固冲发动机组合喷管流量调节及推力矢量技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以整体式固体火箭冲压发动机为研究对象,紧密结合当前导弹动力系统研制需求,致力于解决当前研制面临的冲压发动机高速巡航性能偏低和导弹机动性不足的突出问题,自主创新提出了新概念组合喷管设计方案及其流量分配调节和推力矢量两项新技术。在导弹飞行全速度范围内,既可实现冲压喷管流量调节,大幅提高冲压发动机高速巡航性能,又可构造出矢量推力,用以实现导弹飞行的直接力控制。本文研究工作不仅具有重大的工程实用价值,而且明确从组合喷管流量分配调节技术取得突破,打破了以往采用固定几何结构单喷管不调节的技术传统,丰富了冲压发动机设计理论,又具有重要的科学理论意义。
     围绕组合喷管及其流量分配调节和推力矢量技术,本文开展了系统性研究。首先针对当前整体式固体火箭冲压发动机研制及其技术发展状况进行了周到细致的技术分析和总结,指出了喷管不调节造成冲压发动机高速巡航性能大幅损失的严重问题,厘清了其物理流动机制,并追根溯源从设计思想和技术路线上找不足。从而确立了本文研究的技术路线,即以提高冲压发动机的高速巡航性能为重心,采用“高速巡航+敏捷性”组合战术战法,选用简单“十”字形轴对称气动布局,降低飞行控制设计难度。并挖掘进气道整流罩的结构功用,充分利用其内部安装空间,开展了组合喷管与导弹气动外形的保形结构设计。
     基于冲压发动机工作原理,本文从气体动力学理论出发,引入恰当工程经验和近似处理,以满足初步方案快速工程设计和计算评估为目的,确立了组合喷管及其流量分配调节和推力矢量的理论设计计算方法和分析模型,并运用其开展了组合喷管实例设计和计算分析。不仅定量论证了常规固定几何结构喷管制约冲压发动机性能的机理,而且针对该问题设计出具体的组合喷管方案,细致阐述了其设计过程,定量分析和评估了组合喷管及其流量分配调节的性能优势,还探讨了易于工程实现的冲压喷管调节技术对策和推力矢量构造方式。
     本文最后还引用先进的CFD数值模拟技术,完成了组合喷管方案的数值验证,揭示了组合喷管流动内蕴的流量分配调节物理机制,证明了本文设计思想和技术路线的正确性,并且修正和弥补了设计理论和计算模型的不足。基于数值模拟,还刻画了组合喷管内部流动的细节特征,揭示出组合喷管与补燃室构成分歧管道导致流动损失的现象,为进一步开展组合喷管方案优化设计提供了指导。
     特别地,从数值模拟结果中,本文获得了一个非常有实用意义的重要结论:
     仅需选用最简单的两段调节策略,即在设计点速度以下,辅助喷管全部打开,而高于设计点速度时,辅助喷管全部关闭,采用组合喷管方案就可使整体式固体火箭冲压发动机推力性能大幅提高。对比原有固定几何结构单喷管不调节的方案,本文设计方案在接力点2Ma处,发动机推力同比提高18.51%。在设计点2.8Ma处,同比提高26.57%。3.5Ma高速巡航时,同比提高27.95%,推力系数值从原来的0.5612提高到0.7438,比较可观。足见喷管不调节造成发动机高速巡航性能损失有多大,而采用组合喷管流量分配调节措施弥足了该部分损失,使得冲压发动机同时兼备高的高速巡航性能和良好的低速接力性能。
     概括起来,本文不仅圆满完成了组合喷管及其流量分配调节和推力矢量技术的原理性设计研究,而且还完成了其技术验证,从而证明该方案不仅理论可行,而且易于工程实现,方案的技术优势明显,工程实用意义大。
An innovative conceptual combined nozzle and its two innovative technologies, combined nozzle flow regulation and thrust vector, applicable to solid fuel integral ducted-rocket are presented to solve current ducted-rockets' deficiencies in high speed cruise performance and maneuverability. Within entire missile speed range, these technologies not only improve thrust performance by regulating nozzle flow, but also realize missile direct thrust control through constructing vectored thrust. Unlike conventional fixed geometry nozzle that can not be regulated, this work made a breakthrough by establishing a combined nozzle flow regulation technology, which not only has great scientific significance by enriching ducted-rocket design theory, but also has great value in engineering applications.
