睡眠呼吸暂停综合征的睡眠、临床特征、神经生化及5-HTT基因多态性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
理论假设:
     睡眠呼吸暂停综合征是一种常见的睡眠疾病,一般人群中的发病率为2%~4%,老年人中发病率为20%~40%。其发病率随着年龄和肥胖程度的增加而增加,且男性发病率是女性的2~4倍。近年来,SAS因其心血管和神经认知功能方面的后果引起了医学界的重视。由于SAS患者反复出现夜间憋醒和血氧饱和度下降,故睡眠质量受到严重影响。但由于缺乏统一的临床评估工具,SAS患者的白天功能,包括心理状况、认知功能等,所得研究结论纷纭不一。文献报道,NO、5-HT和CA在睡眠和呼吸的调节过程中起重要作用,且一些能够改变NO、5-HT和CA水平的药物,对SAS有一定的治疗作用,故推测此几种物质参与了SAS的发生和相关功能损害的神经生化机制。此外,流行病学研究表明,SAS是一种有明显家族聚集性的疾病,但迄今为止,有关该病的遗传方式和遗传易感位点的研究尚无为大家所接受的结论。考虑到5-HT系统参与睡眠呼吸的调节,以及5-羟色胺转运体(5-HTT)能影响神经递质5-HT的回吸收和体液中的有效浓度,是多种有效治疗SAS的SSRI类药物的作用靶点,我们选择5-HTT基因的两个重要的功能性位点——启动子区缺失/插入多态性(LPR)和第2内含子可变数目串联重复区多态性(VNTR),作为研究的切入点,进行关联分析,以了解SAS的遗传特性。
     目的:
     了解SAS患者的夜间睡眠模式、临床特征(包括白天困倦程度、心理和神经认知功能),初步探讨夜间各睡眠变量对患者白天功能的影响情况;进一步探讨SAS发病及相关功能损害可能的神经生化学机制;初步探讨SAS的遗传易感因素。
    
    博士学位论文 中文摘要
     方法:
     采用病例对照研究方法,对78例 SAS患者和 30例正常对照者
    进行整夜多导睡眠仪监测,勾画出SAS患者独特的夜间睡眠特征,
    初步探讨不同肥胖程度和低氧血症的SAS患者的睡眠差异;另一方
    面,应用相关临床评定量表或工具对45例SAS患者和30例正常对
    照者白天精力、心理状态、认知功能等进行评定,了解SAS患者的
    白天功能状况:在此基础上,通过血浆*0、5KT和多种*A水平检
    测,探讨SAS及其相关功能损害的可能神经生化学机制;采用聚合
    酶链式反应技术,检测45例SAS患者和55例正常对照组的5.羟色
    胺转运体基因启动子区LRP和第2内含于VNTR多态性,分别对所
    得基因型和等位基因的频率进行相关统计学分析;应用相关分析统计
    方法,对上述各变量进行关联分析,了解其间的内在关联,推测SAS
    发生和相关功能损害可能的分子生物学机制;并对不同基因型SAS
    患者的临床特征和生化机制的异质性进行初步探讨。
     结果:
     1.与正常对照组相比,SAS患者存在明显的睡眠结构紊乱,表
    现为:①深睡眠(Ill、IV期NREM睡眠)比例减少、浅睡眠u、11
    期NREM睡眠)相对增加,REM期睡眠减少,觉醒增加,睡眠潜伏
    期缩短等。②不同严重程度夜间低氧血症的SAS患者之间,TST、
    SE、N’REM睡眠时间、觉醒比例、AHI、夜间最快心率差异有显著
    性p刀刀5人 并以血氧饱和度下降最低值的S*S组指标异常最为显
    著。③不同BMI组的SAS患者的睡眠效率、N’REM睡眠I期比例和
    REM周期、低通气指数、夜间平均SaO乔呼吸暂停时期最快心率存
    在统计学差异①刃.05人 并以超肥胖组SAS患者睡眠、呼吸、血氧
    饱和度、迷走神经功能受损最为严重。
     2.SAS患者临床特征突出:①常见临床症状为:睡眠打鼾、睡
    眠不解困乏、夜间易醒、憋醒等;②SAS组白天困倦量表ESS总分
    高于正常对照组,差异有显著性①<0.01\③SAS患者SCL刁0总因
    
