面向MEMS设计的微流体流动特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对微流体器件内部流动规律的认识还相对落后的现状,开展对微尺度、微结构及微功能器件开展微流体机理研究,寻找合适的微流体力学建模方法,进而对微流体器件的结构及参数进行优化研究,是目前微流体研究中亟待解决的科学问题,将为新结构、新器件的设计提供重要的理论根据。
     本文介绍了微流体力学领域的连续介质模型、分子模型和介观模拟方法三类主要的建模方法,并探讨了它们各自的适用场合,这对如何选择微流体器件的建模方法具有理论意义。
     对滑流区的微流体流动阻力特性进行了较为系统地分析和研究。基于一阶滑流边界条件,对滑流区的压差流动、剪切流动等典型流动问题进行分析,并得到了几种典型问题的解析解;针对滑流区中典型截面的压差流动的等效粘度修正方法,推导并给出了多种截面流动的等效粘度修正系数及其相关参数,为工程计算提供了一种简便易行的方法。
     针对MEMS微结构中的气体压膜问题,基于一阶滑流边界条件,提出了一种双动量协调系数的修正雷诺方程;并对新模型的误差进行了分析,指出采用该模型能够满足MEMS工程设计的精度需求。基于双动量协调系数的修正雷诺方程,对几种典型情况下的不可压缩和可压缩气体的挤压膜阻尼特性进行了详细分析,推导出了压强分布、阻尼力和阻尼系数等参数的解析表达式。完善了原有文献中关于矩形平板在平动和转动情况下可压缩气体压膜阻尼问题的解析解。
     对滑流边界条件下Couette流、Stokes流和Poiseuille流三种模型的滑膜阻尼特性进行了研究,给出了三种模型的解析解,并指出了其适用场合。
     基于稀薄气体物理学理论和滑流修正的雷诺方程,研究了平板电容式加速度计的气膜阻尼特性,得到阻尼力和阻尼系数的简化解析解;给出了几种减小气膜阻尼的方法,并指出动量协调系数对于气膜阻尼(尤其是压膜阻尼)的影响很大,有待进一步的理论和实验研究。
     对中心开孔圆盘在微流体中所受到的阻尼特性进行了研究,得到了微流体压力和流速的分布函数,分析了压膜与滑膜合成阻尼与结构设计尺寸及滑移长度之间的关系,得到了方便于工程实用的解析解。对具有多孔平板的气膜阻尼特性的研究方法进行了综述;针对气体不可压缩情况下具有高通孔率厚板的气膜阻尼特性进行了研究,给出了圆形通孔情形下阻尼系数的解析解:完善了求解多孔平板气膜阻尼问题的有限元方法,将其应用扩展到具有方孔平板的场合。
     采用有限差分方法,对微加速度计的动态阻尼特性进行了研究和分析,仿真分析结果与试验数据吻合较好。建立了静电致动式弹性挠曲微梁的动态耦合模型,采用解析方法对微梁挠度远小于气膜厚度的情况进行了分析,得到了气膜阻尼作用下微梁品质因子和谐振频率的表达式;在微梁最大挠度与气膜厚度相当的情况下,采用有限差分方法对系统动态耦合方程进行了离散,给出了方程及其初始条件和边界条件的差分格式,并对系统在常阻尼系数和气膜阻尼情况下的动态响应进行了求解。
     对横向振动梳状谐振器的动态气膜阻尼特性进行了研究,理论分析结果与试验数据吻合较好;指出对于横向振动的微结构而言,拖曳力是影响系统动态特性的非常重要因素之一,尤其对系统品质因子影响很大。
     针对超薄气膜的润滑问题,提出了一种具有三个可调参数的计算模型;依据线性波尔兹曼方程对Poiseuille流量的预测值,采用最小二乘法得到了三个可调参数的一组最优化值。与其它方法相比,在特征Kn数倒数D很宽的范围内(10~(-4)<D<10~2),采用该模型方程计算得到的压强分布和承载力能更好与采用线性波尔兹曼方程所得到的预测结果相吻合,有利于更好的微流体器件设计。
Currently, there is a little knowledge for the flow rules in microfluidic devices basedon MEMS technology. Aiming at this research status for microfluidics, it is necessary tostudy the micro fluidic mechanisms in the domains of microscale, micro structures andmicro functional devices, and find a suitable modeling methodology for the study ofmicrofluidics, then investigate on the optimization of the structures and parameters forthe microfluidic devices. These studies are needed to be proceeded urgently. Theachievements will provide important theoretical basement for the design of newstructures, new devices.