     Systematic researches on combined nozzle and its flow regulation, as well as thrust vector technologies are carried out in this dissertation. First, by analyzing and summarizing current status of solid fuel integral ducted rocket technology in detail, the problem that unable to regulate nozzle causes severe degradation in ducted rocket high speed cruise performance is identified, and its flow mechanisms are clarified and its causes are traced back to design philosophy and technical approaches. Therefore, technical roadmap of current study, which emphasizes on improving high speed cruise performance, uses high speed cruise and high maneuverability tactic, and adopts simple cruciform axisymmetric configuration to reduce difficulties in flight control design, is established. To fully utilize structural space within inlet cowl, conformal structural design of combined nozzle and missile aerodynamic configuration is also carried out.
     Based on the working principles of solid fuel ducted rocket and gas dynamics theory, as well as appropriate engineering experiences and approximations, the computation method and analytical model of combined nozzle flow regulation and thrust vector design are established. And design case study is also performed using these models. The mechanisms that conventional fixed geometry nozzle limits ducted rocket performance are demonstrated quantitatively. And the solution, detailed combined nozzle concept, is proposed and discussed. The performance advantages of combined nozzle and its flow regulation are analyzed and evaluated quantitatively also. In addition, easy to implement nozzle regulation strategies and thrust vector construction methods are also explored.
     Finally, advanced CFD numerical simulations are carried out in design validations, revealing the physic natures of combined nozzle flow and its regulation, proving the correctness of current design idea and technology approach, and correcting minor deficiencies of design theory and computational models. Based on numerical simulations, detailed flow behaviors inside combined nozzle are depicted, and the phenomenon of flow loss caused by combined nozzle and secondary combustion chamber branching is also revealed, providing guides for further optimization.
     In particular, from simulation results, an important conclusion can be drawn:
     Only the simplest two stage control strategy, i.e., auxiliary nozzles are fully opened below design speed, and are fully closed above design speed, is required for the combined nozzle concept to significantly improve thrust performance of solid fuel integral ducted rocket. Compared to conventional design, the proposed design improves thrust by 18.51% at Ma 2 relay point, and by 26.57% at Ma 2.8 design point. At Ma 3.5 high speed cruise, the thrust is improved by as high as 27.95%, and thrust coefficient is increased from 0.5612 to 0.7438. It clearly shows the loss caused by unregulatable nozzle. However, this loss can be avoided by the proposed concept, so that the ducted rocket has good performance in both high speed cruise and low speed relay.
     In conclusion, the principle design studies and technical validations of combined nozzle and its flow regulation, as well as thrust vector technologies are completed successfully. The concept is not only feasible theoretically, but also easy to implement, having great prospects in engineering application.