    博士学位论文 中文摘要
    子分以及躯体化、强迫、敌意、抑郁、焦虑和附加因子分高于对照组
    ①<O.05);相关分析表明,S*S患者的心理症状与夜间总睡眠时间、
    NREM睡眠1期比例、睡眠潜伏期呈显著负相关,与觉醒比例、N’REM
    睡眠立期比例、白天困倦量表总分呈显著正相关(OO.2,P<0.05),与
    呼吸紊乱变量 AH、in SaO邢无显著相关r<0.2)。
     3.SAS患者神经认知功能较正常对照组差:①SAS患者总记忆
    商数及即刻、短时记忆因子得分低于正常对照组,差异有显著性
     仔<o.0门;②与正常对照组相比,**S患者在数字符号、填图西因
    子方面得分较低,差异有显著性冲幻05人而在木块图、图形排列、
    拼图、总操作智商方面,两组无显著性差异(P>0刀5人③SAS患者
    在中等难度划销测验项目上得分低于正常对照组,差异有统计学意义
     0功“),在难度较小和难度较大的项目上得分两组间无显著差异
     (P>0.05)。
     4.SAS患者的血浆NOI-HT和5-HI批水平均低于正常对照组
     0d.05),相反,8*S组血浆NE水平则高于正常对照组oJ05人
     5.相关分析结果表明:①浅睡眠比例与血浆5KT水平正相关,
    与血浆NO水平负相关;觉醒次数和比例与血浆5-HT水平正相关,
    与NE水平负相关;深睡眠比例与血浆NO、NE水平正相关;睡眠
    潜伏期与血浆NO水平负相关,与血浆NE水平正相关;Alll与血浆
    NO水平负相关,MinsaOZ与血浆NO、5-HT水平正相关(rro.2?
Background:
    Sleep apnea syndrome (SAS) is a common sleep disorder, prevalent in approximately 2% to 4% of adult people. Its frequency increases with increased age and body mass index (BMI), and the incidence rate for men is about two to nine times than in women. The patients with SAS suffer from fragmented sleep and decreased arterial oxygen saturations, but it is still unclear whether SAS is a cause of mental changes and psychiatric abnormalities in some of these patients. Previous reports have linked SAS with cardiovascular morbidity, depression, anxiety and cognitive deficits. The severity and mechanisms of these impairments are yet uncertain. Previous studies demonstrated several lines of pharmacological, neurobehavioral and therapeutic evidence implicated nitric oxide (NO), serotonin (5-HT) and catecholamines (CA) in the pathogenesis of regulation of sleep and respiration. Moreover, SAS has been shown to aggregate significantly within families. Although there have been many researches had paid attention to the genotypic markers for this condition, no certain genetic vulnerabilities for SAS have been found. The serotonin transporter (5-HTT) reuptakes serotonin into the pre-synaptic neuron. Most antidepressants block the action of 5-HTT and can also treat the major depression or sleep disorders. Two common polymorphisms have been described in the 5-HTT gene: a deletion/ insertion of 44bp in the promoter region approximately 1kb upstream of the transcription site (5-HTTLPR) and a Variable-Number-Tandem-Repeat (VNTR) region containing 9, 10 or 12 copies of a 17bp repeat element located in intron 2 (5-HTTVNTR). Therefore, we evaluated the roles of the 5-HTTLPR and VNTR in SAS and impaired sleep or daytime
    
    
    
    functions of this condition. Study objectives:
    To evaluate the association between SAS and sleep disturbant patterns, psychological abnormalities or cognitive impairment. Another purpose of this study was to evaluate the possible roles of nitric oxide, serotonin and catecholamines in the pathogenesis of sleep apnea. The third objective was to identify polymorphisms of the serotonin transporter gene and to find out whether there was correlation between any such polymorphisms and the occurrence of sleep apnea. Methods:
    The study comprised 78 patients diagnosed as SAS who refered to the sleep laboratories and then underwent a whole-night polysomno-graphic examination. The study population was stratified into subgroups based on MinSaO2 and BMI. Of 78 patients with SAS, 45 subjects completed psychological and cognitive examination. Thirty healthy controls underwent the same examination. In 45 patients and 30 healthy controls, NO, 5-HT and CA levels were measured in peripheral venous blood samples by chemiluminescence and high-performance liquid chro-matography (HPLC), respectively. The frequencies of the different forms of the genotypes and alleles of 5-HTT gene was analysed in 45 patients with SAS and 55 healthy controls. Results:
    1. Compared with healthy controls, SAS patients suffered more from disturbed or fragmented sleep, (i). In addition to intermittent nocturnal hypoxemia and apneic attacks, stages of sleep were also disturbed, such as decreased SWS% and REM%, increased S1% or S2% and brief arousal frequency from sleep, etc. And the latency of sleep in SAS group was significantly shorter than that in control group (P<0.05).
    