     Three main modeling methodologies such as continuum medium models, molecularmodels and mesoscale methods is systematically reviewed. The applicable domains forthese methods are investigated respectively, which is very significant to select propermodeling method for a special microfluidic device.
     The flow resistance characteristics is systematically analyzed and researched formicrofluid in the slip-flow region. Based on the first order slip-flow boundary condition,the analytical solutions of some typical problems such as pressure-difference flows andshear flows in the slip-flow region are obtained after the corresponding detailed analysis.According to the amendment method named equivalent viscosity for pressuredifferential flow in slip-flow region, the modified coefficients of equivalent viscosityand relevant parameters are deduced for several typical crosssection flows, whichsupply a simple method for engineering computation.
     Based on the first order slip-flow boundary condition, a modified ReynoldsEquation with double momentum compatibility coefficients is put forward for gas filmdamping problems in microstructures based on MEMS. The error analysis of the newmodel shows that the precision requirements of MEMS engineering design can befulfilled by utilizing this model. Based on the modified Reynolds equation brought outin this paper, the damping characteristics of squeezed film are analyzed for thenon-condensable and condensable gas. The analytical expressions of the parameterssuch as pressure distribution, damping force and damping coefficient are deduced then.The analytical solutions of the gas damping problems are well developed for rectangularplates in the conditions of parallel motion and turning motion.
     Under the slip-flow boundary condition, the slide-film damping characteristics of Couette flow, Stokes flow and Poiseuille flow are researched, and the analyticalsolutions of the three models are presented. Meanwhile, their applications fields arepointed out.
     Based on the rarefied gas dynamics and the slip-flow modified Reynolds equation,the gas film damping characteristic of the plate capacitive accelerometer is studied, andthe simplified analytical solutions of the damping force and the damping coefficient areobtained. Several methods decreasing the gas film damping are given in this dissertation.The fact is point out that the momentum compatibility coefficient has a significant effecton the gas film damping, especially the squeeze film damping, which is needed a furthertheoretical and experimental study.
     The damping characteristic of the disk with a role in the center moving in the microfluid is studied. The distribution functions of the pressure and the flow velocity areobtained. The relationship among the compound damping brought by the squeezed-filmand the slide film, structure parameters and the slip length is analyzed, and thecorresponding analytical solution suitable for the engineering practice is obtained. Manystudies on gas film damping for plate structures with multi holes are summarized in thisdissertation. As the gas is non-condensable, the gas film damping characteristic of thethick plate with high via hole-density is studied, and with the above analysis, theanalytical solution of the damping coefficient is presented. The FEM methods forsolving the gas film damping of the multi-hole plate is pieced out, and is extended tocalculate the damping of the plate with rectangular holes.
     By using the finite difference method, the dynamic damping characteristic of themicro accelerometer is analyzed and studied. The simulation results are in goodagreement with those by experiments. The dynamic coupling model is established forthe electrostatic actuated micro elastic beam. The analytical method is used to analyzethe deformation of the microbeam which is much smaller than the thickness of the gasfilm. Under the effect of the gas film damping, the expressions of the quality factor andthe resonance frequency of the microbeam are obtained. When the maximum deflectionof the microbeam is considerable to the thickness of the gas film, the discretization ofthe dynamic couple equations are proceeded and the differential formats of theequations, the initial conditions and boundary conditions, are obtained using the finitedifference method. Then the dynamic response of the system with constant dampingcoefficient and film damping is simulated.
     The dynamic characteristic of film damping is studied for the transverse oscillatedresonator. The analytical results are consistent with those by available experiments. For the transverse oscillated microstructures the drag force is one of the most importantfactors to affect the dynamic characteristics of the system, especially to the systemquality factor.
     A computation model with three adjustable parameters is proposed for thelubrication problems of the ultra-thin gas film. Based on the predicted value of thePoiseuille flow by the linear Boltzmann equation, a set of optimization values for thethree parameters can be conducted by using the least square method. Compared withother methods, in a large scale of 10~(-4)<D<10~2, the pressure distribution and the loadcapacity calculated by this model keep a better agreement with those predicted valuesby linear Boltzmann equation, which is very helpful for the design of microfluidicdevices.
