4'-去甲基表鬼臼毒素生物转化为4'-去甲基表鬼臼酸
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文首次建立了4'-去甲基表鬼臼毒素转化为4'-去甲基表鬼臼酸的生物转化过程,并对该生物转化过程进行了动力学研究和过程优化,提高了生物转化过程的效率。
     首先,从8株菌株中筛选得到对4'-去甲基表鬼臼毒素具有转化能力的4株菌株,即Bacillus fusiformis CICC 20463、Bacillus subtilis CCTCC AB93174、Pseudomonas aeruginosa CCTCC AB 93 066和Pseudomonas oleovorans CGMCC1.1641,HPLC图谱说明在生物转化过程中有转化产物的产生。其中B.fusiformis对4'-去甲基表鬼臼毒素的转化能力较强,转化率达到63.3%,因此选用B.fusiformis进行后续研究。采用大孔吸附树脂D312从生物转化基质中分离得到产物晶体,将生物转化产物与4'-去甲基表鬼臼毒素的核磁共振和质谱图对比分析,确定转化产物为4'-去甲基表鬼臼酸,从而建立了4'-去甲基表鬼臼毒素转化为4'-去甲基表鬼臼酸的生物转化过程。
     然后,对上述建立的生物转化过程进行了动力学研究及过程优化。氮源全因子实验结果表明,在酵母膏、蛋白胨分别为5.0和10.0 g/L时,4'-去甲基表鬼臼酸浓度达到最高值(2.81±0.21 mg/L)。在蔗糖浓度考察范围(如0、10、20、40 g/L)内,4'-去甲基表鬼臼酸的浓度随着蔗糖浓度的上升而增加,在40 g/L时达到最高值(2.94±0.17 mg/L)。3 g/L的氯化钠不利于细胞的生长,但有利于4'-去甲基表鬼臼酸的产生(4.10±0.18 mg/L)。100 mg/L的4'-去甲基表鬼臼毒素起始浓度有利于4'-去甲基表鬼臼酸的产生(6.47+0.35 mg/L)。在pH值考察范围(8.0、8.5、9.0)内,pH值的上升促进4'-去甲基表鬼臼毒素的转化和4'-去甲基表鬼臼酸的形成,在pH值为9.0时,4'-去甲基表鬼臼酸浓度达到最高值(38.78 mg/L),较过程优化初始值2.01mg/L提高了18.3倍。
     本文首次采用生物转化技术对4'-去甲基表鬼臼毒素进行分子结构修饰研究,得到水溶性提高的生物转化产物4'-去甲基表鬼臼酸,建立了4'-去甲基表鬼臼毒素生物转化过程。通过过程优化,显著提高了4'-去甲基表鬼臼酸浓度。该研究为4'-去甲基表鬼臼毒素结构修饰研究提供了新途径,促进了生物转化技术在化学成分结构修饰研究的应用,为其他化合物结构修饰研究提供借鉴意义。
For the first time,the biotransformation process of 4'-demethylepipodophyllotoxin to demethylepipodophyllic acid was developed in this work.The performance of the biotransformation process was improved by the study on its kinetics and optimization.
     Firstly,based on the capability of modifying 4'-demethylepipodophyllotoxin structure,4 trains(i.e,Bacillus fusiformis CICC 20463,Bacillus subtilis CCTCC AB93174,Pseudomonas aeruginosa CCTCC AB 9306 and Pseudomonas oleovorans CGMCC 1.1641) were screened out from 8 tested strains.Among them,B.fusiformis was selected for the following study because of its high substrate conversion. Biotransformation product was separated from the biotransformation borth by macroporous resin D312,and identified as 4'-demethylepipodophyllic acid by the comparison analysis of EI-MS and NMR spectrums with 4'-demethylepipodophyllotoxin.So,the biotransformation process from 4'-demethylepipodophyllotoxin to 4'-demethylepipodophyllic acid was set up.