    
    
    (ii). The sleep disturbance within the group of severe nocturnal hypoxemia (Min SaO2<60%) was significantly more prominent than in both mild and moderate hypoxemic groups (P<0.05). (iii). The sleep structure, respiration and heart rate were most disturbed in the group of severe fat patients (BMI>30.01kg/m2) than in the two other groups in SAS patients (P<0.05).
    2. Compared with, healthy controls, SAS patients suffered from striking clinical features, including impaired daytime functions, (i). The common clinical complaints were snoring, unrefreshing sleep, daytime sleepiness, choking episodes, etc. (ii). The total scores of ESS in SAS group were significantly hig
引文
[1] Young T. Palta M, et al. The occurrence of sleep-disordered breathing among middle-aged adults. N Engl J Med, 1994; 328: 1230-1235.
    [2] 潘集阳.睡眠障碍临床诊疗.广州:华南理工大学出版社,2001.
    [3] Garthwaite J, Southam E. Comparative effects of some nitric oxide donors on cyclic GMP levels in rat cerebellar slices. Neurosci Lett, 1991; 130: 107-111.
    [4] Association of Sleep Disorders Centers, Diagnostic Classification of Sleep and Arousal Disorders, 1st ed. Sleep, 1979; 2: 1-137.
    [5] Flemons WW, Whitelaw WA, Brant R, Remmers JE. Likelihood rations for a sleep apnea clinical prediction rules. Am J Respir Crit Care Med, 1994; 150: 1279-1285.
    [6] Lavie P, Yoffle N, et al. The relationship between the severity of sleep apnea syndrome and 24-h blood pressure values in patients with OSA. Chest, 1993 March; 103 (3): 717-721.
    [7] Engleman HM, Martin SE, Deary IJ, et al. Effect of continuous positive airway pressure treatment on daytime function in sleep apnoea/hypopnoea syndrome. Lancet, 1994; 343: 572-575.
    [8] Douglas NJ, Pollo O. Pathogenesis of obstructive sleep apnoea/ hypopnoea syndrome. Lancet, 1994; 344: 653-655.
    [9] Cheshire K, Engleman H, et al. Factors impairing daytime performance in patients with sleep apnea/hypopnea syndrome. Arch Intern Med, 1992; 152: 538-541.
    [10] Kingshott RN, Engleman HM, Deary IJ, et al. Does arousal frequency predict daytime function? Eur Respir J, 1998; 12: 1264-1270.
    [11] Carley DW, Radulovacki M. Role of peripheral serotonin in the regulation of sleep apneas in rats. Chest, 1999 May; 115 (5): 1397-1401.
    [12] Vincent SR, Kimura H. Histochemical mapping of nitric oxide synthase in the rat brain. Neurosci, 1992; 46(4): 755-784.
    [13] Kapas L, Ayers NA, Krueger JM. Circadian variation of nitric oxide synthase activity and cytosolic protein levels in rat brain. Brain Res, 1996; 707:127-130.
    
    
    [14] Ip MS, Lam B, Chan LY, Circulating nitric oxide is suppressed in obstructive sleep apnea and is reversed by nasal continuous positive airway pressure. Am J Respir Crit Care Med, 2000 Dec; 162 (6): 2166-2171.
    [15] Schulz R, Schmidt D, Blum A, et al. Decreased plasma levels of nitric oxide derivatives in obstructive sleep apnoea: response to CPAP therapy. Thorax, 2000 Dec; 55 (12): 1046-1051.
    [16] Yoshizawa T, Akashiba T, Kurashina K, et al. Genetics and obstructive sleep apnea syndrome: a study of human leukocyte antigen (HLA) typing. Intern Med, 1993 Feb; 32 (2): 94-97.
    [17] Kadotani H, Kadotani T, Young T, et al. Association between apolipoprotein E epsilon4 and sleep-disordered breathing in adults. JAMA, 2001 Jun 13; 285(22): 2888-2890.
    [18] Strohl KP, Redline S. Recognition of obstructive sleep apnea. Am J Respir Crit Care Med, 1996; 154: 279-289.
    [19] Findley LJ, Barth JT, Powers DC, et al. Cognitive impairment inpatients with obstructive sleep apnea and associated hypoxemia. Chest, 1986; 90: 686-690.
    [20] Guilleminault C, Palombini L, Poyares D, Chowdhuri S. Chronic insomnia, premenopausal women and sleep disordered breathing: part 2. Comparison of nondrug treatment trials in normal breathing and UARS post menopausal women complaining of chronic insomnia. J Psychosom Res, 2002 Jul; 53(1): 617-623.
    [21] Weiss JW, Launois SH, Anand A, et al. Cardiovascular morbidity in obstructive sleep apnea. Prog Cardiovasc Dis, 1999; 41: 367-376.
    [22] Flemon WW. Frcpc MD, et al. Quality of life consequences of sleep-disordered breathing. J Allergy Clin Immunol, 1997; 99 (2): s751-s755.
    [23] Whyte KF, Allen MB, Jeffrey A, et al. Clinical features of the sleep apnoea/hypopnea syndrome. Q J Med, 1989; 72: 659-666.
    [24] Kingshott, RN, Engleman HM, Deary IJ, Douglas NJ. Does arousal frequency predict daytime function? Eur Respir J, 1998; 12: 1264-1270.
    