引文
[1] Weissler. Microsystems[J], Sensors and Actutors, 1994, 40: 2.
    [2] 王立鼎,刘冲 微机电系统科学与技术发展趋势[J],大连理工大学学报 2000,40(5):505-508.
    [3] 李创.格子Boltzmann方法在微流体器件设计中的应用研究[D],西安交通大学博士学位论文,2005.3.
    [4] 王亚珍,朱文坚 微机电系统(MEMS)技术及发展趋势[J],机械设计与研究,2004,20(1):10-12.
    [5] Terry S. C., Herman J. H., Angel J. B. A gas chromatograph air analyzer fabricated on a silicon wafer[C]. IEEE Trans. Electron. Devices, 1979, 26(10):1880.
    [6] Janusz Bryzek. Impact of MEMS technology on society[J]. Sensors and Actuators, 1996, 56: 1-9.
    [7] 林忠华,胡国清,刘文艳等 微机电系统的研究与展望[J],微电子学,2005,35(1):71-75.
    [8] 周兆英,王小浩,叶雄英等 微型机电系统[J].中国机械工程,2002,11(1-2):163-168.
    [9] 丁衡高,微机电系统的科学研究与技术开发[J],清华大学学报,1997,37(9):1-5
    [10] 黄新波,贾建援,王卫东 MEMS技术及应用的最新进展[J],机械科学与技术,2003,22(S1):21-24
    [11] Guckel H, Christenson T R, Skrobis K J, Klein J and Kamowsky M. Design and Testing of Planar Magnetic Micromotors Fabricated by Deep X-Ray Lithography and Electroplating[C]. The 7th Inter. Conf. on Solid-State Sensors and Actuators (Transducers '93), 1993, 76-79.
    [12] Danelle M. T., Jeremy A. W., Stephen M. B., et. al. Reliabilty of a MEMS Torsional Ratcheting Actuator[C]. Proceedings of IRPS, 2001, 81-90.
    [13] Paul G., Gil B. Electrical and Fluidic Packaging of Surface Micromachined Electro-Microfluidic Devices[C], Proceedings of SPIE Micromachining and Microfabrication Conference, San Jose, CA, September 2000,
    [14] 丁衡高,微机电系统的科学研究与技术开发[J],清华大学学报,1997,9:1-5
    [15] Cravesen P., Branebjerg and Sφndergatrd J. Microfluidics- a Review[J]. Journal of Micromechanic. Microengineering. 1993, 3: pp 168-182.
    [16] 尹执中,胡桅林,过增元 微流动系统的发展概况[J],流体机械,2000,4:33-36.
    [17] 王沫染,李志信 基于MEMS的微流体机械研究进展[J]流体机械,2002,30(4):23-28.
    [18] 方肇伦等 微流控分析芯片[M],北京:科学出版社,2003.2.
    [19] 罗玉元,张国贤 微泵驱动方式比较研究[J]液压与气动,2003,7:43-46.
    [20] 范勇 压电致动式微泵的驱动装置结构分析与设计[D],西安电子科技大学硕士论文,2001.1.
    [21] Jang L. S., Morris C. J., Sharma N. R. et al. Transport of Particle-laden Fluids Through Fixed-valve Micropumps[C], Proceedings of ASME IMECE, 1999.
    [22] 周兆英,叶雄英,李勇等 微流量系统的基础技术研究[J]中国机械工程,1999,10(9):991-993.
    [23] 凌智勇,丁建宁,杨继昌等 微流动的研究现状及影响因素[J]江苏大学学报(自然科学版),2002,23(6):1-5.
    [24] Gass V. Nanopfluid handling by micro-flow sensor based on drag force measurements [J]. IEEE MEMS workshop, 1993, 167-172,.
    [25] 江小宁.微量流体测量与控制系统实验研究[D],清华大学博士学位论文,1996.
    [26] Elisabeth V. and Nico F. D. R. Microfluidic Meets MEMS [J], Proceedings of the IEEE, 2003.6, 91(6): 930-953
    [27] Tuckermann D. B., Pease R. F. Optimized convective cooling using micromachined structure[J], Journal of Electro-Chamical Society, 1982, 129(3): 98C.
