高温气冷反应堆中燃耗测量方法研究和原型研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为球床模块式反应堆中燃料元件循环的重要组成部分,燃耗测量系统必须对连续排出堆芯的燃料球进行非破坏性在线测量,以确定是作为乏燃料球退出循环,还是将其返回堆芯。
     ~(137)Cs的活度和燃耗值存在很好的单调对应关系,因此高温气冷堆核电站示范工程将利用高纯锗探测器测量燃料球中~(137)Cs的活度,进而根据燃耗计算曲线确定其燃耗值。在10兆瓦高温气冷试验堆等以前的高温气冷堆上也曾运行过类似的系统,但是在高温气冷堆核电站示范工程中由于冷却时间和测量时间更短,情况更为复杂,具体表现在能谱成分非常复杂,且本底活度很大,必须重新审视其可行性。本文取得的研究结果如下:首先优化了高纯锗谱仪的工作参数,使之能在强本底下仍能有很好的能量分辨率,从而能将~(137)Cs的全能峰从其周围的干扰峰中分辨出来,同时也确定了准直器及屏蔽体等的设计。接着,用~(60)Co和~(137)Cs源分别模拟反应堆运行时真实情况下的本底和全能峰计数率,利用实验谱优化了谱分析的算法和参数,最终对具有典型深燃耗值的燃料球中~(137)Cs的全能峰净面积,相对误差能达到2.8%(1σ)。由于没有可供刻度用的燃料球,我们采用了在中心放置点源的石墨球来做标准源,在模拟和实验吻合的基础上,借助效率传递方法得到由于自吸收的影响导致的修正因子为1.07±0.02(p=0.95)。在探测器及其他几何条件都确定之后,我们利用KORIGEN计算得到燃料球中的核素活度,然后结合蒙特卡罗全模拟得到了模拟谱,最后由分析得到的~(137)Cs活度的相对误差小于3.0%。这些结果也证实了在高温气冷堆核电站示范工程中使用高纯锗谱仪在线测量燃料球燃耗的可行性。
     在以上实验和模拟研究的基础上,我们研制了一套可用于高温气冷堆核电站示范工程的燃耗测量系统的原型,包括了高纯锗探测器、准直器、屏蔽体以及刻度源,并实现了石墨球复检和高低富集度燃料球分拣这两个辅助功能,同时还完成了燃耗测量系统与主控系统的接口程序,首次为我国自主研发的新一代核反应堆提供了燃耗测量的解决方案。
In a pebble-bed core which employs the multi-pass scheme, it is mandatory to deter-mine the burnup of each pebble after the pebble has been extracted from the core in orderto determine whether its design burnup has been reached or whether it has to be reinsertedinto the core again.
     The burnup of the fuel pebbles can be determined by measuring the activity of~(137)Cswith an HPGe detector because of their good correspondence, which is independent ofthe irradiation history in the core. Compared to HTR-10and other HTGRs, the new chal-lenges in HTR-PM are the rather complex energy spectrum and high background, so thefeasibility study is called for. First, the HPGe spectrometer was set-up for running thedetector at high count rates while keeping the energy resolution adequately high to dis-criminate the~(137)Cs peak from other interfering peaks. Based on these settings, the ge-ometrical conditions are also settled. Next, experiments were performed with~(60)Co and~(137)Cs sources to mimic the counting rates in real applications while optimizing spectraanalysis algorithm and parameters, a precision of2.8%(1σ) can be achieved for the typ-ical high burnup fuel pebbles in the determination of the~(137)Cs net counting rate. Then,the relationship between the~(137)Cs activity and the net counting rate recorded in the HPGedetector was calibrated with a standard~(137)Cs source contained in the center of a graphitesphere with the same dimension as a real fuel pebble. Because the self-attenuation of thecalibration source differs with a fuel pebble, a correction factor of1.07±0.02(p=0.95) tothe calibration was derived by using the efficiency transfer method. Finally, by analyzingthe spectra generated with KORIGEN software followed by detailed Monte Carlo simu-lation, it is predicted that the relative standard deviation of the~(137)Cs activity can be stillcontrolled below3.0%despite of the presence of all the interfering peaks. These resultsdemonstrate the feasibility of utilizing HPGe gamma spectrometry in the non-destructiveonline determination of the pebble burnup in HTR-PM.