    
    [25] Roth T, Harste KM, Zorick F, et al. Multiple naps and the evaluation of daytime sleepiness in patients with upper airway sleep apnea. Sleep, 1980; 3: 425-439.
    [26] Hoddes E, Zarcone V, Smythe H, et al. Quality of sleepiness: a new approach. Psychophysiology, 1973; 10:431.
    [27] Kales A, Caldwell AB, et al. Severe sleep apnea—Ⅱ: Associated psychopathology and psychosocial consequence. J Chron Dis, 1985; 38 427-434.
    [28] Greenberg GD, Watson RK, Deptula D. Neuropsychological dysfunction in sleep apnea. Sleep, 1987; 10: 254-262.
    [29] Engleman HM, Kingshott RN, Martin SE, Douglas NJ. Cognitive function in the sleep apnea/hypopnea syndrome (SAHS). Sleep, 2000 Jun; 15; 23 Suppl 4: S102-S108.
    [30] 陈尔璋,韩芳,魏海琳,著.打鼾与睡眠呼吸暂停综合征.北京:北京科学技术出版社.1998,4.
    [31] Findley L, Unverzagt M, Guchu R, et al. Vigilance and automobile accidents in patients with sleep or narcolepsy. Chest, 1995; 108: 619.
    [32] 张明园主编.精神科评定量表手册,长沙:湖南出版社,1991:16-25.
    [33] Johns MW. A new method of measuring daytime sleepiness: the Epworth Sleepiness Scale. Sleep, 1991; 14: 540-5.
    [34] 龚耀先等.修订韦氏记忆量表手册(WMS).长沙:湖南医科大学,1989.
    [35] 龚耀先等.修订韦氏成人智力量表手册(WAIS).长沙:湖南医科大学,1982.
    [36] 杨德森主编.精神医学丛书第一卷,精神医学基础,第一版.长沙:湖南科技出版社,1981.
    [37] American Thoracic Society. Sleep apnea, sleepiness and driving risk. Am J Respir Crit Care Med, 1996; 150: 1463.
    [38] Borak J, Cieslicki J, Szadkowska-Wilczak H, et al. Psychoneurological consequences of obstructive sleep apnea. J Sleep Res, 1992; 1(suppl): 29.
    [39] Pillar G, Lavie P. Psychiatric symptoms in sleep apnea syndrome. Chest, 1998; 114(3): 697-703.
    
