新型SnO_2基透明导电薄膜及其二极管的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
透明导电氧化物薄膜(TCO)既具有优良的金属导电性,又具有可见光范围的高透明性,已经成为平板显示器、太阳能电池和透明电子器件中不可或缺的材料。其中ITO(In2O3:Sn)薄膜是目前市场上应用最为广泛的TCO薄膜,随着太阳能电池和平板显示产业的不断发展,铟资源短缺和价格高昂的问题越发突出,寻求ITO替代材料的需求日益加大;目前应用于太阳能电池的透明窗口电极材料大多为近红外高反射TCO薄膜,这就阻止了对占太阳能总能量52%的近红外区域能量的有效且充分的利用;透明电子学的出现对TCO薄膜材料和透明氧化物半导体(TOS)薄膜材料提出了更高的要求,需要光学和电学性能优良的新型TCO和TOS薄膜。
     针对这些问题和需求,本论文研究开发了新型非晶和多晶掺钨氧化锡(SnO2:W)透明导电薄膜,系统研究了其电学和光学性能及其与脉冲等离子体沉积技术(pulsed plasma deposition, PPD)各种制备参数之间的关系;确立了制备优良光学和电学性能的SnO2:W薄膜的条件;采用更具生产性的sol-gel法研制了SnO2:W薄膜,薄膜不仅表面平整,而且光学透明性得到了很大提高,揭示了其在太阳能电池领域具有潜在的应用价值,同时提出了溶胶配制过程中可能的反应机理;采用第一性原理对SnO2:W进行了理论计算,阐明了W掺杂SnO2:W薄膜具有优良电学性能的机制;研究开发了p型导电NiO:Li透明氧化物半导体薄膜,探索性研制了NiO:Li/SnO2:W透明二极管,揭示了SnO2:W薄膜应用于透明电子器件的可能性。本文利用多种表征手段(如XRD、AFM、XPS、SEM、EDS. IR、Raman、台阶仪、Hall效应测试等)对所有制备的薄膜进行了详尽细致的分析和探讨,研究结果表明:
     在采用PPD法制备薄膜的过程中,先是采用氧氩共掺气体,在较低温度下制备了非晶SnO2:W薄膜,研究了钨掺杂含量和氧分压对薄膜电学和光学性能等的影响,薄膜的最低电阻率达到2.1×10-3 ohm·cm,对应的载流子浓度和载流子迁移率分别为9.6×1019cm-3和30 cm2V-1s-1,可见光区的平均透射率超过80%,薄膜的方均根粗糙度和平均粗糙度分别为15.7 nm和1 1.9 nm。
     为进一步降低薄膜的电阻率,采用PPD法室温下在纯氩气体中沉积出SnO2:W薄膜,后经退火处理,薄膜的电学和光学性质均得到明显提高,最低电阻率可达6.7×10-4 ohm·cm,对应载流子浓度和载流子迁移率分别为1.44×1020cm-3和65 cm2V-1s-1,薄膜在可见光和近红外区的透射率分别为86%和85%,研究了钨掺杂含量和退火温度对薄膜电学性能、光学性能、结构和表面粗糙度的影响,并通过分析薄膜中各元素的化合价态讨论了薄膜的导电机理。
     在SnO2:W薄膜中,W原子替代了SnO2晶格中的Sn原子的位置,没有新的化合物相生成,也没有改变SnO2的金红石结构。w在薄膜中以W6+形式存在,W替代Sn位置贡献了两个自由电子,这是薄膜导电性增加的主要原因,而ITO薄膜中Sn取代In位置只多出一个电子,所以SnO2:W薄膜中W作为掺杂剂的效率较高。即要得到相同载流子浓度的薄膜,SnO2:W中掺W所需的掺杂量比SnO2:Sb, In2O3:Sn或ZnO:Al(其价态差仅为1)等中的掺杂量都更少,这使得引入的离子杂质缺陷减少,载流子散射中心减少,有利于提高薄膜的载流子迁移率。
     采用sol-gel法,以SnCl2·2H2O和WCl6为先驱物,经过溶胶配制、浸渍提拉、干燥退火等步骤在石英衬底上制备了大面积均匀导电的SnO2:W透明导电薄膜,薄膜最低电阻率为5.8×10-3 ohm·cm,对应载流子浓度和载流子迁移率分别为7.6×1019 cm-3和14.2 cm2V-1s-1,尽管薄膜的电学性质有待于进一步提高,但sol-gel法相对于PPD法具有设备廉价、成膜厚度均匀等的优点,且薄膜在可见光和近红外区的光学透射率达到90%,薄膜的平均粗糙度约为1.8 nm。
     对于sol-gel制备的薄膜,随着钨掺杂含量的增加,薄膜的XRD衍射峰强度变弱,甚至变宽,当掺杂含量较大时,薄膜中出现微小的非晶颗粒,这使得薄膜的粗糙度减小,在W掺杂含量分别为0,1,3,5 at.%时,薄膜的平均粗糙度分别为1.92 nm,1.87 nm,1.82 nm,1.61 mm。同时也说明采用sol-gel法制备薄膜的过程中,掺杂含量较高使薄膜的结晶性变差。
     SnO2:W透明导电薄膜的第一性原理计算结果表明,未掺杂的SnO2的价带顶主要源于O的2p态的贡献,导带底主要源于Sn的5s态的贡献;掺杂后SnO2:W的导带底主要源于掺杂原子W的5d态的贡献;W是提高SnO2导电性有利的掺杂元素。
     以固态反应法制备了p型导电性较好的掺锂氧化镍靶材,采用PPD技术在玻璃衬底上沉积了p型透明导电NiO:Li薄膜,薄膜电导率可达15 S.cm-1,载流子浓度变化范围为2.98×1020 cm-3-2.1×1020 cm-3,迁移率变化范围为0.3-0.422,
     一般文献报道的p型导电薄膜的载流子浓度的为1018 cm-3、1019cm-3量级甚至更低,可见此法制备的p型NiO:Li薄膜的导电性较好。
     本文基于前述实验结果探索性地将n型SnO2:W薄膜和p型NiO:Li薄膜结合起来制备透明电子器件中最基本的器件——透明二极管NiO:Li/SnO2:W。介绍了实验室条件下采用PPD法制备具有良好整流特性的透明二极管的方法和步骤,通过研究单层膜的导电性来比较分析二极管的伏安特性,并给出所制备器件的透明性。
Transparent conductive oxide (TCO) thin film is indispensable in flat panel displays, solar cells and transparent optoelectronic devices due to its low resistivity and good optical transmittance. The most widely used TCO in present market is mainly tin-doped In2O3 (ITO). However, the large consumption of indium in increasingly expanding market, especially in liquid crystal displays (LCD) and solar cells, makes it high price and difficult to a stable supply. Simultaneously, one consideration of improving the energy conversion efficiency of solar energy in photovoltaic cells is how to effectively utilize the sun energy in the near infrared (NIR) region because the NIR accounts on 52% of the energy in the air-mass 1.5 global solar irradiance spectrum (300-2500 nm). Moreover, novel TCO and transparent oxide semiconductor (TOS) thin films with high optical and electrical properties are of very important in new transparent electronics.
     In this dissertation, novel amorphous and polycrystalline tungsten-doped tin oxide (SnO2:W) TCO thin films are developed in terms of above mentioned questions and requirements. Pulsed plasma deposition (PPD) method are used to prepare the SnO2:W thin films, the properties of the films and the dependence on various preparation parameters are systematically investigated. The preparation conditions of SnO2:W thin films with good optical and electrical properties are established. Also, SnO2:W thin films with smooth surface and much better transparency are successfully synthesized by sol-gel method, a much simple and much convenient technique apt to mass production and large area uniform coating. This implies the promising application of the films in solar cells. The possible reactive mechanisms in sol-gel process are proposed. The calculated results show that the bottom of conduction band of SnO2:W is mainly ascribed to W 5d states, which results in high conductive SnO2:W films. To study the transparent diode based on SnO2:W films, novel p-type lithium-doped nickel oxide (NiO:Li) thin films are developed, and NiO:Li/SnO2:W p-n junction is fabricated. It reveals the possibility of SnO2:W thin films in application of transparent electronics. The various measurements for all prepared samples, such as XRD, AFM, XPS, SEM, EDS, IR, Raman, stylus profilometer, four-point probe and Hall system, were applied to analyze and characterize the properties of the films. The main results are as follows:
     Amorphous SnO2:W thin films were deposited by PPD at (Ar+O2) mixed atmosphere, and the structural, electrical and optical properties have been investigated as functions of tungsten doping content and oxygen partial pressure. The lowest resistivity of 2.1×10-3 ohm·cm was reproducibly obtained, with carrier mobility of 30 cm2V-1s-1 and carrier concentration of 9.6×1019 cm-3 at the oxygen partial pressure of 1.8 Pa. The average optical transmission was above 80% in the visible region from 400 to 700 nm, with the optical band gap ranging from 3.91 to 4.02 eV. The root mean square (RMS) and average roughness were measured to be 15.7 nm and 11.9 nm respectively.
     Polycrystalline SnO2:W thin films were fabricated on quartz glass substrates by improved method:at pure Ar working gas using PPD with post-annealing. Doping of tungsten can effectively enhance the conductivity of the films while maintaining high transparency. The structural, electrical and optical properties of the films have been investigated with different annealing temperatures and tungsten-doped contents. The lowest resistivity of 6.7×10-4 ohm·cm was obtained, with carrier mobility of 65 cm2V-1s-1 and carrier concentration of 1.44×1020 cm-3 in 3 wt.% tungsten-doped films annealed at 800℃in air. The average optical transmittance is about 87% in the visible region from 400 to 700 nm, and about 90% in the near-infrared region from 700 to 2500 nm.