     Secondly,dynamics and optimization of biotransformation process were investigated.The results show that maximum 4'-demethylepipodophyllic acid concentration(2.81±0.21 mg/L) was obtained at 5.0 g/L yeast extract and 10.0 g/L peptone;4'-demethylepipodophyllic acid concentration was enhanced as sucrose increasing in this study,and 2.94±0.17 mg/L 4'-demethylepipodophyllic acid was obtained at 40.0 g/L sucrose;3 g/L sodium chloride is harmful for cell growth but help to the production of 4'-demethylepipodophyllic acid(4.10±0.18 mg/L);100 mg/L 4'-demethylepipodophyllotoxin is suitable for the production of 4'-demethylepipodophyllic acid(6.47±0.35 mg/L).It is notable that 4'-demethylepipodophyllic acid concentration was influenced by pH obviously, maximum 4'-demethylepipodophyllic acid concentration was increased to 38.78 mg/L at pH 9.0.
     The biotransformation technology was firstly applied in the structure modification of 4'-demethylepipodophyllotoxin,and more solulable biotransformation product (4'-demethylepipodophyllic acid) was produced.The biotransformation process was developed and optimized,and increased 4'-demethylepipodophyllic acid concentration obviously.This work gave a new way to the structure modification of 4'-demethylepipodophyllotoxin,promoted the application of biotransformation technology in the modification of chemicals and provided references to modification of other chemicals.
引文
1.Canel C,Moraes RM,Dayana FE,Ferreira D.Podophyllotoxin.Phytochemistry,2000,54:115-120.
    2.Giri A,Narasu ML.Production of podophyllotoxin from Podophyllum hexandrum:a potential natural product for clinically useful anticancer drugs.Cytotechnology,2000,34:17-26.
    3.Imbert TF.Discovery of podophyHotoxins.Biochimie,1998,80:207-222.
    4.Gordaliza M,Garcia PA,Corral JMM,Castro MA,Gomez-Zurita MA.Podophyllotoxin:distribution,sources,applications and new cytotoxic derivatives.Toxin,2004,44:441-459.
    5.Pez-Perez JL,Olmo E,PascuaI-Teresa B,Abad A,Feliciano AS.Synthesis and cytotoxicity of hydrophobic esters of podophyllotoxins.Bioor Med Chem Lett,2004,14:1283-1286.
    6.Castro MA,Corral JM,Gordaliza M,Go'mez-Zurita MA,Puente ML,Betancur-Galvis LA,Sierra J,Feliciano AS.Synthesis,cytotoxicity and antiviral activity of podophyliotoxin analogues modified in the E-ring.Eur J Med Chem,2003,38:899-911.
    7.许重远,贾江滨,陈振德.4′-去甲表鬼臼毒素衍生物4β-取代结构修饰研究进展.中草药,2000,31(5):389-392.
    8.汪世龙,姚思德,王玫,李义久,张志成,张曼维.鬼臼毒素及其衍生物的化学活性研究.辐射研究与辐射工艺学报,1997,15(2):86-91.
    9.Kamal A,Gayatri NL,Reddy DR,Reddy PS,Arifuddin M,Dastidar SG,Kondapic AK,Rajkumar M.Synthesis and biological evaluation of new 4β-anilinoand 4β-imido-substituted podophyllotoxin congeners.Bioor Med Chem,2005,13:6218-6225.
    10.Kamal A,Kumar BA,Arifuddina M,Dastidarb SG.Synthesis of 4β-amido and 4β-sulphonamido analogues of podophyilotoxin as potential antitumour agents.Bioor Med Chem,2003,11:5135-5142.
    11.Lu CY,Wang WF,Lin WZ,Xu QG,Pan JX,Han ZH,Yao SD,Lin NY.Pulse radiolysis studies of etoposide and 4'-demethylepipodophyllotoxin in aqueous solution.Radi Phys Chem,2000,57:151-156.