    
    [40] Millman RP, Fogel BS, Mcnamara ME, et al. Depressive as a manifestation of obstructive sleep apnea; reversal with nasal continuous positive airway pressure. J Clin Psychiatry, 1989; 50:348-351.
    [41] 汤慈美主编.神经心理学.北京:人民军医出版社.2001.4.
    [42] Kim HC, Young T, Matthews CG, et al. Sleep-disordered breathing and neuropsychological deficits: A population-based study. Am J Respir Crit Care Med, 1997; 156: 1813-1819.
    [43] Sajkov D, Marshall R, Walker P, et al. Sleep apnoea related hypoxia is associated with cognitive disturbances in patients with tetraplegia. Spinal Cord, 1998 Apr; 36(4): 231-239.
    [44] Jennum P, Sj φ 1 A. Self-assessed cognitive function in snorers and sleep apneics, an epidemiological study of 1504 females and males aged 30-60 years: the Dan-MONICA Ⅱ study. Eur Neurol, 1994; 34: 204-208.
    [45] Berry DTR, Webb WB, Block AJ, et al. Nocturnal hypoxia and neuropsycho-logical variables. J Clin Neuropsycho, 1986; 8: 229-38.
    [46] Carskadon MA, Dement WC, Mitler MM, et al. Guidelines for the multiple sleep latency test (MSLT): A standard measure of sleepiness. Sleep, 1986; 9: 519-524.
    [47] Peacock MD, Morris MJ, Houghland MA, Anders GT, Blanton HM. Sleep apnea-hypopnea syndrome in a sample of veterans of the Persian Gulf War. Mil Med, 1997 Apr; 162(4): 249-251.
    [48] Ohayon MM, Priest RG, Zulley J, Smirne S. The place of confusional arousals in sleep and mental disorders: findings in a general population sample of 13,057 subjects. J Nerv Ment Dis, 2000 Jun; 188 (6): 340-348.
    [49] 魏镜,李舜伟.睡眠呼吸障碍与记忆障碍.睡眠呼吸障碍疾患的诊断和治疗,进修生培训讲义 第1集.中国医学科学院编.1996:64-67.
    [50] Naegele B, Pepin JL, Levy P, Bonnet C, Pellat J, Feuerstein C. Cognitive executive dysfunction in patients with obstructive sleep apnea syndrome (OSAS) after CPAP treatment. Sleep, 1998 Jun 15; 21(4): 392-397.
    
    
    [51] Borak J, Cieslicki JK, Koziej M, Matuszewski A, Zielinski J. Effects of CPAP treatment on psychological status in patients with severe obstructive sleep apnoea. J Sleep Res, 1996 Jun; 5(2): 123-127.
    [52] 罗学港主编.神经科学基础.长沙:中南大学出版社.2002.3.
    [53] Zhou M, Small SA, Kandel ER, Hawkins RD. Nitric Oxide and carbon monoxide produce activity-dependent long-term synaptic enhancement in hippocampus. Sience, 1993 Jun 25; 260 (5116): 1946-1950.
    [54] 高国全,姚志彬,马涧泉,李朝阳.老年记忆减退大鼠NOS基因表达的变化.中华老年医学杂志,1999;4:236-239.
    [55] Vincent SR, Kimura H. Histochemical mapping of nitric oxide synthase in the rat brain. Neurosci, 1992; 46(4): 755-784.
    [56] Kapas L, Fang JD, Krueger JM. Inhibition of nitric oxide synthesis suppresses sleep in rabbits. Brain Res, I994; 189-196.
    [57] 章茜,王书春,胡群圆.抑制—氧化氮合成酶对大鼠睡眠及5-羟色胺神经元免疫反应的影响.基础医学与临床,1996;16(6):440-442.
    [58] Kapas L, Shibata M, Kimura M, et al. Inhibition of nitric oxide synthesis suppresses sleep in rabbits. Am J Physiol, 1994; 266: R151-157.
    [59] 左成业,杨玲玲主编.睡眠与梦.第一版.长沙:湖南出版社.1991.
    [60] Behan M, Brownfield MS. Age-related changes in serotonin in the hypoglossal nucleus of rat: implications for sleep- disordered breathing. Neurosci Lett, 1999 May 28; 267 (2): 133-136.
    [61] Klein DF. Panic disorder and agoraphobia: hypothesis hothouse. Clin Psychiatry, 1996; 57 Suppl 6: 21-27.
    [62] Carley DW, Depoortere H, Radulovacki M. R-zacopride, a 5-HT3 antagonist/5-HT4 agonist, reduces sleep apneas in rats. Pharmacol Biochem Behav, 2001 May-Jun; 69 (1-2): 283-289.
    [63] Sunderram J, Parisi RA, Strobel RJ. Serotonergic stimulation of the genioglossus and the response to nasal continuous positive airway pressure. Am J Respir Crit Care
    