     XPS analysis shows that In SnO2:W thin film, the Sn 3d spectrum consists of a doublet with binding energies of 486.4 eV for Sn 3d5/2 and 494.9 eV for Sn 3d3/2, corresponding to the binding energies of the Sn4+ ion in SnO2. For the spectrum of W 4f doublet, the binding energies of 4f7/2 and 4f5/2 are 35.2 eV and 37.4 eV, respectively, which implies that tungsten atoms were fully oxidized to W6+ ions. From the XRD results, no additional peaks due to impurities phase were observed and this shows W substituted Sn lattice site and provide more electrons. This indicates that W doping can contribute more free carrier concentration than other dopant such as Sb when the doping concentration are equal. In other words, for the same carrier concentration there needs fewer dopant of W in SnO2:W than in other common doped oxides such as SnO2:Sb, In2O3:Sn or ZnO:Al, whose valence differences between the dopant and substituted ion are only 1. This may also be an influence factor in the process of obtaining high mobility because fewer dopant can largely reduce the ionized impurity scattering centers.
     Transparent conductive SnO2:W films were also synthesized on quartz glass substrates by sol-gel dip-coating method with the precursors SnCl2·2H2O and WCl6. It was found that the films were highly transparent and the average optical transmission was about 90% in the visible and near infrared region from 400 to 2500 nm. The lowest resistivity of 5.8×10-3 ohm·cm was obtained, with the carrier mobility of 14.2 cm2V-1s-1, and carrier concentration of 7.6×1019 cm-3. The structural properties, surface morphology and chemical states for the films were investigated. Although the electrical properties of films need further improve, sol-gel method is relatively cheap and easy to operate, and the prepared films possess excellently transparency and low average roughness of about 1.8 nm.
     XRD analysis reveals that the peak intensity of sol-gel prepared SnO2:W films became weak and even wide, makes the crystallinity of the films worse, as tungsten doping content increased. When tungsten content is large, amorphous particles appeare in the films, makes the roughness decrease. The average roughness of the SnO2:W films is 1.92 nm,1.87 nm,1.82 nm,1.61 nm respectively, corresponding to the tungsten doping content of 0,1,3,5 at.%.
     The calculated results showed that the valence bands of tin oxide were composed mainly of O 2p states and the conduction bands consisted mainly of Sn 5 s states for undoped films. However, the bottom of conduction band is changed with W doping. The bottom of conduction band of SnO2:W is due to W 5d states. W is potential doping elements which result in high conductive SnO2 films.
     The p-type conductive NiO:Li targets were prepared by solid reaction method. By using these targets, p-type conductive NiO:Li transparent thin films were developed on the glass substrates by PPD. The electrical, optical and structural properties were characterized by four-probe method, Hall system, spectrophotometer and AFM. The conductivity of 15 S·cm-1, with carrier mobility ranging from 0.30 cm2V-1s-1 to 0.42 cm2V-1s-1, carrier concentration from 2.98×1020 cm-3 to 2.1×1020 cm-3 film was obtained, while some literatures report the carrier concentration is about 1018,1019 orders of magnitude or lower.
     The p-n heterojunction diodes of NiO:Li/SnO2:W were fabricated, based on the experimental results of n-type SnO2:W and p-type NiO:Li thin films. The I-V characteristic curves of p-n junctions were analyzed through investigating on the conductivity of each single layer. The rectifying current-voltage characteristics were obtained. The whole diode shows an average visible transmission of about 40%.
引文
[1]Claes G. Granqvist. Transparent conductors as solar energy materials:A panoramic review. Solar Energy Materials & Solar Cells,2007,91:1529-1598.
    [2]Matthias Batzill, Ulrike Diebold. The surface and materials science of tin oxide. Progress in Surface Science, 2005,79:47-154.
    [3]Zhuangchun Wu, Zhihong Chen, Xu Du et al. Transparent, Conductive Carbon Nanotube Films. Science,2004, 305:1273-1276.
    [4]Hideo Hosono. Recent progress in transparent oxide semiconductors:Materials and device application. Thin Solid Films,2007,515:6000-6014.
    [5]Badeker K. Electrical conductivity and thermo-electromotive force of some metallic ampounds. Ann. Phys., (Leipzip),1907,22(4):749-766.
    [6]Ginley D S, Bright C. Guest edition. Transparent conducting oxides. MRS Bulletin,2000,25(8):15-18.
    [7]Hiromichi Ohta, Kenji Nomura, Hidenori Hiramatsu. Frontier of transparent oxide semiconductor. Solid-State Electronics,2003,47:2261-2267.
    [8]Lewis B L, Paine D C. Applications and processing of transparent conducting oxides. MRS Bulletin,2000, 25(8):22-27.
    [9]Gordon RG. Criterin for choosing transparent conductors. MRS Bulletin,2000,25(8):52-57.
    [10]郝晓涛,张德恒,马瑾等。柔性衬底氧化物半导体透明导电膜的研究进展。功能材料,2002,33(4):354-359.
    [11]葛水兵,程珊华,宁兆元等.掺杂比对脉冲激光沉积的ZnO:AI膜性能的影响.功能材料与器件学报,2000,6(1):55-58。
    [12]Blom P.W.M, Berntsen A.J.M, Liedenbaum C. T.H.F. Efficiency and stability of polymer light-emitting diodes. J. Mater. Sci:Mater. Electron,2000,11:105-109.
    [13]Y. Kuo, K. Suzuki. Advanced flat-panel displays and materials. MRS Bull,2002,27:859-863.
    [14]Ohsaki H, Kokubu Y. Global market and technology trends on coated glass for architectural, automotive and display applications. Thin Solid Films,1999,351(1-2):1-7.
    [15]X. Jiang, F. L. Wong, M. K. Fung, et al. Aluminum-doped zinc oxide films as transparent conductive electrode for organic light-emitting devices. Appl. Phys. Letts.,2003,83:1875-1877.
    [16]Katayama M. TFT-LCD technology. Thin Solid Films,1999,341(1-2):140-147.
    [17]石桥晓,杉浦功,堀隆英等,清田淳也,中村肇,中村久三.彩色STN用超低电阻透明导电膜.见:姜燮昌编,ITO膜的溅射沉积技术,沈阳:《真空》杂志社,1998:34-38.
    [18]Park JY, Kim HS, Lee DH et al, Kwon K.H, Yeom GY. A study on the etch characteristics of 1TO thin film using inductively coupled plasmas. Surface & coatings technology,2000,131(1-3):247-251.
    [19]鲁大学,透明导电氧化物镀膜玻璃在光伏电池中的应用,玻璃2008年第10期,总第205期
    [20]申功烈.电色smart窗.真空科学与技术.1995,15(4):252-261.
    [21]王晓光,江月山,杨乃恒.氧化镍及氧化钨薄膜电致变色机制的研究.真空科学与技术.1997,17(4):226-232.
    [22]唐沪军,张胜,程树东,et al.TiO2薄膜的电致变色特性研究.上海市真空学会第六届学术年会论文集.1996:146-152.
    [23]郭文莉,殷志强,陈士元,et al.Ti-O薄膜电致变色性能.真空科学与技术.1994,14(2):159-160.
    [24]吴广明,吴永刚,倪星元,et al.全固态电致色灵巧窗的研究进展.真空科学与技术.1997,17(4):275-282.
    [25]陈士元,史月艳,殷志强et al.结晶态WO3膜变色性能及机理.真空科学与技术.1997,17(4):219-225.
    [26]Cummins D, Boschloo G, Ryan M, et al, Corr D, Rao SN, Fitzmaurice D. Ultrafast electrochromic windows based on redox-chromophore modified nanostructured semiconducting and conducting films. Journal of Physical Chemistry B,2000,104(48):11449-11459.
    [27]Suzuki K, Hashimoto N, Oyama T, et al, Shimizu J, Akao Y,Kojima H. Large scale and low resistance ITO films formed at high deposition rates. Thin Solid Films,1993,226(1):104-109.
    [28]史丹.中国能源效率的地区差异与节能潜力分析.工业经济,2007,(1):57-65.
    [29]韩智勇,魏一鸣,范英.数据统计与管理,2004,23(1):1-6.
    [30]Hamberg I, Granqvist C G. Evaporated Sn-doped In2O3 films:Basic optical properties and applications to energy-efficient windows. Journal of Applied Physics,1986,60(11):R123-R159
    [31]孟扬,杨锡良,陈华仙等,沈杰,蒋益明,章壮健.高价态差掺杂氧化物透明导电薄膜的研究.光电子技术,2001,21(1):17-24.
    [32]常天海,除霜、隔热镀膜玻璃的性能设计及评价试验规范。真空与低温,2003,9:157-159.
    [33]范垂祯,蒋赤萍,周海军,et al.CRT的防护屏与防静电减反射薄膜.真空.1997,1997(4):12-16.
    [34]T. Minami. Transparent and conductive multicomponent oxide films prepared by magnetron sputtering. J. Vac. Sci. Technol.,1999, (A 17):1765-1772.
    [35]Minami T. New n-type transparent conducting oxides. MRS Bulletin,2000,25(8):38-44.
    [36]T. Minami. Transparent conducting oxide semiconductors for transparent electrodes. Semicond. Sci. Technol., 2005,20:S35-S44.
    [37]T. Minami. Present status of transparent conducting oxide thin-film development for Indium-Tin-Oxide (ITO). Thin Solid Films,2008,516(17):5822-5828.
    [38]Kawazoe H, Yanagi H, Ueda K et al, Hosono H. Transparent p-type conducting oxides:Design and fabrication of p-n heterojunctions. MRS bulletin,2000,25(8):28-36.
    [39]Yanagi H, Inoue S, Ueda K et al, Kawazoe H, Hosono H, Hamada N. Electronic structure and optoelectronic properties of transparent p-type conducting CuAlO2. Journal of Applied Physics,2000,88(7):4159-4163.
    [40]Ueda K, Hase T, Yanagi H et al, Kawazoe H, Hosono H, Ohta H, Orita M, Hirano M. Epitaxial growth of transparent p-type conducting CuGaO2 thin films on sapphire (001) substrates by pulsed laser deposition. Journal of Applied Physics,2001,89(3):1790-1793.
    [41]Yanagi H, Kawazoe H, Kudo A et al, Yasukawa M, Hosono H. Chemical design and thin film preparation of p-type conductive transparent oxides. Journal of electroceramics,2000,4(2-3):407-414.
