplification, J.Non-Cryst. Solids,2008,354,1235.
    [115]S. Zhou, N. Jiang, B. Zhu, et al., Multifunctional Bismuth-Doped Nanoporous Silica Glass: From Blue-Green, Orange, Red, and White Light Sources to Ultra-Broadband Infrared Amplifiers, Adv. Funct. Mater.,2008,18,1407
    [116]M. Peng,C.Zollfrank, L.Wondraczek, Origin of broad NIR photoluminescence in bismuthate glass and Bi-doped glasses at room temperature, J. Phys. Condens. Matter,2009,21,285106.
    [117]J. Wang, L. Yin, X. Shi, et al., Theoretical analysis of amplification performance of space-based lasers with different pump configurations, Chin. Opt. Lett.,2010,8,591
    [118]Y. Shen, C. Gu, L. Xu,et al., A novel 852nm tunable fiber laser, Chin. Opt. Lett.,2009, 7,1022.
    [119]A. Mori, T. Sakamoto, K. Kokayashi,et al.,1.58μm broad-band Erbium-doped tellurite fiber amplifier, J. Lightwave Technol.,2001,20(5),822-827.
    [120]A. J. G. Ellison, D. E. Goforth, B. N. Samson, et al.. Extending the L-band to 1620 nm using MCS fiber, OFC'01,2, TuA2,.
    [121]S. Tanaka, K. Imai, T. Yazaki, and H. Tanaka, Ultra-wideband L-band EDFA using phosphorus co-doped silica-fiber, OFC'02, Thj3,458-459,
    [118]Hwa Yaw Tam, Weng Hong Chung, Bai Ou Guan, et al.. Development of Bi2O3-based erbium-doped fibers, Proc. SPIE,2005,259,5644.
    [119]I. P. Byriel, B. Palsdottir, M. Andrejco.et al., Silica based erbium doped fiber extending the L-band to 1620+ nm, ECOC'01,2,232-233.
    [120]L. Qian, D. Fortusini, S. D. Benjamin, et al., Gain-flattened, extended L-band (1570-1620nm), high power, low-noise fiber amplifiers, OFC'02, ThJ4.459-461.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700