    [28] Ceriotti L., Verpoorte E., et al. High aspect-ratio channels for capillary electrophoresis in Digest of Technical Papers[J], Transducers 2001, 2:1174-1177.
    [29] 李勇,姜小宁,周兆英等 微管道流体的流动特性[J],中国机械工程,1994,5(3):460-464.
    [30] Mohamad-Nabil Sabry. Scale effects on fluid flow and heat transfer in microchannels[J], IEEE Transactions on Components and Packging Technology, 2000.9, 23(3): 562-567.
    [31] 刘静 微米/纳米尺度传热学[M],北京:科学出版社,2001.1
    [32] Young A. M., Gray M. L. and Senturia S. D. A microfabricated flow champer for optical measurements in fluids[C], Proceedings of IEEE MEMS, 1993, 219-224.
    [33] Tjerkstra W R, et al. Etching Technology for Microchannels[C], Proceedings of IEEE MEMS, 1997.
    [34] 鞠挥,吴一辉 MEMS和微流体分析系统的发展[J],微纳科学与技术,2003,7:27-31.
    [35] 黄金,张仁元,柯秀芳等 微流体混合器的研究现状[J],新技术新工艺,2004,2:25-27.
    [36] 张国贤,罗玉元 微流体装置与系统研究[M],上海大学学报(自然科学版),2003.10,9(5):377-380.
    [37] 陶然,权晓波,徐建中.微尺度流动研究中的几个问题[J],工程热物理学报,2001,22(5):575-577.
    [38] 樊菁,沈青 微尺度气体流动[J]力学进展,2002,32(3):321-336.
    [39] 冯焱颖,周兆英,叶雄英等 微流体驱动与控制技术研究进展[J],力学进展,2002.2,32(1):1-16.
    [40] 朱恂.速度滑移及温度跳跃区微尺度通道内的流动与换热[D],重庆大学博士学位论文,2002.12
    [41] 陶然,权晓波,徐建中 微尺度流动研究中的几个问题[J],工程热物理学报,2001,22[5]:575-578.
    [1] Wu P. and Little W. A. Measurement of friction factors for te flow of gases in very fin channels used for microminiature Joule-Thomson refrigerators[J]. Cryogenics, 1983, 23: 273-277.
    [2] Wang Weidong, Jia Jianyuan and Li Mengmeng. Design and Analysis on a Microchannel Heat Exchanger[C], Micronaoelectric Technology of China, 2005, 5: 227-232.
    [3] Pfahler J., Harley J., Bau H. and et. al. Gas and liquid flow in small channels[J], Micromechnical sensors, actuators, and systems, ASME Journal, 1991, 32: 49-59.
    [4] Arkilic E. B., Schmidt M. A. and Breuer K. S. Gaseous slip flow in small channels[C], AIAA Shear Flow Conf., Orlando, 1993, 1-7.
    [5] Mitsuya Y. Modified Reynolds equation for ultra-thin film gas lubrication using 1.5 order slip-flow model and considering surface accommodation coefficient[J], J. Tribology, Trans. ASME, 1993, 115: 289-294.
    [6] Kreith F. The MEMS handbook [M]. Boca Raton: CRC Press, 2002.
    [7] 朱恂 速度滑移及温度跳跃区微尺度通道内的流动与换热,重庆大学博士学位论文,2002.9
    [8] 杨小震 分子模拟与高分子材料[M],北京:科学出版社,2002
    [9] 刘静 微米/纳米尺度传热学[M],北京:科学出版社,2002年
    [10] Graveen P., Branebjerg J. and Jensen O. S. Microfluids-a review[J], J. Micromech. Microeng., 1994, 3:168-182.
    [11] 杨卫华,程惠尔,张志军 水在小高宽比微小高度矩形弯道中的流动特性的试验研究[J],水动力学研究与进展,2003,18(3):365-371.
    [12] 郭航,黄峰,赵然等 制冷剂在微流道内单相流动的阻力与换热研究[J],北京工业大学学报,1999,23(3):86-90.
    [13] 吴子牛编著 计算流体力学基本原理[M],北京:科学出版社,2001.2.