    [42]Kudo A, Yanagi H, Ueda K et al, Hosono H, Kawazoe H, Yano Y. Fabrication of transparent p-n heterojunction thin film diodes based entirely on oxide semiconductors. Applied Physics Letters,1999,75(18): 2851-2853.
    [43]Kudo A, Yanagi H, Hosono H et al, Kawazoe H. SrCu2O2:A p-type conductive oxide with wide band gap. Applied Physics Letters,1998,73(2):220-222.
    [44]Ueda K, Inoue S, Hirose S et al, Kawazoe H, Hosono H. Transparent p-type semiconductor:LaCuOS layered oxysulfide. Applied Physics Letters,2000,77(17):2701-2703.
    [45]Wang Y, Gong H. High-conductivity p-type transparent copper aluminum oxide film prepared by plasma-enhanced MOCVD. Chemical Vapor Deposition,2000,6(6):285-288.
    [46]H. L. Hartnagel, A. L. Dawar, A. K. Jain, et al. Semiconduction Transparent Thin Films, Institute of Physics Publishing, Bristol and Philadelphia (1995).
    [47]Chopra K L; Major S, Pandya D K. K.L. Chopra, et al. Transparent conductors-a status review, Thin Solid Films,1983,102(1):1-46.
    [48]Z.M. Jarzebski, Preparation and physical properties of transparent conducting oxide films. Phys. Stat. Sol.A, 1982,71:13.
    [49]Fan J C C, Goodenough J B. X-ray photoemission spectroscopy studies of Sn-doped indium-oxide films. Journal of Applied Physics,1977(8),48:3524-3531.
    [50]G. Rupprecht, Z. Phys.139 (1954) 504-517.
    [51]T. J. Coutts, D. L. Young, X. Li. Characterization of transparent conducting oxides. MRS Bull,2000,25: 58-65.
    [52]Y. Furubayashi, T.Hitosugi, Y.Yamamoto, et al. A transparent metal:Nb-doped anatase TiO2. Appl. Phys.Lett. 86(2005)252101.
    [53]T. Hitosugi, Y. Furubayashi, A. Ueda, et al. Ta-doped Anatse TiO2 Epitaxial Film as Transparent Conducting Oxide. Jpn. J. Appl. Phys.,2005,44:L1063-L1065.
    [54]Tomio T, Miki H, Tabata H, et al. Control of electrical conductivity in laser seposited SrTiO3 thin films with Nb doping, J.Appl.Phys.76 (1994) 5886-5890.
    [55]H.Odaka, Y.Shigesato, T.Murakami, et al. Electronic structure analyses of Sn-doped In2O3. Jpn. J. Appl. Phys.,2001,40:3231-3235.
    [56]P. Nath, R.F.Bunshah, B.M.Basol, et al. Electrical and optical properties of In2O3:Sn films prepared by activated reactive evaporation. Thin Solid Films,1980,72:463-468.
    [57]S.Takaki, K.Matsumoto, K.Suzuki. Properties of highly conducting ITO films prepared by ion plating. Appl. Surf. Sci.,1988,33/34:919-925.
    [58]Ohta H, Orita M, Hirano M, et al, Hoffman DM. Highly electrically conductive indium-tin-oxide thin films epitaxiallygrown on yttria-stabilized zirconia(100) by pulsed-laser deposition. Applied Physics Letters.2000, 76(19):2740-2742.
    [59]A.Suzuki, T.Matsishita, T.Aoki, et al. Pulsed laser deposition of transparent conducting indium Tin Oxide Films in Magnetic Field Perpendicular to Plume. Jpn. J. Appl. Phys.,2001,40:L401-L403.
    [60]Y. Meng, X. Yang, H. Chen, et al. A new transparent conductive thin film In2O3:Mo. Thin Solid Films,2001, 394:218-222.
    [61]Xifeng Li, Weina Miao, Qun Zhang, et al. The electrical and optical properties of molybdenum-doped indium oxide films grown at room temperature from metallic target. Semicond. Sci. Technol.,2005,20:823-828.
    [62]M.F.A.M. van Hest, M.S.Dabney, J.D.Perkins, et al. High-mobility molybdenum doped indium oxide. Thin Solid Films,2006,496:70-74.
    [63]R.K.Gupta, K.Ghosh, S.R.Mishra, et al. Structural, optical and electrical characterization of highly conducting Mo-doped In2O3 thin films. Applied Surface Science,2008,254:4018-4023.
    [64]Xifeng Li, Qun Zhang, Weina Miao, et al. Transparent conductive oxide thin films of tungsten-doped indium oxide. Thin Solid Films,2006,515:2417-2474.
    [65]R.K.Gupta, K.Ghosh, S.R.Mishra, et al. High mobility W-doped In2O3 thin films:Effect of growth temperature and oxygen pressure on structural, electrical and optical properties. Applied Surface Science, 2008,254:1661-1665.
    [66]Jiahan Feng, Ming Yang, Guifeng Li, et al. Amorphous tungsten-doped In2O3 transparent conductive films deposited at room temperature from metallic target. Journal of Non-Crystalline Solids,2009,355:821-825.
    [67]Kim H, Horwitz JS, Kushto GP, et al. Zirconium-doped indium oxide thin films for organic light-emitting diodes. Proceedings of the society of photo-optical instrumentation engineers (SPIE),2000,4105:483-492.
    [68]Timo Asikainen, Mikko Ritala, Markku Leskela. Atomic layer deposition growth of zirconium doped In2O3 films. Thin Solid Films,2003,440:152-154.
    [69]R.K.Gupta, K.Ghosh, S.R.Mishra, P.K.Kahol. High mobility Ti-doped In2O3 transparent conductive thin films. Materials Letters 62 (2008) 1033-1035.
    [70]R.K.Gupta, K.Ghosh, S.R.Mishra, et al. High mobility, transparent, conducting Gd-doped In2O3 thin films by pulsed laser deposition. Thin Solid Films,2008,516:3204-3209.
    [71]Zhaoyuan Ning, Shanhua Cheng, Feng Huang, et al. Study on fluorine-doped indium oxide films deposited by reactive evaporating in CF4/O2 gases.Materials Science and Engineering B,2002,90:196-200.
    [72]A.ElHichou, M.Addou, M.Mansori, et al. Structural, optical and luminescent characteristics of sprayed fluorine-doped In2O3 thin films for solar cells. Solar Energy Materials & Solar Cells,2009,93:609-612.
    [73]A.Subrahmanyam, U K Barik. Synthesis of P-type transparent conducting silver:indium oxide (AIO) thin films by reactive electron beam evaporation technique. Journal of Physics and Chemistry of Solids,2005,66: 817-822.
    [74]A.R.West. Sanderson's model-coordinated polymeric structures. Solid State Chemistry and its Application, Wiley, New York,1984. p.290.
    [75]U. Ozgur, Ya.I. Alivov, C. Liu, et al. A comprehensive review of ZnO materials and devices. J. App;. Phys. 98(2005)041301.
    [76]D.P.Norton, Y.W.Heo, M.P.Ivill, et al. ZnO:growth, doping and processing. Materials Today,2004,34-40.
    [77]Haug F J, Geller Z S, Zogg H, et al, Hoffman DM. Influence of deposition conditions on the thermal stability of ZnO:Al films grown by rf magnetron sputtering. Journal of vacuum science & technology A.2001,19(1): 171-174.
    [78]Demerchant J, Cocivera M. Preparation and doping of zinc-oxide using spray-pyrolysis. Chemistry of Material.1995,7(9):1742-1749.
    [79]Sato H, Minami T, Takata S. Highly transparent and conductive group-IV impurity-doped ZnO thin films prepared by radio-fryquency magnetron sputtering. Journal of Vacuum Science & Technology A.1993,11 (6): 2975-2979.
    [80]Hu J H, Gordon R G. Textured fluorine-doped ZnO films by atmospheric pressure chemical vapor deposition and their use in amorphous-silicon solor-cells. Solar Cells.1991,30(1-4):437-450.
    [81]F. Quaranta, A. Valentini, F.R. Rizzi. Dual-ion-beam sputter deposition of ZnO films, J. Appl. Phys.,1993,74: 247-248.
    [82]V. Cracium, J. Elders, J.G.E. Gardeniers. Characteristics of high quality ZnO thin films deposited by pulsed laser deposition. Appl. Phys. Lett.,1994,65:2963-2965.
    [83]C.K. Ong, S.J. Wang. In situ RHEED monitor of the growth of epitaxial anatase TiO2 thin films. Appl. Surf. Sci.,2001,185:47-51.
    [84]A. Kuroyanagi. Properties of aluminum-doped ZnO thin films grown by electron beam evaporation. Jpn. J. Appl. Phys.,1989,28:219-222.
    [85]Y. Natsume, H. Sakata, T. Hirayama, et al. Low-temperature conductivity of ZnO films prepared by chemical vapor deposition. J.Appl. Phys.,1992,72:4203-4207.
    [86]A.J.C. Fiddes, K. Durose, A.W. Brinkman. Preparation of ZnO films by spray pyrolysis. J. Cryst. Growth, 1996,159:210-213.
    [87]M. Ohyama, H. Kozuka, T. Yoko. Sol-gel preparation of ZnO films with extremely preferred orientation along (002) plane from zinc acetate solution. Thin Solid Films,1997,306:78-85.
    [88]D. Bao, H. Gu, A. Kuang. Sol-gel derived c-axis oriented ZnO thin films. Thin Solid Films,1998,312:37-39.
    [89]H.-C. Han, I.-J. Kim, W.-P. Tai, et al. Structural, optical, electrical properties of ZnO thin films with zn concentration. J. Korean Ceram. Soc,2003,40:1113-1119.
    [90]I.-J. Kim, H.-C. Han, C.-S. Lee, et al. Physical properties of ZnO thin filmsgrown by sol-gel processwith different preheating temperatures. J. Korean Ceram. Soc.,2004,41:136-142.
    [91]Toshio Tsuchiya, Tomohiro Emoto, Tadanori Sei. Preparation and properties of transparent conductive thin films by the sol-gel process. Journal of Non-Crystalline Solids,1994,178:327-332.