    12.Jin Y,Chen SW,Tian X.Synthesis and biological evaluation of new spin-labeled derivatives of podophyllotoxin.Bioor Med Chem,2006,14:3062-3068.
    13.Riva S.Biocatalytic modification of natural products.Curr Opin Chem Biol,2001,5:106-111.
    14.Shige T,Honda K,Shimizu S.Whole organism biocatalysis.Curr Opin Chem Biol,2005,9:174-180.
    15.汤亚杰,李艳,徐小玲,李冬生.天然活性先导化合物生物转化研究进展.中国生物工程杂志,2007,27(9):110-115.
    16.Takada K.Degradation of eugenol by a microorganism.Agric Biol Chem,1977,41:925-929.
    17.Shimoni E,Ravid U,Shoham Y.Isolation of a Bacillus sp.capable of transforming eugenol to vanillin.J Biotechnol,2000,78:1-9.
    18.Yamada M,Okada Y,Yoshida T,Nagasawa T.Biotransformation of isoeugenol to vanillin by Pseudomonasputida IE27 cells.Appl Microbiol Blot,2007,73:1025-1030.
    19.Zhao LQ,Sun ZH,Zheng P,He JY.Biotransformation of isoeugenol to vanillin by Bacillus fusiformis CGMCC1347 with the addition of resin HD-8.Process Biochem,2006,41:1673-1676.
    20.Zhao LQ,Sun ZH,Zheng P,Zhu LL.Biotransformation of isoeugenoi to vaniilin by a novel strain of Bacillus fusiformis.Biotech Lett,2005,27:1505-1509.
    21.Shimoni E,Ravid U,Shoham Y.Isolation of a Bacillus sp.capable of transforming isoeugenol to vanillin.Journal of Biotechnology,2000,78(29):1-9.
    22.Zabkova M,Borges Silva EA,Rodrigues AE.Recovery ofvanillin from lignin/vanillin mixture by using tubular ceramic ultrafiltration membranes.J Memb Sci,2007,301(1-2):221-237.
    23.Zabkova M,Borges Silva EA,Rodrigues AE.Recovery ofvanillin from Kraft lignin oxidation by ion-exchange with neutralization.Sep and Puff Tech,2007,55(1):56-68.
    24.Zheng LR,Zheng Pu,Sun ZH,Bai YB,Wang J,Guo XF.Production of vanillin from waste residue of rice bran oil by Aspergillus niger and Pycnoporus cinnabarinus.Bioresour Technol,2007,98(5):1115-1119.
    25.Dembitsky VM.Bioactive peroxides as potential therapeutic agents.Eur J Med Chem,2008,43(2):223-251.
    26.Vitas M,Paji T,Kelly SL,Komel R.11β-Hydroxysteroid dehydrogenase activity in progesterone biotransformation by the filamentous fungus Cochliobolus lunatus.J Steroid Biochem Mol Biol,1997,63(4-6):345-350.
    27.Das S,Dutta TK,Samanta TB.Influence of substituents at C_(11) on hydroxylation of progesterone analogs by Bacillus sp.J Steroid Biochem Mol Biol,2002,8(2-3):257-261.
    28.Vassal G,PondarreC,Boland I,Cappelli C,Santos A,Thomas C,Lucchi E,lmadalou K,Pein F,Morizet J,Gouyette A.Preclinical development of camptothecin derivatives and clinical trials in pediatric oncology.Biochimie,1998,80(3):271-280.
    29.Soepenberg O,Sparreboom A,Verweij J.Clinical studies of camptothecin and dericatives.Alkaloids Chem Biol,2003,60:1-50.
    30.Palumbo M,Sissi C,Gatto B,Moro S,Zagotto G.Quantitation of camptothecin and related compounds.J Chromatogr B Biomed Sci Appl,2001,764(1-2):121-140.