    [14] 王承尧编著 计算流体力学及其并行算法[M],长沙:国防科技大学,2000.2
    [15] 文玉华,朱如曾,周富信等 分子动力学模拟的主要技术[J],力学进展,2003,33(1):65-74.
    [16] 温诗铸著 纳米摩擦学[M],北京:清华大学出版社,1998.
    [17] Tompson P. A., Troian A. M. A general boundary condition for liquid flow at solid surface[J]. Nature. 1997, 389: 360-362.
    [18] Mavriplis C., Ahn J. C. and Goulard, R. Heat Transfer and Flowfields in Short Microchannels Using Direct Simulation Monte Carlo[J], Journal of Thermophysics and Heat Transfer, 1997, 11: 489-496.
    [19] Liou W. W. and Fang Y. Heat Transfer in Microchannel Devices Using DSMC[C], Proceedings of the Heat Transfer and Fluid Mechanics Institute, California State University, 1999, 31-45.
    [20] 樊菁,沈青 微尺度气体流动[J],力学进展,2002,8(3):321-335.
    [21] 李有勇,郭森立,王凯旋等 介观层次上的计算机模拟和应用化学进展[J],2000,12(4):361-375
    [22] 李才伟 元胞自动机及复杂系统的时空演化模拟[D],武汉:华中理工大学博士学位论文,1997.
    [23] Chen S., Doolen G. D. Lattice Boltzmann method for fluid flows[J]. Annual Review Fluid Mechanics, 1998, 30: 329-364.
    [24] 徐辉,刘贵苏,吴宏伟等 流体动力学的格子Boltzmann方法及其具体实现[J],燃烧科学与技术,1996,2(4):406-410.
    [25] Hoogerbrugge P. J., Koelman J. M. Simulating micro scopic hydrodynamic phenomena with dissipative particle dynamics[J]. Europhysics Letters, 1992, 19 (3): 155-160.
    [26] Espanzo P., SemmoM., Zuniga I. Coarse graining of a fluids and its relation with dissipative particle dynamics and smoothed article dynamics[J]. International Journal of Modern Physics C, 1997, 8(4): 899-908.
    [27] 杨小震著 分子模拟与高分子材料[M],北京:科学出版社,2002.
    [1] Kreith F. The MEMS handbook[M], Boca Raton: CRC Press, 2002.
    [2] 吴大猷 理论物理:热力学—气体运动论及统计力学[M],北京:科技出版社,1983.
    [3] 刘静 微米/纳米尺度传热学[M],北京:科学出版社,2002.
    [4] Oleg V. Sazhin, Sergei F. Borisov and Felix Sharipov. Accommodation coefficient of tangential momentum on atomically clean and contaminated surfaces[J]. J. Vac. Sci. Technol. A, 2001, 19(5), 2499-2503.
    [5] Beskok A. and Kamiadarkis G. E. Simulation of heat and momentum transfer in complex microgeometries[J], Journal of Thermophysics and Heat Transfer, 1994, 8: 647-655.
    [6] Beskok A., Kamiadakis G. E. and Trimmer W. Rarefaction and compressibility effects in gas microflows[J], ASME Journal of Fluids Engineering, 1996, 118: 448-456.
    [7] 张梓雄,董曾南 粘性流体力学[M],北京:清华大学出版社,1999.
    [8] Ebert W. A. and Sparrow E. M. Slip flow in rectangular and annular ducts[J], ASME Journal of Basic Engineering, 1965, 87:1018-1024
    [9] Dryden H. L., Murnaghan F. D. and Bateman H. Hydrodynamics[M], Dover, New York, 1956.
    [10] 陈卓如,金朝铭 工程流体力学[M],哈尔滨:哈尔滨工业大学出版社,1987.
    [11] 王献孚,熊鳌魁 高等流体力学[M],武汉:华中科技大学出版社,2003.
    [1] Mehner J., Kurth S., Billep D., et al. Simulation of gas damping in microstructures with nontrivial geometries[C]. Proceedings of 11th IEEE Micro Electro Mechanical Systems. Piscataway (NJ, USA), IEEE, 1998, 172-177
    [2] Karniadakis George, Beskok Ali and Aluru Narayan. Microflows and Nanoflows: Fundamental and Simulation[M], Springer, New York, 2002.