    [92]A E Jimenez Gonzalez, J A Soto Urueta. Optical transmittance and photoconductivity studies on ZnO:Al thin films prepared by the sol-gel technique. Solar Energy Materials and Solar Cells,1998,52:345-353.
    [93]S.B. Majumder, M. Jain, P.S. Dobal, et al. Investigation on. Solution Derived Aluminum Doped Zinc Oxide Thin Films. Mater. Sci. Eng. B,2003,16:103.
    [94]T. L. Yang, D. H. Zhang, J. Ma, et al. Transparent conducting ZnO:Al films deposited on organic substrates deposited by r.f magnetron-sputtering. Thin Solid Films,1998,326:60-62.
    [95]Yasuhiro Igasaki, Hirokazu Kanma. Argon gas pressure dependence of the properties of transparent conducting ZnO:AI films deposited on glass substrates. Applied Surface Science 2001 (169-170):508-511.
    [96]M. Chen, Z. L. Pei, C. Sun, et al. ZAO:an attractive potential substitute for ITO in flat display panels. Mat. Sci. Eng. B,2001,56:212-217.
    [97]D.G. Lim, D.H. Kim, J.K. Kim, et al. Improved electrical properties of ZnO:Al transparent conducting oxide films using a substrate bias, Superlattices Microstruct. Superlattices and Microstructures,2006,39:(2006).
    [98]Hao X T, Ma J, Zhang D H, et al. Comparison of the properties for ZnO:Al films deposited on polyimide and glass substrates. Mater. Sci. Eng. B,2002,90:50-54.
    [99]X. T. Hao, F. R. Zhu, K. S. Ong et al. Hydrogenated aluminium-doped zinc oxide semiconductor thin films for polymeric light-emitting diodes. Semiconductor Science and Technology,2006,21:48-54.
    [100]Byeong-Yun Oh, Min-Chang Jeong, Woong Lee et al. Properties of transparent conductive ZnO:Al films prepared by co-sputtering. Journal of Crystal Growth,2005,274:453-457.
    [101]R. K. Shukla, Anchal Srivastava, Atul Srivastava et al. Growth of transparent conducting nanocrystalline Al doped ZnO thin films by pulsed laser deposition. Journal of Crystal Growth,2006,294:427-431.
    [102]V. N. Zhitomirsky, E. Cetinorgu, E. Adler, et al. Filtered vacuum arc deposition of transparent conducting Al-doped ZnO films. Thin Solid Films,2006,515:885-890.
    [103]Xu Zi-qiang, Deng Hong, Li Yan, et al. Al-doping effects on structure, electrical and optical properties of c-axis-orientated ZnO:Al thin films. Materials Science in Semiconductor Processing,2006,9:132-135.
    [104]Young-Sung Kim, Weon-Pil Tai. Electrical and optical properties of Al-doped ZnO thin films by sol-gel process. Applied Surface Science,2007,253:4911-4916.
    [105]S. M. Rozati, Sh. Akesteh. Characterization of ZnO:AI thin films obtained by spray pyrolysis technique. Materials Characterization,2007,58:319-322.
    [106]Jaehyeong Lee, Dongjin Lee, Donggun Lim, et al. Structural, electrical and optical properties of ZnO:Al films deposited on flexible organic substrates for solar cell applications. Thin Solid Films,2007,515: 6094-6098.
    [107]Z. A. Wang, J. B. Chu, H. B. Zhu, et al. Huang Growth of ZnO:AI films by RF sputtering at room temperature for solar cell applications. Solid-State Electronics,2009,53:1149-1153.
    [108]T. Minami, T. Miyata, Y. Ohtani, et al. Effect of thickness on the stability of transparent conducting impurity-doped ZnO thin films in a high humidity environment. Phys. Status Solidi (RRL),2007,1:R31-R33.
    [109]T. Miyata, Y. Ohtani, T. Kuboi, et al. Some studies on highly transparent wide band gap indium molybdenum oxide thin films if sputtered at room temperature Thin Solid Films,2008,516(7):1354-1358.
    [110]H. Agura, A. Suzuki, T. Matsushita, et al. Low resistivity transparent conducting Al-doped ZnO films prepared by pulsed laser deposition. Thin Solid Films,2003,445:263-267.
    [111]T. Minami, K. Oohashi, S. Takata, et al. Preparations of ZnO:AI transparent conducting films by d.c. magnetron sputtering. Thin Solid Films,1990,193-194:721-729.
    [112]H. Hirasawa, M. Yoshida, S. Nakamura, et al. ZnO:Ga conducting-films grown by DC arc-discharge ionplating. Sol. Energy Mater. Sol. Cells,2001,67:231-236.
    [113]T. Minami, S. Ida, T. Miyata. High rate deposition of transparent conducting oxide thin films by vacuum arc
    plasma evaporation. Thin Solid Films,2002,416:92-96.
    [114]S. Shirakata, T. Sakemi, K. Awai, et al. Electrical and optical properties of large area Qa-doped ZnO thin
    films prepared by reactive plasma deposition. Superlattices Microstruct.,2006,39:218-228.
    [115]T. Minami, H. Nanto, S. Takata. The stability of zinc oxide transparent electrodes fabricated by R. F.
    magnetron sputtering. Thin Solid Films,1984,111:167-174.
    [116]S. Suzuki, T. Miyata, M. Ishii, et al. Transparent conducting V-co-doped AZO thin films prepared by
    magnetron sputtering. Thin Solid Films,2003,434:14-19.
    [117]余旭浒,马瑾,计峰,王玉恒,张锡健,程传福,马洪磊.薄膜厚度对ZnO:Ga.透明导电膜性能的影响。功能材料。2005,36(2):241-243.
    [118]M. Miyazaki, K. Sato, A. Mitsui, et al. Properties of Ga-doped ZnO films. Journal of Non-Crystalline Solids, 1997,218:323-328.
    [119]B. M. Ataev, A. M. Bagamadova, V. V. Mamedov, et al. Highly conductive and transparent thin ZnO films prepared in situ in a low pressure system. J. Cryst. Growth.,.1999,198/199:1222-1225.
    [120]Xuhu Yu, Jin Ma, Feng Ji, et al. Preparation and properties of ZnO.Ga films prepared by r.f.magnetron sputtering at low temperature. Applied Surface Science,2005,239:222-226.
    [121]H. Gomez, A. Maldonado, M. de la L.Olvera, et al.Gallium-doped ZnO thin films deposited by chemical spray. Solar Energy Materials & Solar Cells,2005,87:107-116.
    [122]Sang-Moo Park, Tomoaki Ikegami, Kenji Ebihara. Effects of substrate temperature on the properties of Ga-doped ZnO by pulsed laser deposition. Thin Solid Films,2006,513:90-94.
    [123]T. Yamada, T. Nebiki, S. Kishimoto, et al. Dependences of structural and electrical properties on thickness of polycrystalline Ga-doped ZnO thin films prepared by reactive plasma deposition. Superlattices and Microstructures,2007,42:68-73.
    [124]Takahiro Yamada, Aki Miyake, Seiichi Kishimoto, et al. Effects of substrate temperature on crystallinity and electrical properties of Ga-doped ZnO films prepared on glass substrate by ion-plating method using DC arc discharge. Surface & Coatings Technology,2007,202:973-976.
    [125]A. Miyake, T. Yamada, H. Makino, et al. Structural, electrical and optical properties of Ga-doped ZnO films on cyclo-olefin polymer substrates. Thin Solid Films,2009,517:3130-3133.
    [126]Quan-Bao Ma, Zhi-Zhen Ye, Hai-Ping He, et al. Substrate temperature dependence of the properties of Ga-doped ZnO films deposited by DC reactive magnetron sputtering. Vacuum,2009,82:9-14.
    [127]Naoki Nishimoto, Takahiro Yamamae, Takashi Kaku, et al. Growth of Ga-doped ZnO by MOVPE using diisopropylzinc and tertiary butanol. Journal of Crystal Growth,2008,310:5003-5006.
    [128]J. P. Wiff, Y. Kinemuchi, K. Watari. Hall mobilities of Al-and Ga-doped ZnO polycrystals. Materials Letters,2009,63:2470-2472.
    [129]X. Bie, J.G. Lu, L. Gong, et al. Transparent conductive ZnO.Ga films prepared by DC reactive magnetron sputtering at low temperature. Applied Surface Science,2009,256:289-293.
    [130]N. lto, Y. Sato, P.K. Song, et al. Electrical and optical properties of amorphous indium zinc oxide films. Thin Solid Films,2006,496:99-103.
    [131]P. Barquinha, G. Goncalves, L. Pereira, et al. Effect of annealing temperature on the properties of IZO films and IZO based transparent TFTs. Thin Solid Films,2007,515:8450-8454.
    [132]Young Ran Park, Eung Kwon Kim, Donggeun Jung, et al. Growth of transparent conducting nano-structured In doped ZnO thin films by pulsed DC magnetron sputtering. Applied Surface Science,2008,254: 2250-2254.
    [133]Wantae Lim, Yu-Lin Wang, F. Ren, et al. Indium zinc oxide thin films deposited by sputtering at room temperature. Applied Surface Science,2008,254:2878-2881.
    [134]E. Fortunato, P. Barquinha, G. Goncalves, et al. High mobility and low threshold voltage transparent thin film transistors based on amorphous indium zinc oxide semiconductors. Solid-State Electronics,2008,52: 443-448.
    [135]Xianwu Xiu, Zhiyong Pang, Maoshui Lv, et al. Transparent conducting molybdenum-doped zinc oxide films deposited by RF magnetron sputtering. Applied Surface Science,2007,253:3345-3348.
    [136]K. Matsubara, P. Fonts, K. Iwata, et al. ZnO transparent conducting films deposited by pulsed laser deposition for solar cell applications. Thin Solid Films,2003,431-432:369-372.
    [137]H. Hara, T. Shiro, and T. Yatabe, Optimization and Properties of Zn Doped Indium Oxide Films on Plastic Substrate. Jpn. J. Appl. Phys.,2004,43:745-749.