引文
[1]S.Bill.Fighter Tactics.Jane's International Defence Review,2001.5
    [2]樊会涛.空空导弹21世纪展望.航空兵器,2001.1
    [3]樊会涛,王起飞,白晓东.从伊拉克战争论夺取制空权的军事手段.导弹与航天运载技术,2003.5
    [4]樊会涛,王起飞.远程空空导弹的发展及其关键技术.航空兵器,2006.1
    [5]顾从标,曹传景,肖志明.解读俄第六代战争观及思考.飞航导弹,2007.1
    [6]张天光.国外新型空空导弹的发展现状.航空兵器,2002.2
    [7]宋振峰.国外先进空空导弹发展动态.航空兵器,2002.4
    [8]李立坤.新一代空空导弹关键技术和发展战略.航空兵器,2002.6
    [9]赵春跃.空空导弹未来的发展方向.国际展望,2002.11
    [10]丛敏.防区外发射高超声速攻击导弹.飞航导弹,2003.2
    [11]戴岭.发射后不管——国外新一代中程空空导弹综述.国际展望,2003.8
    [12]单睿子,汤晓云.远距空战相关技术.飞航导弹,2005.9
    [13]王蒙,张纯学.空对空武器发展概况.飞航导弹,2006.5
    [14]M.M.蓬达留克,C.M.伊里雅申柯.冲压式喷气发动机.国防工业出版社,1959.9
    [15]刘兴洲.飞航导弹动力装置(上、下).宇航出版社,1992.12
    [16]曹军伟,徐东来等人.面向21世纪的空空导弹动力装置.航空兵器,1999.5
    [17]曹军伟,王虎干等人.整体式固体火箭冲压发动机在中远程空空导弹上的应用.航空兵器,2002.4
    [18]E.L.Fleeman.Tactical Missile Design.AIAA Education Series,2002
    [19]P.J.Waltrup and M.E.White,ed.History of U.S.Navy Ramjet,Scramjet,and Mixed-Cycle Propulsion Development.Journal of Propusion and Power,Vol.18,No.1,January-February 2002
    [20]J.P.Minard,M.Hallais and F.Falempin.Low Cost Ramjet Technology for Tactical Missile Application.AIAA-2002-3765
    [21]Ronald S.Fry.A Century of Ramjet Propulsion Technology Evolution.Journal of Propusion and Power,Vol.20,No.1,January-February 2004
    [22]杨可夫斯基.超视距杀手——俄罗斯中程空对空导弹.国际展望,2005.3
    [23]周军,龙玉珍.亚燃/超燃冲压发动机研制动向.飞航导弹,1997.3
    [24]张家骅,胡顺楠等人.整体式固体火箭冲压发动机研制.推进技术,1998.4
    [25]张家骅.远程攻防对抗和高马赫数冲压发动机的研究.飞航导弹,1998.8
    [26]张炜,朱慧等人.冲压发动机发展现状及其关键技术.固体火箭技术,1998.9
    [27]张玲翔.美国弹用冲压发动机技术的进展.飞航导弹,1998.11
    [28]张家骅.国外超声速、高超声速导弹及无人机吸气式推进技术发展述评.航空兵器,2000.3
    [29]张炜,夏智勋等人.非壅塞固体火箭冲压发动机及其贫氧推进剂.国防科技大学学报,2002.4
    [30]郭健,张为华等人.固体燃料冲压发动机研究进展.固体火箭技术,2003.2
    [31]郑日恒.冲压发动机技术的发展动向与评论.飞航导弹,2004.1
    [32]胥会祥,蔚红建等人.富燃料推进剂的研制现状及展望.飞航导弹,2005.1
    [33]王克强,莫红军.贫氧推进剂的研究发展方向.飞航导弹,2005.6
    [34]R.Grohens and G.Lavergne,ed.An innovative numerical method for global performance prediction of ramjet combustion chambers.AIAA-2000-3345
    [35]A.Ristori and E.Dufour,Numerical Simulation of Ducted Rocket Motor.AIAA-2001-3193
    [36]R.A.Stowe,and C.Dubois,ed.Performance Prediction of a Ducted Rocket Combustor Using a Simulated Solid Fuel.Journal of Propusion and Power,Vol.20,No.5,September-October 2004
    [37]A.Gujarathi,D.Li,W.Anderson,and V.Sankaran.CFD Modeling of a Ducted Rocket Combined with a Fuel-Rich Primary Thruster.AIAA 2006-4577
    [38]Bayern-Chemie Protac delivers Meteor propulsion system.Jane's International Defence Review,2004.10
    [39]Meteor BVRAAM.Jane's Air-Launched Weapons,2006.6
    [40]Meteor loses its wings.Jane's Missiles and Rockets,2003.8
    [41]刘代军,崔颢.推力矢量控制技术与第四代空空导弹.航空兵器,2000.5
    [42]丛敏.快速霍克巡航导弹.飞航导弹,2002.11
    [43]K.Bowcutt,R.Burrows and J.Weir,Test techniques to determine Fasthawk missile aerodynamics including inlet effects.AIAA-99-0432
    [44]潘锦珊等编.气体动力学基础(修订版).国防工业出版社,1989
    [45]J.J.Mahoney.Inlets for Supersonic Missiles.AIAA Education Series,1992
    [46]G.E.Dumnov,ed.Advanced rocket engine nozzles.AIAA-96-3221
    [47]王永寿.导弹的推力矢量控制技术.飞航导弹,2005.1
    [48]杨晓光,林学书.R-73弹推力矢量及副翼系统结构分析.航空兵器,1998.2
    [49]杨可夫斯基.新时代格斗导弹领航员——R-73近程格斗导弹.国际展望,2005-3
    [50]R.W.MacCormack.A Perspective on a Quarter Century of CFD Research.AIAA 93-3291.