    [3] 王洪喜 微结构的静电驱动特性研究[D],西安电子科技大学博士学位论文,2006.1.
    [4] Stemme G. Resonant silicon sensors[J], Journal of Micromechanics and Microengineering, 1991, 1(2): 113-125.
    [5] Bao Min-Hang. Micro Mechanical Transducers: Pressure Sensors, Accelerometers and Gyroscopes[M], Elsevier, 2001.
    [6] Starr J. Squeeze film damping in solid-state aceelerometers [J], IEEE Workshop on Solid-state sensor and actuator, Hilton Head Island, SC, USA, 1990, 44-47.
    [7] Burgdorfer A. The influence of the molecular mean free path on the performance of hydrodynamic gas lubricated bearing [J], J. Basic Eng., Trans. ASME, 1959, 81: 94-99.
    [8] Hsia Y.T. and Domoto G. A. An experimental investigation of molecular rarefaction effects in gas lubricated bearings at ultra-low clearance [J]. J. Lubrication Teeh., Trans., ASME, 1983, 105: 120-130.
    [9] Fukui S. and Kaneko R. Analysis of ultra-thin gas film lubrication based on linearized Boltzmann equation: First report - Derivation of a generalized lubrication equation including thermal creeping flow[J], J. Tribol., Trans. ASME, 1988, 110: 253-262.
    [10] Seidel H., Riedel H., Kolbeck R., et. al. Capacitive silicon accelerometer with highly symmetrical design[J], Sensors and Actuators, 1990, A21-23:312-315.
    [11] Timo Veijola, Heikki Kuisma, Juha Lahdenpera, et. al. Equivalent-circuit model of the squeezed gas film in a silicon accelerometer [J]. Sensors and Actuators, 1995, A48: 239-248.
    [12] Mitsuya Y. Modified Reynolds equation for ultra-thin film gas lubrication using 1.5-order slip flow model and considering surface accommodation coefficient[J]. J. Tribol., Trans. ASME, 1993, 115: 289-294.
    [13] Timo Veijola, Marek Turowski. Compact damping models for laterally moving microstructures with gas rarefaction effects [J]. J. MEMS, 2001, 10(2): 263-27.
    [14] 陈宏,鲍敏杭 硅微结构加速度传感器空气阻尼的研究[J].半导体学报,1995,16(12):921-926.
    [15] Feixia Pan, Joel Kubby, Eric Peeters and et al. Squeeze film damping effect on the dynamic response of a MEMS torsion mirror[J], J. Micromech. Microeng., 1998, 8: 200-208.
    [16] Langlois W. E. Isothermal squeeze films[J], Quarterly of Applied Mathematics, 1962, 20(2): 131-150.
    [17] Blech J. J. On isothermal squeeze films[J], J. Lubrication Technol. Trans. ASME, 1985, 105: 615-620.
    [18] Kampen R. P., Wolffenbuttel R. F. Modeling the mechanical behavior of bulk-micromachined silicon aceelerometers[J], Sensors and Actuators, 1998, 64:137-150.
    [19] 董林玺 微机械电容式传感器及其相关特性研究[D],浙江大学博士学位论文,2004.5.
    [20] Xiong Bin, Che Lu feng, Wang Yue lin. A novel bulk micromachined gyroscope with slots structure working at atmosphere[J], Sensors and Actuators A, 2003, 107: 137-145.
    [21] Payne R. S., Dinsmore K. A. Surface micromachined accelerometer: a technical update[C], SAE Int. Automotive Eng. Congress, Detroit, MI, 1991, 127-135.
    [22] Lin L., Nguyen C. T. -C., Howe R. T., et. al. Microelectromechanical filters for signal processing[J], Journal of Microelectromechanical systems, 1998, 7(3): 286-294.
    [23] 章梓雄,董曾南 粘性流体力学[M],北京:清华大学出版社,1999.8.
    [24] 程圣国,邓丽华 用积分变换法求解Stokes问题[J],长沙电力学院学报(自然科学版),2001,16(2):14-15.
    [1] 陈宇晓.电容式微机械静电伺服加速度计分析[D].成都:电子科技大学硕士论文,2002.12.
    [2] 王卫东,贾建援,樊康旗等 电容式微加速度计的气膜阻尼分析[J],电子科技大学学报,2006,35(2):221-224.