    [138]H. Hara, T. Hanada, T. Shiro, et al. Properties of indium zinc oxide thin films on heat withstanding plastic substrate. J. Vac. Sci. Technol.,2004,22:1726-1729.
    [139]K. Tominaga, T. Takao, A. Fukushima, et al. Amorphous ZnO-In2O3 transparent conductive films by simultaneous sputtering method of ZnO and In2O3 targets. Vacuum,2002,66:505-509.
    [140]R. P. Wang, L. L. H. King, and A. W. Sleight. Highly conducting transparent thin films based on zinc oxide. J. Mater. Res.,1996,11:1659-1664.
    [141]J. D. Perkins, J. A. del Cueto, J.L. Alleman, et al. Combinatorial studies of Zn-Al-O and Zn-Sn-O transparent conducting oxide thin films. Thin Solid Films,2002,411:152-160.
    [142]J. H. Lee and B. O. Park. Transparent conducting ZnO.Al, In and Sn thin films deposited by sol-gel method Thin Solid Films,2003,426:94-99.
    [143]Y. M. Lu, C. M. Chang, S. I. Tsai, et al. Improving the conductance of ZnO thin films by doping with Ti. Thin Solid Films,2004,56:447-448.
    [144]H. Kim, J.S. Horwitz, W.H. Kim, et al. Anode material based on Zr-doped ZnO thin films for organic light-emitting diodes. Appl. Phys. Lett.,2003,83:3809-3811.
    [145]H. Kim, J.S. Horwitz, W.H. Kim,et al. Doped ZnO thin films as anode materials for organic light-emitting diodes. Thin Solid Films,2002,420-421:539-854.
    [146]S. B. Qadri, E. F. Skelton, P. Lubitz, et al. Electron beam deposition of ZrO2-ZnO films. Thin Solid Films, 1996,290-291:80-83.
    [147]M.L. Olvera, A. Maldonado, R. Asomoza, et al. Characteristicsof ZnO:F thin films obtained by chemical spray effect of themolarity and doped concentration. Thin Solid Films 394 (2001), p.242-249.
    [148]Minami T, Yamamoto T, Miyata T. Highly transparent and conductive rare earth-doped ZnO thin films prepared by magnetron sputtering. Thin Solid Films,2000,366(1-2):63-68.
    [149]H. Kim, R. C. Y. Auyeung, A. Pique. Transparent conducting F-doped SnO2 thin films grown by pulsed laser deposition. Thin Solid Films,2007,516:5052-5058.
    [150]Choong H Y, Itaru Y, Shigesato Y. Effects of tin concentrations on structural characteristics and electro optical properties of tin-doped indium oxide films prepared by r.f.magnetron sputtering. Jpn J Appl Phys,1995,34:600-605.
    [151]望咏林,颜悦等,透明导电氧化物薄膜研究进展,材料导报,2006年5月20卷专辑Ⅵ
    [152]A. Martel, F. Caballero-Briones, P. Quintana, et al. X-ray study of tin oxide films obtained by reactive DC sputtering from a metallic tin target in pure oxygen plasma. Surface and Coatings Technology 2007,201(8): 4659-4665.
    [153]S. Wang, J. Huang, Y. Zhao, S. Wang, S. Wu, S. Zhang, W. Huang, Mater. Lett.,2006,60:1706-1709..
    [154]Jonas Sundqvist, Jun Lu, Mikael Ottosson, et al. Growth of SnO2 thin films by atomic layer deposition and chemical vapour deposition:A comparative study. Thin Solid Films,2006,514(1-2):63-68.
    [155]Y. R. Ryu, S. Zhu, J. M. Wrobel, et al. Comparative study of textured and epitaxial ZnO films. J. Cryst. Growth,2000,216:326-329.
    [156]M. Batzill, J. M.Burst, U. Diebold. Pure and Co-doped SnO2(101) films grown by MBE on Al2O3(012). Thin Solid Films 484(2005) 132-139.
    [157]T. Schneider, M. Sommer, J. Goschnick. SNMS investigations of platinum-doped nanogranular tin dioxide layers. Appl. Surf. Sci.,2005,252:257-260.
    [158]Xianjin Feng, Jin Ma, Fan Yang, et al. Transparent conducting SnO2:Sb epitaxial films prepared on α-Al2O3 (0001) by MOCVD. Materials Letters,2008,62(12-13):1779-1781.
    [159]Daoli Zhang, Liang Tao, Zhibing Deng, et al. Surface morphologies and properties of pure and antimony-doped tin oxide films derived by sol-gel dip-coating processing. Materials Chemistry and Physics, 2006,100(2-3):275-280.
    [160]Jin Ma, Xiaotao Hao, Shulai Huang, et al. Comparison of the electrical and optical properties for SnO2:Sb films deposited on polyimide and glass substrates. Applied Surface Science,2003,214:208-213.
    [161]杨建广,唐谟堂,唐朝波,等。锑掺杂二氧化锡薄膜的导电机理及其理论电导率[J]微纳电子技术,2004.4:18-21.
    [162]Seung-Yup Lee, Byung-Ok Park. Structural, electrical and optical characteristics of SnO2:Sb thin films by ultrasonic spray pyrolysis. Thin Solid Films,2006,510:154-158.
    [163]B.Thangaraju. Structural and electrical studies on highly conducting spray deposited fluorine and antimony doped SnO2 thin films from SnCl2 precursor. Thin Solid Films,2002,402:71-78.
    [164]H. Haitjema, J. J. Ph. Elich, C. J. Hoogendoorn. The optical, electrical and structural properties of fluorine-doped, pyrolytically sprayed tindioxide coatings. Sol. Energy. Mater.,1989,18:283-297.
    [165]C. Agashe, S. S. Major. Effect of heavy doping in SnO2:F films. J. Mater. Sci.,1996,31:2965-2969. 166 J.Lee. Effects of oxygen concentration on the properties of sputtered SnO2:Sb films deposited at low temperature. Thin Solid Films,2008,516:2045-2049.
    [167]S. Raghunath Reddy, A. K. Mallik. UV absorption studies of undoped and fluorine-doped tin oxide films. Thin Solid Films,1986,143(2):113-118.
    [168]E. Elangovan, K. Ramamurthi. A study on low cost-high conducting fluorine and antimony-doped tin oxide thin films. Applied Surface Science,2005,249:183-196.
    [169]倪佳苗,赵修建,郑小林,赵江.p型透明导电SnO2薄膜的研究进展.真空科学和技术学报,2009,29(5):531-535。
    [170]Mehdi M, Mohagheghi B, Shokooh-Saremi. M. Electrical, optical and structural properties of Li-doped SnO2 transparent conducting films deposited by the spray pyrolysis technique:a carrier-type conversion study. Semicond. Sci. Technol.2004,19:764-769.
    [171]Zhenguo Ji, Lina Zhao, Zuopeng He, et al. Transparent p-type conducting indium-doped SnO2 thin films deposited by spray pyrolysis. Materials Letters 2006,60:1387-1389.
    [172]Chen Chen, Zhenguo Ji, Chao Wang, et al. P-type tin-indium oxide films prepared by thermal oxidation of metallic InSn alloy films. Materials Letters 2006,60:3096-3099.
    [173]Ahmed Sk F, Khan S, Ghosh P K, et al. Effect of Al doping on the conductivity thpe inversion and electro-optical properties of SnO2 thin films synthesized by sol-gel technoque. Journal of Sol-Gel Science and Technology.2006,39:241-247.
    [174]Yixian Huang, Zhenguo Ji, Chen Chen. Preparation and characterization of p-type transparent conducting tin-gallium oxide films. Applied Surface Science,2007,253:4819-4822.
    [175]Tominaga K, Murayama T, Mori I, et al, Hoffman DM. Conductive transparent films deposited by simultaneous sputtering of zinc-oxide and indium-oxide targets. Vacuum.2000,59(2-3):546-552.
    [176]Naghavi N, Marcel C, Dupont L, et al, Hoffman DM. Structural and physical characterisation of transparent conducting pulsed laser deposited In2O3-ZnO thin films. Journal of Materials Chemistry,2000,10(10): 2315-2319.
    [177]Palmer G B, Poeppelmeier K R, Mason T O. Conductivity and transparency of ZnO/SnO2-cosubstituted In2O3. Chemistry of Materials.1997,9(12):3121-3126.
    [178]Kudo A, Yanagi H, Hosono H, et al, Hoffman DM. Enhancement of carrier generation in MgIn2O4 thin film prepared by pulsed laser deposition technique. Materials Science and Engineering B.1998,54(1-2):51-54.
    [179]Minami T, Sonohara H, Kakumu T, et al, Hoffman DM. Highly transparent and conductive Zn2In2O5 thin-films prepared by RF magnetron sputtering. Japanese Journal of Applied Physics.1995,34 (8 A): L971-L974.
    [180]Minami T, Kakumu T, Shimokawa K, et al, Hoffman DM. New transparent conducting ZnO-In2O3-SnO2 thin films prepared by magnetron sputtering. Thin Solid Films.1998,317(1-2):318-321.
    [181]Minami T, Takeda Y, Kakumu T, et al, Hoffman DM. Preparation of highly transparent and conducting Ga2O3-In2O3 films by direct current magnetron sputtering. Journal of Vacuum Science & Technology A.1997, 15(3):958-962.
    [182]Moriga T, Edwards DD, Mason TO, et al, Hoffman DM. Phase relationships and physical properties of homologous compounds in the zinc oxide-indium oxide system. Journal of the American Ceramic Society. 1998,81(5):1310-1316.
    [183]Martinez A 1, Acosta D R. Effect of the fluorine content on the structural and electrical properties of SnO2 and ZnO-SnO2 thin films prepared by spray pyrolysis. Thin Solid Films.2005,483:107-113.
    [184]Minami T,Tsukada S, Minamino Y, et al, Hoffman DM. Preparation of transparent and conductive multicomponent Zn-In-Sn oxide thin films by vacuum arc plasma evaporation. Journal of Vacuum Science and Technology A.2005,23(4):1128-1132.