     On the foundation of the simulation and experiment research, a full size prototypewhich consists of an HPGe detector, a collimator, a shielding and a calibration sourcewas built. Two miscellaneous functions, reinspection of graphite pebbles and sorting thehigh-enriched and low-enriched fuel elements, were realized. We also implemented andtested the interface routine among the operator, HPGe detector and DCS. In summary, a complete solution for burnup measurement system in HTR-PM is provided.
引文
[1] NERAC, GIF. A Technology Roadmap for Generation IV Nuclear Energy Systems.2002.
    [2] http://www.gen-4.org/Technology/evolution.htm.
    [3] Wang D, Lu Y. Roles and prospect of nuclear power in China’s energy supply strategy. NuclearEngineering and Design,2002,218:3–12.
    [4]吴宗鑫,张作义.先进核能系统和高温气冷堆.高等教育出版社,2004.
    [5] IAEA TECDOC. Draft of Collaboration Research Project6, Adances in HTGR269Fuel Tech-nology.2011.
    [6] Wu Z, Lin D, Zhong D. The design features of the HTR-10. Nuclear Engineering and Design,2002,218:25–32.
    [7] XuY,ZuoK. Overviewofthe10MWhightemperaturegascooledreactor–testmoduleproject.Nuclear Engineering and Design,2002,218:13–23.
    [8] Zhang Z, Wu Z, Sun Y, et al. Design aspects of the Chinese modular high-temperature gas-cooled reactor HTR-PM. Nuclear Engineering and Design,2006,236:485–490.
    [9] Zhang Z, Sun Y. Economic potential of modular reactor nuclear power plants based on theChinese HTR-PM project. Nuclear Engineering and Design,2007,237:2265–2274.
    [10] Zhang Z, Wu Z, Wang D. Current status and technical description of Chinese2×250MWthHTR-PM demonstration plant. Nuclear Engineering and Design,2009,239:1212–1219.
    [11] Futterera M A, Berga G, Marmiera A, et al. Results of AVR fuel pebble irradiation at in-creased temperature and burn-up in the HFR Petten. Nuclear Engineering and Design,2008,238(11):2877––2885.
    [12] Lauriea M, Marmiera A, Berga G, et al. Results of the HFR-EU1fuel irradiation of INET andAVR pebbles in the HFR Petten. Nuclear Engineering and Design,2012,251:117––123.
    [13]李桃生.高温气冷堆在线燃耗测量系统研究与初步设计[博士后出站报告].北京:清华大学,2006.
    [14]李桃生,方栋.核燃料的燃耗测量方法综述.核电子学与探测技术,2005,25:852–857.
    [15] Matsuura S, Tsuruta H, Suzaki T, et al. Non-Destructive Gamma-Ray Spectrometry on SpentFuelsofaBoilingWaterReactor. JournalofNuclearScienceandTechnology1975,12:24–34.
    [16] Matsson I, Grapengiesser B. Developments in Gamma Scanning of Irradiated Nuclear Fuel.Applied Radiation and Isotopes,1997,48:1289–1298.
    [17] Matsson I. ORIGEN2simulations of spent BWR fuel with different burnup, power history andinitial enrichment. SKI Report,1995.
    [18] Iqbal M, Mehmood T, Ayazuddin S K, et al. A comparative study to investigate burnupin research reactor fuel using two independent methods. Annals of Nuclear Energy,2001,28:1733–1744.
    [19] Su B, Zhao Z, Chen J, et al. Assessment of on-line burnup monitoring of pebble bed reactorfuel by passive neutron counting. Progress in Nuclear Energy,2006,48:686–702.
    [20] Lebrun A, Bignan G, Szabo J L, et al. Gamma spectrometric characterization of short cool-ing time nuclear spent fuels using hemispheric CdZnTe detectors. Nuclear Instruments andMethods in Physics Research A,2000,448:598–603.
    [21] Hawari A I, Chen J, Su B, et al. Assessment of On-Line Burnup Monitoring of Pebble BedReactor Fuel Using Passive Gamma-Ray Spectrometry. IEEE Transactionson Nuclear Science,2002,48(3):1249–1253.