    [3] Davies B., Montague S. and et. al. Micromechanical structures and microelectronics for acceleration seining[C]. Proceedings of the SPIE-The International Society for Optical Engineering. Soc. Opt. Eng.. Vol:3223, 1997: 237-244.
    [4] Timo Veijola, Heikki Kuisma, Juha Lahdenpera and et. al. Equivalent-circuit model of the squeezed gas film in a silicon accelerometer [J]. Sensors and Actuators, 1995, A48:239-248
    [5] 王卫东,贾建援 矩形截面电容式微加速度气膜阻尼研究[J],仪器仪表学报,2005,v26(2).
    [6] Dec A., Suyama K. Micromachined electro-mechanically tunable capacitors and their application to RF ICs[J], IEEE Transaction on Microwave Theory and Techniques, 1998, 46(12): 2587-2596.
    [7] Pedersen M., Olthuis W. and Bergveld P. A silicon condenser microphone with polyamide diaphragm and backplate[J], Sensors and Actuators, 1997, A63: 97-104.
    [8] 苑伟政,吕湘连,李伟剑 基于集总参数宏模型的微机械陀螺多域耦合分析[J],中国机械工程,2006,17(4):401-404.
    [9] Sharipov F., Seleznev V., Data on internal rarefied gas flows[J], J. Phys. Chem. Ref. Data, 1998, 27(3): 657-706.
    [10] Bao Minghang, Yang Heng, Sun Yuancheng, et. al., Modified Reynolds' equation and analytical analysis of squeeze-film air damping of perforated structures[J]. J. Micromech. Microeng., 2003, 13: 795-800.
    [11] 王卫东,贾建援 微流体对中心开孔圆盘的阻尼特性分析[J],西南交通大学学报,2006,40(2):116-120.
    [12] Burgdorfer A. The influence of the molecular mean free path on the performance of hydrodynamics gas lubricated bearings[J]. J. Basic Eng., Trans. ASME, 1959, 81: 94-99.
    [13] White J. W. and Raad P. E., Effect of a rough translating surface on gas fill lubrication: a numerical and analytical study[J]. Journal of Tribology, Tram. ASME, 1987, 109(2): 271-275.
    [14] Junemo Koo and Clement Kleinstreuer, Liquid flow in microchannels: experimental observations and computational analyses of Microfluidics effects[J]. J. Micromech. and Microeng., 2003, 13(5): 568-579.
    [15] Mehner J., Kurth S., Billep D., et. al. Simulation of gas damping in microstructures with nontrivial geometries[C], IEEE Micro Electro Mechanical Systems-MEMS'98, 1998, 172-177.
    [16] Kim Eung-Sanm, Cho Youn-Ho and Kim Moon-Uhn. Effect of holes and edges on the squeeze film damping of perforated micromechanical structures[C], IEEE micromechanical structures MEMS'99, Orlando, FL, 1999, 296-301.
    [17] Dale Ostergaard, Jan Mehner. Using a Heat Transfer Analogy to Solve for Squeeze Film Damping and Stiffness Coefficients in MEMS Structures[C], http://www.ansys.com/industries/mems/mems-downloads/thermal_analogy_damping.pdf
    [18] Jan E. Mehner, Wolfranm Doetzel, Bemd Schauwecker and Dale Ostergaard. Reduced order modeling of fluid structural interactions in MEMS based on model projection techniques[C], IEEE 12th International Conference on Transducers, Solid-State Sensors, Actuators and Microsystems, 2003, 1840-1843.
    [19] Timo Veijola and Tomi Mattila. Compact squeezed-film damping model for perforated surface[C], Proceedings of Transducers'01, Munchen, Germany, June 10-14 2001, 1506-1509.
    [20] Gabriele Schrag and Gerhard Wachutka. Accurate system-level damping model for highly perforated micromechanical devices[J], Sensors and Actuators A, 2004, 111: 222-228.
    [21] Kampen R. P. and Wolffenbuttel R. E. Modeling the mechanical behavior of bulk-micromachined silicon accelerometers[J]. Sensors and Actuators, 1998, 64:137-150.
    [22] 吴其芬,陈伟芳,黄琳等著 稀薄气体动力学,长沙:国防科技大学出版社,2004.10
    [23] 王洪喜 微结构的静电驱动特性研究[D],西安:西安电子科技大学博士学位论文,2006.1.