    [185]Miyata T, Suzuki S, Ishii M, et al, Hoffman DM. New transparent conducting thin films using multicomponent oxidescomposed of ZnO and V2O5 prepared by magnetron sputtering. Thin Solid Films. 2002,411:76-81.
    [186]Qadri S B, Kimb H, Khanc H R, et al, Hoffman DM. Transparent conducting films of In2O3-ZrO2, SnO2-ZrO2 and ZnO-ZrO2. Thin Solid Films.2000,377-378:750-754.
    [187]Qadri S B, Kim H, Yousuf M, et al, Hoffman DM. Synthesis of In2O3-Sc2O3 transparent conducting oxide films. Applied Surface Science.2003,208-209:611-614.
    [188]Lee J H, Lee S Y, Park B O. Fabrication and characteristics of transparent conducting In2O3-ZnO thin films by ultrasonic spray pyrolysis. Materials Science & Engineering B.2006,127(2-3):267-271.
    [189]Kawazoe H, Yasukawa M, Hyodo H, Kurita M, Yanagi H, Hosono H. P-type electrical conduction in transparent thin films of CuAlO2. Nature,1997,389(6654):939-942.
    [190]Nagarajan R, Draeseke A D, Sleight A W, et al. p-type conductivity in CuCr1-xMgxO2 films and powders. Journal of Applied Physics.2001,89(12):8022-8025.
    [191]Jayaraj M K, Draeseke A D, Tate J, et al. p-Type transparent thin films of CuY1-xCaxO2. Thin Solid Films. 2001,397:244-248.
    [192]Kykyneshi R, Nielsen B C, Tate J, et al. structural and transport properties of CuSc1-xMgxO2(?) delafossites. Journal of Applied Physics.2003,96(11):6188-8194.
    [193]黄华,朱长飞,刘卫.p型透明导电氧化物CuCr1-xCaxO2的制备与光电性质研究.化学物理学报.2004,17(2):161-164.
    [194]Wang Y, Gong H, Zhu F, et al. Optical and electrical properties of p-type transparent conducting Cu-Al-O thin films prepared by plasma enhanced chemical vapor deposition. Materials Science and Engineering B. 2001,85:131-134.
    [195]Tsuboia N, Takahashib Y, Kobayashia S, et al. Delafossite CuAlO2 films prepared by reactive sputtering using Cu and Al targets. Journal of Physics and Chemistry of Solids.2003,64:1671-1674.
    [196]Hiramatsu H, Ueda K, Ohta H, et al. Degenerate p-type conductivity in wide-gap LaCuOS1-xSex(x=0-1) epitaxial films. Applied Physics Letters.2003,82(7):1048-1050.
    [197]Yanagi H, Tate J, Park S, et al. p-type conductivity in wide-band-gap BaCuQF(Q=S,Se). Appled Physics Letter.2003,82(17):2814-2816.
    [198]Huang F Q, Brazis P, Kannewurf C R, et al. Synthesis, Structure, Electrical Conductivity, and Band Structure of the Rare-Earth Copper Oxychalcogenide La5Cu6O4S7. J. Solid State Chem.,2000,155:366-371.
    [199]Mizoguchi, M. Hirano, S. Fujitsu, et al. ZnRh2O4:A p-type semiconducting oxide with a valence band composed of a valence band composed of a low spin state of Rh3+ in a 4d6 configuration. Appl. Phys. Lett., 2002,80:1207-1209.
    [200]Lin C-C, Chen S-Y, Cheng S-Y, et al. Properties of nitrogen-implanted p-type ZnO films grown on Si3N4/Si by radio-frequency magnetron sputtering. Applied Physics Letters.2004,84(24):5040-5042.
    [201]Lu J, Zhang Y, Ye Z, et al. p-type ZnO films deposited by DC reactive magnetron sputtering at different ammonia concentrations. Materials Letters,2003,57(22-23):3311-3314.
    [202]Wang C, Ji Z, Liu K, et al. P-type ZnO thin films prepared by oxidation of Zn3N2 thin films deposited by DC magnetron sputtering. Journal of Crystal Growth,2003,259(3):279-281.
    [203]Guo X, Tabata H, Kawai T. Epitaxial growth and optoelectronic properties of nitrogen-doped ZnO films on (112-0)Al2O3 substrate. Journal of Crystal Growth.2002,237-239:544-547.
    [204]Iwata K, Fons P, Yamada A, et al. Nitrogen-induced defects in ZnO:N grown on sapphire substrate by gas source MBE. Journal of Crystal Growth.2000,209(2-3):526-531.
    [205]Ye Z, Lu J, Chen H, Zhang Y, et al. Preparation and characteristics of p-type ZnO films by DC reactive magnetron sputtering. Journal of Crystal Growth,2003,253(1-4):258-264.
    [206]Garces N Y, Giles N C, Halliburton L E, et al. Production of nitrogen acceptors in ZnO by thermal annealing. Applied Physics Letters,2002,80(8):1334-1336.
    [207]Garces N Y, Wang L, Giles N C, et al. Molecular nitrogen (N2-) acceptors and isolated nitrogen (N-) acceptors in ZnO crystals. Journal of Applied Physics.2003,94(1):519-524.
    [208]Yamauchi S, Goto Y, Hariu T. Photoluminescence studies of undoped and nitrogen-doped ZnO layers grown by plasma-assisted epitaxy. Journal of Crystal Growth.2004,260(1-2):1-6.
    [209]Yamamoto T, Yoshida H K. Solution using a codoping method to unipolarity for the fabrication of p-type ZnO. Japanese Journal of Applied Physics.1999,38:L166-169.
    [210]Yamamoto T, Yoshida H K. Unipolarity of ZnO with a wide-band gap and its solution using codoping method. Journal of Crystal Growth.2000,214-215:552-555.
    [211]Yamamoto T. Codoping for fabrication of p-type ZnO. Thin Solid Films.2002,420-421:100-106.
    [212]Joseph M, Tabata H,Saeki H, et al. Fabrication of the low resistive p-type ZnO by codoping method. Physica B.2001,302-303:140-148.
    [213]Bian J M, Li X M, Gao X D, et al. Deposition and electrical properties of N-In codoped p-type ZnO films by ultrasonic spray pyrolysis. Applied Physics Letters.2004,84(4):541-543.
    [214]Chen L L, Lu J G, Ye Z Z, et al. p-type behavior in In-N codoped thin films. Applied Physics Letters.2005, 87:252106.
    [215]Ye Z Z, Fei Z G, Lu J G, et al. Preparation of p-type ZnO films by Al+N-codoping method. Journal of Crystal Growth.2004,265:127-132.
    [216]Lu J G, Ye Z Z, Zhuge F, et al. p-type conduction in N-Al co-doped ZnO thin films. Applied Physics Letters. 2004,85(15):3134-3135
    [217]吕建国,叶志镇,诸葛飞,et al.N-Al共掺ZnO薄膜的p型传导特性.半导体学报.2005 26(4):730-734.
    [218]Aoki T, Hatanaka Y, Look D C. ZnO diode fabricated by excimer-laser doping. Applied Physics Letters. 2000,76(22):3257-3258.
    [219]Vaithianathan V, Lee B T, Kim S S. Pulsed-laser deposited p-type ZnO films with phosphorus doping. Journal of Applied Physics.2005,98:043519.
    [220]Xiu F X, Yang Z, Mandalapu L J, et al. High-mobility Sb-doped p-type ZnO by molecular epitaxy. Applied Physics Letters.2005,87:152101.
    [221]Ryu Y R, Zhu S, Look D C, et al. Synthesis of p-type ZnO films. Journal of Crystal Growth.2000,216: 330-334.
    [222]莊鑫坚。p型导电氧化镍薄膜的制备及其电学和光学性能研究。国立成功大学。硕士学位论文,2003.
    [223]H. M. Manasevit. Single-crystal gallium arsenide on insulating substrates. Appl.Phys. Let.,1986,12: 156-158.
    [224]R. Jayakrishnan, G. Hodes. Non-aqueous electrodeposition of ZnO and CdO films.2003,440:19-25.
    [225]Zheng M J, Zhang L D, Li G H, et al.,Fabrication and optical properties of large-scale zinc oxide nanowire arrays by one-step electrochemical deposition technique. Chemical Physics Letter,2002,363:123-128.
    [226]Y. Leprince-Wang, A. Yacoubi-Ouslim, G.Y. Wang, Structure study of electrodeposited ZnO nanowires. Microelectronics Journal,2005,36:625-628.
    [227]Miao Weina, Li Xifeng, Zhang Qun, et al. Transparent conductive In2O3:Mo thin films prepared by reactive direct current magnetron sputtering at room temperature. Thin Solid Films,2006,500:70-73.
    [228]Nano PV Corporation, Energy Photovoltaics, A new light trapping TCO for nc-Si:H solar cells [J]. Solar Energy Materials & Solar Cells,2006,90:3371-3376.
    [229]Yoshiyuki Abe, Noriko Ishiyama.Polycrystalline films of tungsten-doped indium oxide prepared by d.c.magnetron sputtering. Materials Letters,2007,61:566-569.
    [230]Huang L, Li X-f, Zhang Q, Miao W-n, et al, Hoffman DM. Properties of transparent conductive In2O3:Mo
    thin films deposited by Channel Spark Ablation, Journal of Vacuum Science & Technology A.2005.23(5): 1350-1353.
    [231]M. Hobel, J. Geerk, G. Linker, and C. Schultheiss. Deposition of superconducting YBaCuO thin films by pseudospark ablation. Appl Phys Lett,1990,56(10):973-975,
    [232]Q D Jiang, F C Matacotta, G Masciarelli, et al. Characterization and in situ fluorescence diagnostic of the deposition of YBa2Cu3O7-x thin films by pseudo-spark electron beam ablation. Supercond. Sci.Technol.,1993, 6:567-572.
    [233]沈杰.TiO2薄膜的制备及其光学性质的研究.复旦大学硕士学位论文,1997.
    [234]T. Minami, T. Kakumu, S. Takata. Preparation of transparent and conductive In2O3-ZnO films by radio frequency magnetron sputtering. J. Vac. Sci. Technol A.1996,14:1704-1708.