    31.Zhan JX,Zhang YX,Guo HZ,Han J,Ning LL,Guo DA.Microbial Metabolism of Artemisinin by Mucorpolymorphosporus and Aspergillus niger.J Nat Prod,2002,65(11),1693-1695
    32.Almond RJ,Dearman RJ,Flanagan BF,Kimber I.The effect ofglycosylation on development of IgE antibody responses.Chem Pharm Bull,2008,121(2):179.
    33.徐亚军,郭华春.黄山药的研究进展.中国农学通报,2005,21(2):94-96.
    34.Shimoda K,Kondo Y,Nishida T,Hamada H,Nakajima N,Hamada H.Biotransformation of thymol,carvacrol,and eugenol by cultured cells of Eucalyptus perriniana.Phytochemistry,2006,67:2256-2261.
    35.Kim BH,Lee SY,Cho HJ,You SN,Kim YJ,Park YM,Lee JK,Baik MY,Park CS,Ahn SC.Biotransformation of Korean Panax ginseng by Pectinex.Chem Pharm Bull 2006,29(12)2472-2478.
    36.Fuzzati Nicola.Analysis methods of ginsenosides.J Chromatogr B,2004,812(1-2):119-133.
    37.KIM BH,LEE SY,CHO HJ,YOU SN,KIM YJ,PARK YM,LEE JK,BAlK MY,PARK CS,AHN SC.Biotransformation of Korean Panax ginseng by Pectinex.Chemical & Pharmaceutical Bulletin,2006,29(12) 2472-2478.
    38.Morimoto C,Satoh Y,Hara M,Inoue S,Tsujita T and Okuda H..Anti-obese action of raspberry ketone.Life Sci,2005,77(2):194-204.
    39.Shimoda K,Harada T,Hamada H,Nakajima N,Hamada H.13iotransformation of raspberry ketone and zingerone by cultured cells of Phytolacca Americana.Phytochemistry,2007,68:487-492.
    40.Lau WS,Chan RY,Guo DA,Wong MS.Ginsenoside Rg1 exerts estrogen-like activities via ligand-independent activation of ERα pathway.J Steroid Biochem Mol Biol,2008,108(1-2):64-71.
    41.Chang Y,Huang WJ,Tien LT,Wang SJ.Ginsenosides Rg1 and Rb1 enhance glutamate release through activation of protein kinase A in rat cerebrocortical nerve terminals(synaptosomes).Eur J Pharmacol,2008,578(1):28-36.
    42.Li QF,Shi SL,Liu QR,Tang J,Song J,Liang Y.Anticancer effects of ginsenoside Rgl,cinnamic acid,and tanshinone in osteosarcoma MG-63 cells:Nuclear matrix downregulation and cytoplasmic trafficking of nucleophosmin.Intern J Bioch Cell Biol,In Press,Uncorrected Proof,Available online 12 February 2008
    43.Zhang YF,Fan X J,Li X,Peng LL,Wang GH,Ke KF,Jiang ZL.Ginsenoside Rg_1 protects neurons from hypoxic-ischemic injury possibly by inhibiting Ca~(2+) influx through NMDA receptors and L-type voltage-dependent Ca~(2+) channels.Eur J Pharmacol,In Press,Accepted Manuscript,Available online 14 February 2008
    44.DeSantis G,Davis BG.The expanding roles of biocatalysis and biotransformation.Curr Opin Chem Biol,2006,10:1-2.
    45.杨世海,刘晓峰,果德安,郑俊华.9种活性物质在掌叶大黄组织培养系统中的生物转化.吉林农业大学学报,2005,27(4):408-412.
    46.Guo HZ,Guo DA,Fei XY,Cui YJ,Zheng JH.Biotransformation of podophyllotoxin to picropodophyllin by microbes.J Asian Nat Prod Res,1998,1(2):99-102.
    47.Broomhead AJ,Dewick PM.Biotransformation of Podophyllum lignans in cell suspension cultures of forsythia intermedia.Phytochemistry,1991,30(5):1511-1517.