    [24] Kelly S.G.著,贾启芬等译,机械振动[M],北京:科学出版社,2002.
    [25] Zhang C., Xu G. and Jiang Q., Characterization of the squeeze film damping effect on the quality factor of a microbeam resonator[J], J. Micromech. Microeng., 2004, 14:1302-1306.
    [26] Nayfeh, A. H. and Younis, M. I., A new approach to the modeling and simulation of flexible microstructures under the effect of squeeze-film damping[J], J. Micromech. Microeng., 2004, 14: 170-181.
    [27] Clough R.W,Penzien J.著,王光远等译.结构动力学(Dynamics of Sturctures)[M],北京:科学出版社,1983.4.
    [28] Eihab M. Abdel-Rahman, Mohamed I. Younis and Ali H. Nayfeh, Characterization of the mechanical behavior of an electrically actuated microbeam[J], J. Micromech. Microeng., 2002, 12: 759-766.
    [29] Hung E. S. and Senturia S. D.. Generating efficient dynamical models for microelectromechanical systems from a few finite-element simulations runs[J], J. Microelectromech. Sys., 1999, 8: 280-289.
    [30] Nguyen C. T. and Howe R. T., An integrated CMOS micromechanical resonator high-Q oscillator[J], IEEE J. Solid-State Circuits, 1999, 34: 440-455.
    [31] Andrews M. K., Tumer G. C., Harris P. D. and Harris I. M., A resonant pressure sensor based on a squeezed film of gas [J], Sensors and Actuators A, 1993, 36: 219-236.
    [32] Ye Wenjing, Wang Xin, Hemmert Wemer, et. al. Air damping in laterally oscillationg microresonators: a numerical and experimental study[J], J. Microelectromech. Sys., 2003, 12(5): 557-506.
    [33] Bao Min-Hang. Micro Mechanical Transduces: Pressure Sensors, Accelerometers and Gyroscopes[M], Elsvier, 2000.
    [34] Minikes Adi, Bucher Izhak and Avivi Gal. Damping of a micro-resonator torsion mirror in rarefied gas ambient[J], J. Micromech. and Microeng., 2005, 15:1762-1769.
    [1] Kreith F. The MEMS Handbook[M]. Boca Raton: CRC Press, 2002.
    [2] Fukui S., Kaneko R. Analysis of ultra-thin gas film lubrication based on linearized Boltzmann equation: First report—Derivation of a generalized lubrication equation including thermal creep flow[J], J. Tribology, Trans. ASME, 1988, 112: 253-261.
    [3] Honchi M., Kohira H., Matsumoto M. Numerical simulation of slider dynamics during slider-disk contact[J], Tribology International, 2003, 36: 235-240.
    [4] Burgdorfer A. The influence of the molecular mean free path on the performance of hydrodynamics gas lubricated bearings[J], J. Basic Eng., Trans. ASME, 1959, 81: 94-99.
    [5] Hsia Y. T., Domoto G. A. An experimental investigation of molecular rarefaction effects in gas lubricated bearing at ultra-low clearance[J], J. Tribology, Trans. ASME, 1988, 110: 253-262.
    [6] Fukui S. and Kaneko R. A Database for interpolation of Poiseuille flow rates for high Knudsen number lubrication problems [J], J. Tribology, Tans. ASME, 1990, 112: 78-83.
    [7] Mitsuya Y. Modified Reynolds equation for ultra-thin film gas lubrication using 1.5 order slip-flow model and considering surface accommodation coefficient[J], J. Tribology, Trans. ASME, 1993, 115: 289-294.
    [8] Cercignani C., Daneri A. Flow of a rarefied gas between two parallel plates [J], J Applied Physics, 1963, 34:3509-3513
    [9] Hwang Chi-chuan, Fung Rong-fong, Yang Rong-fu, et al. A new modified Reynolds equation for ultra-thin film gas lubrication [J], IEEE Transaction on Magnetics, 1996, 32(2): 34~347.
    [10] 王卫东,贾建援 超薄气膜润滑的雷诺方程修正[J],中国机械工程,2006,17(5):533-535.
    [11] 张志涌 精通MATLAB6. 5[M],北京:北京航空航天大学出版社,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700