    [235]K. Nomura, H. Ohta, A. Tagagi, et al. Room-Temperature Fabrication of Transparent Flexible Thin Film Transistors Using Amorphous Oxide Semiconductors. Nature,2004,432:488-492.
    [236]I. H. Kim, J. H. Ko, D. Kim, et al. Scattering mechanism of transparent conducting tin oxide films prepared by magnetron sputtering. Thin Solid Films,2006,515:2475-2480.
    [237]E. Shanthi, A. Banerjee, V. Dutta, et al. Annealing Characteristics of Tin Oxide Films Prepared by Spray Pyrolysis. Thin Solid Films,1980,71:237-244.
    [238]刘恩科,朱秉升,罗晋生等。半导体物理学(第6版),p441。
    [239]D.L. Young, Ph.D.thesis, Colorado school of mines, U.S.(2000).
    [240]H. Q. Chiang, J. F. Wager. High mobility transparent thin film transistors with amorphous zinc tin oxide channel layer. Applied Physics Letters,2005,86:013503.
    [241]Y. Shigesato and D. C. Paine. A study of the effect of Sn doping on the electronic transport properties of the thin film indium oxide. Appl.Phys.Lett.62:1268(1993)
    [242]O. Kluth, C. Agashe, J. Hupkes, et al. Magnetron sputtered zinc stannate films for silicon thin film solar cells. Proceeding-third World Conference on Photovoltaic Energy Conversion,2003,2:1800-1803.
    [243]J. H. Ko, I. H. Kim, D. Kim, et al. Transparent and conducting Zn-Sn-O thin films prepared by combinatorial approach. Applied Surface Science,2007,253:7398-7403.
    [244]E. Cetinorgu. Characteristics of filtered vacuum arc deposited ZnO-SnO2 thin films on room temperature substrates. Optics Communication,2007,280:114-119
    [245]S. S. Chang, S. O. Yoon, H. J. Park. Characteristics of SnO2 annealed in reducing atmosphere. Ceramics International.2005,31:405-410.
    [246]H. Kim, H. H. Park, H. J. Chang, et al. Carbon nanotube-incorporated direct-patternable SnO2 thin films formed by photochemical metal-organic deposition. Thin Solid Films,2008,517:1072-1076.
    [247]H.I Kim, S. J. Wang, H. H. Park, et al. Study of Ag nanoparticles incorporated SnO2 transparent conducting films by photochemical metal-organic deposition. Thin Solid Films,2007,516:198-202.
    [248]王颖华,张群,李桂峰等。P型掺锌硫化铜铝透明导电薄膜的制备和性能研究。真空科学与技术,2008,28:199-202.
    [249]Min-Ling Liu, Ying-Hua Wang, Fu-Qiang Huang, et al. p-type transparent conductor:Zn-doped CuAlS2. Applied Physics Letters.2007,90:072109.
    [250]Quan-Bao Ma, Zhi-Zhen Ye, Hai-Ping He, et al. Structural, electrical, and optical properties of transparent conductive ZnO:Ga films prepared by DC reactive magnetron sputtering. Journal of Crystal Growth,2007, 304:64-68.
    [251]Lee Seung-Yup, Park Byung-Ok. Structural, electrical and optical characteristics of SnO2:Sb thin films by ultrasonic spray pyrolysis. Thin Solid Film,2006,510:154-158.
    [252]Freeman AJ, Poeppelmeier KR, Mason TO, et al. Chemical and thin film strategies for new transparent conducting oxides. MRS Bull 2000,25:45-51.
    [253]T.J. Liu, Z.G. Jin, L.R. Feng, et al. Conducting antimony-doped tin oxide films derived from stannous oxalate by aqueous sol-gel method. Appl. Surf. Sci.2008,254:6547-6553.
    [254]修显武.掺钼氧化锌透明导电薄膜的制备与特性研究.山东大学博士论文,2006.10
    [255]K. T. Ramakrishna Reddy, T. B. S. Reddy, I. Forbes, et al. Highly oriented and conducting ZnO:Ga layers grown by chemical spray pyrolysis. Surf. Coat. Tech.,2002,151-152:110-113.
    [256]V. Assuncao, E. Fortunato, A. Marques, et al. Influence of the deposition pressure on the properties of transparent and conductive ZnO:Ga thin-film produced by r.f. sputtering at room temperature. Thin Solid Films,2003,410:40-405.
    [257]V. Geraldo, L.V.A. Scalvi, P.N. Lisboa-Filho, et al. Drude's model calculation rule on electrical transport in Sb-doped SnO2 thin films, deposited via sol-gel. J. Phys. Chem. Solids,2006,67:1410-1415.
    [258]Pan CA, Ma TP. High-quality transparent conductive indium oxide films prepared by thermal evaporation. Applied Physics Letters,1980,37:163-165
    [259]Benshalom A, Kaplan L, Boxman RL, et al. SnO2 transpatent conductor films produced by filtered vacuum arc deposition. Thin solid films,1993,236:20-26.
    [260]Kohiki S, Nishitani M, Wada T. Preparation of conductive and transparent thin-films by argon ion-beam sputtering of zinc-oxide in atmosphere containing hydrogen. Japanese Journal of Applied Physics 1,1994,33: 6706-6707.
    [261]Ueda N, Maeda H, Hosono H, et al. Band-gap widening of CdO thin films. Journal of Applied Physics,1998, 84:6174-6177.
    [262]Ueda N, Omata T, Hikuma N, et al. New oxide phase with wide band-gap and high electroconductivity,MgIn2O4. Applied physics letters,1992,61:1954-1955
    [263]Ueda N, Hosono H, Waseda R, et al. Anisotropy of electrical and optical properties in beta-Ga2O3 single crystals. Applied physics letters,1997,71(7):933-935.
    [264]Ambrosini A, Duarte A, Poeppelmeier KR, et al, Lane M, Kannewurf CR, Mason TO. Electrical, optical, and structural properties of tin-doped In2O3-M2O3 solid solutions (M= Y, Sc). Journal of solid state chemistry, 2000,153(1):41-47
    [265]Lee BH, Kim IG, Cho SW, et al. Effect of process parameters on the characteristics of indium tin oxide thin film for flat panel display application. Thin solid films,1997,302(1-2):25-30
    [266]Ohya Y, Ito T, Kaneko M, et al. Solid solubility of SnO2 in In2O3. Journal of the ceramic society of Japan, 2000,108 (9):803-806
    [267]Chen M, Pei ZL, Wang X, et al. Instrinsic limit of electrical properties of the transparent conductive oxide films. Journal of physics D,2000,33:2538-2548
    [268]Yamada N, Yasui I. Doping mechanisms of Sn in In2O3 powder studied using Sn-119 Mossbauer spectroscopy and X-ray diffraction. Japanese Journal of Applied Physics Part 1,1999,38(5 A):2856-2862
    [269]Wu WF, Chiou BS. Effect of annealing on electrical and optical-properties of RF magnetron-sputtered indium tin oxide-films. Applied surface science,1993,68(4):497-504
    [270]Ueda K, Yanagi H, Hosono H, et al. Carrier compensation and generation in Ca1-xYxTiO3 and CaTi1-xNbxO3 single crystals. Materials science and engineering B,1998,54(1-2):60-63.
    [271]Hakim MO. Carrier compensation and activation-energy studies in pyrolytic In2O3 thin-film. Journal of materials science,1990,25(2B):1294-1298
    [272]Kikuchi N, Kusano E, Nanto H, et al. Phonon scattering in electron transport phenomena of ITO films. Vacuum,2000,59 (2-3):492-499
    [273]Rauf IA. A comparison of scanning-tunneling-microscopy with conventional and scanning-transmission electron-microscopy using tin-doped indium oxide thin-films. Surface Science,1995,325 (1-2):L413-L419.
    [274]Kulkarni AK, Schulz KH, Lim TS, et al. Dependence of the sheet resistance of indium-tin-oxide thin films on grain size and grain orientation determined from X-ray diffraction techniques. Thin Solid Films,1999, 345(2):273-277.
    [275]Liu J, Radlein E, Frischat GH. Preparation, nanostructure and properties of indium tin oxide (ITO) films on glass substrates. Part 1. Preparation and nanostructure. Physics and chemistry of glasses,1999,40(5): 277-281.
    [276]Porch A, Morgan D V, Perks R M, et al. Electromagnetic absorption in transparent conducting films. J. Appl. Phy,2004,95:4734-4737.
    [277]X. Feng, J. Ma, F. Yang, et al. Preparation and characterization of single crystalline SnO2 films deposited on a-Al2O3 (0001) by MOCVD. Mater. Lett.,2008,62:1809-1811.
    [278]Tauc J, Grigorovici R, Vancu A. Optical Properties and Electronic Structure of Amorphous Germanium. Phys Status Solid(b),1966,15(6):627-637.
    [279]Wong H Y, Ong C W, Kwok R W M, et al. Effects of ion beam bombardment on electrochromic tungsten oxide films studied by X-ray photoelectron spectroscopy and Rutherford back-scattering. Thin Solid Films, 2000,376(1-2):131-139.
    [280]Zhengtian Gu, Peihui Liang, Xiaolin Liu, et al. Characteristics of Sol-Gel SnO2 Films Treated by Ammonia. Journal of sol-gel Science and Technology,2000,18:159-166.
    [281]B.Orel. Structural and FTIR spectroscopic studies of gel-xerogel-oxide transitions of SnO2 and SnO2:Sb powders and dip-coated films prepared via inorganic sol-gel route. Journal of Non-crystalline Solids,1994, 167(3):272-288
    [282]C. Terrier, J. P. Chatelon, R. Berjoan, et al. Sb-doped SnO2 transparent conducting oxide from the sol-gel dip-coating technique. Thin Solid Films,1995,263:37-41.
    [283]Zhengguo Ji, Zhenjie He, Yongliang Song, et al. Fabrication and characterization of indium-doped p-type SnO2 thin films. Journal of Crystal Growth,2003,259:282.