    [22] Willman C, Hakansson A, Osifo O, et al. Nondestructive assay of spent nuclear fuel withgamma-ray spectroscopy. Annals of Nuclear Energy,2006,33:427–438.
    [23] Bell M J. ORIGEN: the ORNL isotope generation and depletion code, Report ORNL-4628.Oak Ridge National Laboratory,1997..
    [24] Fischer U, Wiese H W. Verbesserte konsistente Berechnung des nuklearen Inventars abge-brannter DWR-Brennstoffe auf der Basis von Zell-Abbrand-Verfahren mit KORIGEN, ReportKfK-3014. Kernforschungszentrum Karlsruhe,1983..
    [25] AnsariS,AsifM,RashidT,etal. Burnupstudiesofspentfuelsofvaryingtypesandenrichment.Annals of Nuclear Energy,2007,34:641–651.
    [26] CarusoaS,Gunther-LeopoldI,MurphyaM,etal. Comparisonofoptimisedgermaniumgammaspectrometry and multicollector inductively coupled plasma mass spectrometry for the deter-mination of134Cs,137Cs and154Eu single ratios in highly burnt UO2. Nuclear Instruments andMethods in Physics Research A,2008,589:425–435.
    [27] Dennis M L, Usman S. Feasibility of106Ru peak measurement for MOX fuel burnup analysis.Nuclear Engineering and Design,2010,240:3687–3696.
    [28] Terremoto L A A, Zeituni C A, Perrotta J A, et al. Gamma-ray spectroscopy on irradiated MTRfuel elements. Nuclear Instruments and Methods in Physics Research A,2000,450:495–514.
    [29] Khan R, Karimzadeh S, Bock H. TRIGA fuel burn-up calculations and its confirmation. Nu-clear Engineering and Design,2010,240:1043–1049.
    [30] Yang Y, Luo Z, Jing X, et al. Fuel management of the HTR-10including the equilibrium stateand the running-in phase. Nuclear Engineering and Design,2002,218:33–41.
    [31]张立国,尚仁成.冷却衰变时间对球床模块式高温气冷堆在线燃耗测量的影响分析.核动力工程,2009,30:43–46.
    [32]张立国,李桃生,方栋.球床式高温气冷堆在线燃耗测量中239Pu的影响分析.核动力工程,2008,29:88–92.
    [33]刘运祚.常用放射性核素衰变纲图.原子能出版社,1982.
    [34] Hawari A I, Chen J. Computational Investigation of On-Line Interrogation of Pebble BedReactor Fuel. IEEE Transactions on Nuclear Science,2005,52(5):1659–1664.
    [35] Daniel F, Nasyrow R, Toscano E H. Burn-up determination of high temperature reactor spheri-cal fuel elements by gamma spectrometry. Proceedings of Proceedings HTR2006:3rd Interna-tional Topical Meeting on High Temperature Reactor Technology, Johannesburg, South Africa,2006.
    [36] Gottaut H, Kruger K. Results of experiments at the AVR reactor. Nuclear Engineering andDesign,1990,121(2):143–153.
    [37] Nicholls D R. The Pebble Bed Modular Reactor. Nuclear Engineering and Design,2010,56(2):125––130.
    [38]李桃生,方栋,李红,等.10MW高温气冷堆的燃耗测量研究.核电子学与探测技术,2006,26:129–131.
    [39]马涛,胡守印,梁锡华,等. HTR-10燃耗自动测量系统.核电子学与探测技术,2007,28:56–60.
    [40] Yan W, Zhang L, Zhang Z, et al. Feasibility studies on the burnup measurement of fuel pebbleswith HPGe gamma spectrometer. Nuclear Instruments and Methods in Physics Research A,2013,712:130–136.
    [41]复旦大学,清华大学,北京大学合编.原子核物理实验方法.原子能出版社,1997:259–273.
    [42] BriesmeisterJF. MCNP–AGeneralMonteCarloN-ParticleTransportCode,Version4B,ReportLA-12625. Los Alamos National Laboratory,1997..