    Med, 2000 Sep; 162 (3 Pt 1): 925-929.
    [64] Agusti AG, Barbe F, Togores B. Exhaled nitric oxide in patients with sleep apnea. Sleep, 1999 Mar 15; 22 (2): 231-235.
    [65] Fenik P, Ogawa H, Veasey SC. Hypoglossal nerve response to 5-HT3 drugs injected into the ⅩⅡ nucleus and vena cava in the rat. Sleep, 2001 Dec 15; 24 (8): 871-878.
    [66] Hudgel DW, Gordon EA, Meltzer HY. Abnormal serotonergic stimulation of cortisol production in obstructive sleep apnea. Am J Respir Crit Care Meal, 1995 Jul; 152 (1): 186-192.
    [67] Muir IF, Portier E Obstructive sleep apnea syndrome: medical treatment. Rev Stomatol Chir Maxillofac, 2002 Jun; 103 (3): 164-9.
    [68] Berry RB, Yamaura EM, Gill K, Reist C. Acute effects of paroxetine on genioglossus activity in obstructive sleep apnea. Sleep, 1999 Dec 15; 22 (8): 1087-92.
    [69] Carley DW, Radulovacki M. Mirtazapine, a mixed-profile serotonin agonist/antagonist, suppresses sleep apnea in the rat. Am J Respir Crit Care Med, 1999 Dec; 160 (6): 1824-1829.
    [70] Python A, Steimer T, de Saint Hilaire Z, et al. Extracellular serotonin variations during vigilance states in the preoptic area of rats: a microdialysis study. Brain Res, 2001 Aug 10; 910 (1-2): 49-54.
    [71] Burlet S, Leger L, Cespuglio R. Nitric oxide and sleep in the rat: a puzzling relationship. Neuroscience, 1999; 92 (2): 627-39.
    [72] Partinen M, Telakivi T. Epidemiology of obstructive sleep apnea syndrome. Sleep, 1992; 15: s1-s4.
    [73] Katz I, Stradling AS, Slutsky N, et al. Do patients with obstructive sleep apnea have thick necks? Am Rev Respir Dis, 1990; 141: 1228-1231.
    [74] Strohl KP, Saunders NA, Feldman NT, Hallett, M. Obstructive sleep apnea in family members. N Engl J Med, 1978; 299: 969-973.
    [75] Douglas NJ, Luke M, Mathur R. Is the sleep apnea hypopnea syndrome inherited?
    
    Thorax, 1993; 48: 719-721.
    [76] Redline S, Tishler PV. The genetics of sleep apnea. Sleep Med Rev, 2000 Dec; 4 (6): 583-602.
    [77] 薛官英.阻塞型睡眠呼吸暂停综合征一家系.中华医学遗传学杂志,1999;(3):140.
    [78] Elliot J. Obstructive sleep apnea in Georgia family: is it hereditary? JAMA, 1978 Dec 8; 240 (24): 2611.
    [79] Yoshizawa T, Akashiba T, Kurashina K, et al. Genetics and obstructive sleep apnea syndrome: a study of human leukocyte antigen (HLA) typing. Intern Med, 1993 Feb; 32 (2): 94-97.
    [80] Bliwise DL. Sleep apnea, ApoE4 and Alzheimer's disease 20 years and counting? J Psychosom Res, 2002 Jul; 53(1): 539-546.
    [81] Barcelo A, Llompart E, Barbe F, et al. Plasminogen activator inhibitor-Ⅰ (PAl-Ⅰ) polymorphisms in patients with obstructive sleep apnoea. Respir Med 2002 Mar; 96 (3): 193-196.
    [82] Kanai M, Numakura C, Sasaki A, et al. Congenital central hypoventilation syndrome: a novel mutation of the RET gene in an isolated case. Tohoku J Exp Med, 2002 Apr; 196 (4): 241-246.
    [83] Lesch KP, Meyer J, Glatz K, et al. The 5-HT transporter gene-linked polymorphic region (5-HTTLPR) in evolutionary perspective: alternative biallelic variation in rhesus monkeys. J Neur Transm, 1997; 104: 1259-1266.
    [84] Ramamoorthy S, Bauman AL, Moore KR, et al. Anti-depressant- and cocaine-sensitive human serotonin transporter: molecular cloning, expression, and chromosomal localization. Proc Nat Acad Scien USA, 1993; 90: 2542-2546.
    [85] Fabre V, Boutrel B, Hanoun N, et al. Homeostatic regulation of serotonergic function by the serotonin transporter as revealed by nonviral gene transfer. J Neurosci, 2000 Jul 1; 20(13): 5065-5075.
    [86] Redline S, Tishler PV, Tosteson TD, et al. The familial aggregation of
    
    obstructive sleep apnea. Am I Respir Crit Care Med, I995 Mar; 151(3 Pt 1): 682-687.
    [87] Lesch KP, Bengel D, Heils A, et al. Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science, 1996; 274(29): 1527-1531.
    [88] Ogilvie AD, Battersby S, Bubb VJ, et al. Polymorphism in serotonin transporter gene associated with susceptibility to major depression. Lancet, 1996; 347: 731-733.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700