    48.Teng RW,McManus D,Mau SL,Bacic A.Biotransformation of podophyllotoxin by Hordeum vulgare cell suspension cultures.Biocatal Biotransfor,2007,25(1):1-8.
    49.占纪勋,张元兴,宁黎丽,叶敏,郭洪祝,果德安.绿假单孢菌AS1.860对紫杉醇的微生物转化.应用与环境生物学报 2003;9:429-43.
    50.Andretta CWS,Rosa RM,Tondo EC,Gaylarde CC,Henriques JAP.Identification and molecular characterization of a Bacillus subtilis IS13 strain involved in the biodegradation of 4,5,6-trichloroguaiacol.Chemosphere,2004,55:631-639.
    51.Smet MJ,Kingma J,Wynberg H,Witholt B.Pseudomonas oleovorans as a tool in bioconversions of hydrocarbons:growth,morphology and conversion characteristics in different two-phase systems.Enzy Microb Technol,1983,5:352-360.
    52.Sch(a|¨)fer A,Harms H,Zehnder AJ.Biodegradation of 4-nitroanisole by two Rhodococcus spp.Biodegradation,1996;7:249-55.
    53.Celik D,Bayraktar E,Mehmetolu U.Biotransformation of 2-phenylethanol to phenylacetaldehyde in a two-phase fed-batch system.Biochem Engin J,2004,17:5-13.
    54.Matsuda M,Otsuka Y,Jin S,Wasaki J,Watanabe J,Watanabe T,Osaki M.Biotransformation of(+)-catechin into taxifolin by a two-step oxidation:Primary stage of(+)-catechin metabolism by a novel(+)-catechin-degrading bacteria,Burkholderia sp.KTC-1,isolated from tropical peat.Biochem Biophy Res Comm,2008,366:414-419.
    55.Fujino A,Asano M,Yamaguchi H,Shirasaka N,Sakoda A,lkunaka M,Obata R,Nishiyama S,Sugai T,Bacillus subtilis epoxide hydrolase-catalyzed preparation of enantiopure 2-methylpropane-1,2,3-triol monobenzyl ether and its application to expeditious synthesis of (R)-bicalutamide.Tetrah Let-t,2007,48:979-983.
    56.Singh S,Banerjee UC.Purification and characterization of trans-3-(4-methoxyphenyi) glycidic acid methyl ester hydrolyzing lipase from Pseudomonas aeruginosa.Process Biochem,2007,42:1063-1068.
    57.Beilen JB,Kingma J,Witholt B.Substrate specificity of the alkane hydroxylase system of Pseudomonas oleovorans GPol.Enzy Microb Technol,1994,10:904-911.
    58.李前荣,洪昆仑,李碧琳,徐峻.2D-NMR对4'-去甲基表鬼臼毒素的1H和13C的完全指定.中国科学技术大学学报.1997,27(1):113-116.
    59.Ayres DC,Harris JA,Jenkins PN,Phillips L.Lignans and related phenols.Part Ⅻ.Application of nuclear magnetic double resonance to the arytetrahydronaphthalene class.Journal of chemical society-perkin transactions 1,1988,(9):2573-2578.
    60.Manosroi J,Sripalakit P,Manosroi A.Factors affecting the biotransformation of chlormadinone acetate to delmadinone acetate.J Mol Catal B:Enzy,2003,23:37-42.
    61.Lee CY,Liu WD.The effect of salinity conditions on kinetics of tfichloroethylene biodegradation by toluene-oxidizing cultures.J Hazar Mater,2006,137:541-549.
    62.Kim PY,Pollard DJ,Woodley JM.Substrate Supply for Effective Biocatalysis.Biotechnol Prog,2007,23:74-82.
    63.D'Arrigo P,Fuganti C,Fantoni GP,Servi S.Extractive biocatalysis:a powerful tool in selectivity control in yeast biotransformations.Tetrahedron,1998,54:15017-15026.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700