    [284]Yi-Chun Chen, Jin-Ming Chen, Yue-Hao Huang, et al. Size effect of tin oxide nanoparticles on high capacity lithium battery anode materials. Surface & Coatings Technology,2007,202:1313-1318.
    [285]H.A.Avila, J.E.Rodriguez-Paez. Solvent effects in the synthesis process of tin oxide. (200 Journal of Non-Crystalline Solids.355:885-890.
    [286]U. Opara Krasovec, B.Orel, A. Georg, et al. The gasochromic properties of sol-gel WO, films with sputtered
    Pt catalyst. Solar Energy,2000,68:541-551.
    [287]Leornardo S. Mendes, Flavia C.C. Oliveira, Paulo A.Z. Suarez, et al. Determination of ethanol in fuel ethanol and beverages by Fourier transform (FT)-near infrared and FT-Raman spectrometries. Analytica Chimica Acta,2003,493:219-231.
    [288]C. Frausto-Reyes, C. Medina-Guti'errez, R. Sato-Berr'u, et al. Qualitative study of ethanol content in tequilas by Raman spectroscopy and principal component analysis. Spectrochimica Acta Part A,2005, 61:2657-2662.
    [289]Qun Dong, Huilan Su, Jiaqiang Xu, et al. Influence of hierarchical nanostructures on the gas sensing properties of SnO2 biomorphic films. Sensors and Actuators B,2007,123:420-428.
    [290]Mira Ristic, Mile Ivanda, Stanko Popovic, et al. Dependence of nanocrystalline SnO2 particle size on synthesis route. Journal of Non-Crystalline Solids,2002,303:270-280.
    [291]Kim WJ, Koo WH, Jo SJ, et al. Enhancement of long-term stability of pentacene thin-film transistors encapsulated with transparent SnO2. Appl. Surf. Sci.,2005,252:1332-1338.
    [292]Kwoka M, Ottaviano L, Passacantando M, et al. XPS study of the surface chemistry of L-CVD SnO2 thin films after oxidation. Thin Solid Films,2005,490:36-42.
    [293]Hohenberg P, Kohn W. Inhomogeneous Electron Gas. Physical Review.1964,136(3B):B864-B871.
    [294]Kohn W, Sham L J. Self-Consistent Equations Including Exchange and Correlation Effects. Physical Review.1965,140(4A):A1133-A1138.
    [295]Blochl P E. Projector augmented-wave method. Physical Review B.1994,50(24):17953-17979.
    [296]Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B.1999,59(3):1758-1775.
    [297]Monkhorst H J, Pack J D. Special points for Brillouin-zone integrations. Physical Review B.1976,13(12): 5188-5192.
    [298]李喜峰,新型透明导电氧化物薄膜的研究,复旦大学博士学位论文,2006.4
    [299]Duan N, Sleight A W, Jayaraj M K, et al. Transparent p-type conducting CuScO2+x films. Appl. Phys. Lett., 2000,77:1325-1326.
    [300]Li J, Yokochi A F T, Sleight A W. Oxygen intercalation of two polymorphs of CuScO2. Solid State Sci., 2004,6:831-839.
    [301]Gall R B, Ashmore N, Marquardt M A, Tan X L, et al. Synthesis, microstructure, and electrical properties of the delafossite compound CuGaO2. Journal of Alloys and Compounds,2005,391:262-266.
    [302]Sasaki M, Shimode M. Fabrication of bipolar CuInO2 with delafossite structure. J. Phys. Chem. Solids,2003,64:1675-1679.
    [303]Yaicle C, Blacklocks A, Chadwick A V, et al. Relationship between structure and deposition conditions for CulnO2 thin films. Appl. Surf. Sci.,2007,254:1343-1346.
    [304]Tsuboi N, Ohara H, Hoshino T, et al. Luminescence Properties of Delafossite-Type CuYO2 Doped with Calcium, Oxygen or Rare Earth Tb. Jpn. J. Appl. Phys.,2005,44:765-768.
    [305]S. W. Lovesey. Diffraction and absorption of x-rays by 3d transition ions:the ls to 3d process. Journal of Physics:Condensed Matter,1998,10:2505-2513.
    [306]S. Hufner. Electronic structure of NiO and related 3d transition-metal compound. Advances in Physics,1994, 43:183-189.
    [307]H. Kamal, E. K. Elmaghraby, S. A. Ali. Characterization of nicked oxide films deposited at different substrate temperatures using spray pyrolysis. Journal of Crystal Growth,2004,262:424-434.
    [308]S. A. Mahmoud, A. A. Akla, H. Kamalb, et al. Opto-structural, electrical and electrochromic properties of crystalline nicknel oxide thin films prepared by spray pyrolysis. Physica B,2002,311:366-375.
    [309]Young Ran Park, Kwang Joo Kim. Sol-gel preparation and optical characterization of NiO and Ni1-xZnxO thin films. Journal of Crystal Growth,2003,258:380-384.
    [310]M. Martini, G. E. S. Brito, M. C. A. Fantini. Electrochromic properties of NiO-based thin films prepared by sol-gel and dip coating. Electrochinica Acta,2001,46:2275-2279.
    [311]B. Sasia, K.G. Gopchandrana, P. K. Manoj. Preparation of transparent and semiconducting NiO films et al. Vacuum,2003,68:149-154.
    [312]Hiromichi Ohta, Masao Kamiya, Toshio Kamiya, et al. UV-detector based on pn-heterojunction diode composed of transparent oxide semiconductors, p-NiO/n-ZnO. Thin Solid Films,2003,445:317-321.
    [313]何作鹏,季振国。NiO基半导体光电薄膜的制备及性能研究,浙江大学硕士学位论文,2005.
    [314]H. Sato, T. Minami, S. Takata, et al. Transparent conducting p-type NiO thin films prepared by magnetron sputtering. Thin Solid Films,1993,236:27-31.
    [315]I Hotovy', J Huran, J Jam'k, et al. Deposition and properties of nickel oxide films produced by DC reactive magnetron sputtering. Vacuum,1998,51:157-160.
    [316]M. Lu, W.S. Hwang, J.S. Yang. Effects of substrate temperature on the resistivity of non-stoichiometric sputtered NiOx films. Surface and Coatings Technology,2002,155:231-235.
    [317]Hao-Long Chen, Yang-Ming Lu, Weng-Sing Hwang. Characterization of sputtered NiO thin films. Surface & Coatings Technology,2005,198:138-142.
    [318]Hao-Long Chen, Yang-Ming Lu, Weng-Sing Hwang. Thickness dependence of electrical and optical properties of sputtered nickel oxide films. Thin Solid Films,2006,198:266-270.
    [319]U.S. Joshi, Y. Matsumoto, K. Itaka, et al. Combinatoria synthesis of Li-doped NiO thin films and their transparent conducting properties. Applied Surface Science,2006,252:2524-2528.
    [320]Jin-Kuo Ho, Charng-Shyang Jong, Chien C. Chiu, et al. Low-resistance ohmic contacts to p-type GaN. APPLIED PHYSICS LETTERS.1999,74:1275-1277.
    [321]L. Berkat, L. Cattin, A. Reguig, et al. Comparison of the physico-chemical properties of NiO thin films deposited by chemical bath deposition and by spray pyrolysis. Materials Chemistry and Physics,2005, 85:11-20.
    [322]Powder Diffraction File (PCPDFWIN v.2.02),1999 JCPDS-International Centre for Diffraction Data, 78-0423.
    [323]Hao-Long Chen, Yao-Sheng Yang. Effect of crystallographic orientations on electrical properties of sputter-deposited nickel oxide thin films. Thin Solid Films,2008,516:5590-5596.
    [324]Xin Wang, Ye Li, GuoZheng Wang, et al. Characterization of NiO thin film grown by two-step processes. Physica B,2009,404:1058-1060.
    [325]Jin-Long Yang, Yi-Sheng Lai, J.S. Chen. Effect of heat treatment on the properties of non-stoichiometric p-type nickel oxide films deposited by reactive sputtering. Thin Solid Films,2005,488:242-246.
    [326]H.Ohta, M. Orita, M.Hirano. Fabrication and characterization of ultraviolet-emitting diodes composed of transparent p-n heterojunction, p-SrCu2O2 and n-ZnO. J. Appl. Phys.,2001,89:5720-5725.
    [327]Hoffman R L, Wager J F, Jayaraj M K, et al. Electrical characterization of transparent p-i-n heterojunction diodes. Journal of Applied Physics.2001,90(11):5763-5767.
    [328]K. Tonooka, H.Bando, Y. Aiura, Photovoltaic effect observed in transparent p-n heterojunctions based on oxide semiconductors. Thin Solid Films,2003,445:327-331.
    [329]Yanagi H, Ueda K, Ohta H, et al. Fabrication of all oxide transparent p-n homojunction using bipolar CuInO2 semiconducting oxide with delafossite structure. Solid State Communications.2001,121 (I):15-17.
    [330]Hwang D K, Bang K H, Jeong M C, et al. Effect of RF power variation on properties of ZnO thin films and electrical properties of p-n homojunction. Journal of Crystal Growth.2003,254(3-4):449-455.
    [331]S.Tuzemen, G..Xiong, J. Wilkinson, et al. Production and properties of p-n junctions in reactively sputtered ZnO. Physica B:Condensed Matter,2003,308-310:1197-1200.
    [332]Bian J M, Li M X, Zhang C Y, et al. Synthesis and characterization of two-layer-structured ZnO p-n homojunctions by ultrasonic spray pyrolysis. Applied Physics Letters.2004,84(19):3783-3785.
    [333]Jang S, Chen J J, Kang B S, et al. Formation of p-n homojuctions in n-ZnO bulk single crystals by diffusion from a Zn3P2 source. Applied Physics Letters.2005,87:222113.
    [334]Zhuge F, Zhu L P, Ye Z Z, et al. ZnO p-n homojunctions and ohmic contacts to Al-N-co-doped p-type ZnO. Applied Physics Letters.2005,87:092103.
    [335]Jiao S J, Zhang Z Z, Lu M Y, et al. ZnO p-n junction light-emitting diodes fabricated on sapphire substrates. Applied Physics Letters.2006,88:031911.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700