    [43]张立国,刘宇,肖志刚. MCNP模拟HPGe谱仪γ能谱的初步实验验证一例.核电子学与探测技术,2010,30:1135–1143.
    [44] Knoll G. Radiation detection and measurement. John Wiley,2010.
    [45] Leo W. Techniques for nuclear and particle physics experiments: a how-to approach. Berlin:Springer-Verlag,1994.
    [46] Jenkins R, Gould R W, Gedcke D. Quantitative X-ray spectrometry. Marcel Dekker Inc.,1981:266–267.
    [47] Pomme S. Experimental test of the”zero dead time” count-loss correction method on a digitalgamma-ray spectrometer. Nuclear Instruments and Methods in Physics Research Section A,2001,474(3):245–252.
    [48] Pomme S. A plausible mathematical interpretation of the’variance’ spectra obtained with theDSPECPLUS TMdigital spectrometer. Nuclear Instruments and Methods in Physics ResearchA,2002,482:565–566.
    [49] Yan W, Zhang L, Zhang Z, et al. Conditioning the gamma spectrometer for activity measure-ment at very high background. Chinese Physics C,2012,36(11):1082–1088.
    [50]庞巨丰. γ能谱数据分析.陕西科学技术出版社,1990.
    [51] Press W H, Teukolsky S A, Vetterling W T, et al. Numerical recipes in C. The Art of ScientificComputing. Cambridge U. Press,1992:681–688.
    [52]朱鹤年.基础物理实验教程–物理测量的数据处理与实验设计.高等教育出版社,2003.
    [53]张立国,尚仁成.球床模块式高温气冷堆在线燃耗测量系统准直器性能的Monte-Carlo分析.原子能科学技术,2009,43:813–816.
    [54] http://old.ortec-online.com/detectors/photon/pdf/A8%20-%20Neutron%20Radiation%20Damage.pdf.
    [55]张明,闫威华,张立国,等.定位器安装对燃耗测量的影响.计量学报,2011,32:33–35.
    [56]唐春和.高温气冷堆燃料元件.化学工业出版社,2007.
    [57] VidmarT,KorunM,LikarA,etal. Asemi-empiricalmodeloftheefficiencycurveforextendedsources in gamma-ray spectrometry. Nuclear Instruments and Methods in Physics Research A,2001,470:533–547.
    [58] Abbas MI, Selim YS, Bassiouni M. HPGe detector photopeak efficiencycalculation includingself-absorption and coincidence corrections for cylindrical sources using compact analyticalexpressions. Radiation Physics and Chemistry,2001,61:429–431.
    [59] Lepy M C, Altzitzoglou T, Arnold D, et al. Intercomparison of efficiency transfer software forgamma-ray spectrometry. Applied Radiation and Isotopes,2001,55:493–503.
    [60] Agostinelli S, Allisonas J, Amako K, et al. Geant4–a simulation toolkit. Nuclear Instrumentsand Methods in Physics Research A,2003,506:250–303.
    [61] Allison J, Amako K, Apostolakis J, et al. Geant4developments and applications. IEEE Trans-actions on Nuclear Science,2006,53(1):270–278.
    [62] http://www.nist.gov/pml/data/xraycoef/index.cfm.
    [63] Seber G A, Lee A J. Linear regression analysis. Wiley-Interscience,2003.
    [64]牟婉君,李梅,王小坤,等.235U富集度的检测.原子能科学技术,2010,44(7):766–773.
    [65]何丽霞,蒙延泰,邵婕文,等. γ能谱法在快堆新燃料235U富集度核实测量中的应用.同位素,2008,21(1):61–64.
    [66]李鲲鹏. γ能谱法测定铀富集度的方法研究[硕士学位论文].北京:中国原子能科学研究院,2002.
    [67] Willman C, Hakansson A, Osifo O, et al. A nondestructive method for discriminating MOXfuel from LEU fuel for safeguards purposes. Annals of Nuclear Energy,2006,33(9):270–278.
    [68]张立国.通过分析放射性核素活度鉴别燃料初始富集度的方法初步讨论.中国核科学技术进展报告(第二卷)——中国核学会2011年学术年会论文集第3册(核能动力分卷(下)),2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700