    [51]C.A.J.Fletcher.Computational Techniques for Fluid Dynamics,Springer-Verlag,1988.
    [52]E.M.Murmann,J.D.Cole.Calculation of Plane Steady Transonic Flows.AIAA J.,Vol.9,1971,pp.114-121.
    [53]A.Jameson.Iterative Solution of Transonic Flow over Airfoils and Wings,Including Flow at Mach 1.Comm.On Pure and Applied Math.,Vol.27,1974,pp.283-309.
    [54]W.F.Ballhaus,J.L.Steger.Implicit Approximate Factorization Schemes for the Low Frequency Transonic Equation.NASA TM-X-73082,1975.
    [55]T.L.Holst.An Algorithm for the Conservative Transonic Full Potential Equation Using an Arbitrary Mesh.AIAA 78-1113.
    [56]R.W.MacCormack.The Effect of Viscosity in Hypervelocity Impact Catering.AIAA 69-0354.
    [57]R.W.MacCormack.Numerical Solution of the Interaction of a Shock Wave with a Laminar Boundary Layer.Lecture Notes in Physics,Vol.18,1971,p.151.
    [58]R.W.MacCormack.Current Status of Numerical Solutions of the Navier-Stokes Equations.AIAA 85-0032.
    [59]R.M.Beam,R.F.Warming.An Implicit Finite-Difference Algorithms for Hyperbolic Systems in Conversation-Law Form.J.Comput.Physics,Vol.22,1976,pp.87-110.
    [60]R.M.Beam,R.F.Warming.An Implicit Factored Scheme for the Compressible Navier-Stokes Equation.AIAA J.,Vol.16,No.4,1978,pp.393-402.
    [61]T.H.Pulliam,D.S.Chaussee.A Diagonal Form for an Implicit Approximate Factorization Algorithm.J.Comput.Physics,Vol.39,1981,pp.347-363.
    [62]D.S.Chaussee,T.H.Pulliam.Two-Dimensional Inlet Simulation Using a Diagonal Implicit Algorithm.AIAA J.,Vol.19,Feb.1981,pp.153-159.
    [63]T.H.Pulliam,J.L.Steger.Recent Improvement in Efficiency,Accuracy,and Convergency for Implicit Approximate Factorization Algorithm.AIAA 85-0360.
    [64]R.H.Bush,P.G.Vogel,W.P.Norby,B.A.Haeffele.Two Dimensional Numerical Analysis for Inlets at Subsonic through Hypersonic Speeds.AIAA 87-1751.
    [65]J.P.Thomas,C.E.Lan.The Simulation and Correction of Wind Tunnel Wall Interference on Delta Wing Lift Using Navier-Stokes and Euler Equations.AIAA 91-3300-CP.
    [66]马铁犹.计算流体力学.北京航空学院出版社,1986
    [67]刘导治.计算流体力学基础.北京航空航天大学出版社,1989
    [68]傅德薰.流体力学数值模拟.国防工业出版社,1993
    [69]苏铭德,黄素逸.计算流体力学基础.清华大学出版社,1997
    [70]朱自强等.应用计算流体力学.北京航空航天大学出版社,1998
    [71]A.Harten.On a Class of High Resolution Total-Variation-Stable Finite Difference Schemes.SIAM J.Num.Anal.,Vol.21,1984,pp.1-23.
    [72]H.C.Yee.Construction of Explicit and Implicit Symmetric TVD Schemes and Their Applications.J.Comp.Phys.,Vol.68,1987,pp.151-179.
    [73]H.C.Yee.Upwind and Symmetric Shock-Capturing Schemes.NASA TM-89464,1987.
    [74]C.J.Hwang,J.L.Liu.Locally Implicit Total-Variation-Diminishing Schenes on Unstructured Triangular meshes.AIAA J.,Vol.29,No.10,1991,pp.1619-1626.
    [75]M.Furukawa,M.Yamasaki,M.Inoue.A Zonal Approach for Navier-Stokes Computations of Compressible Cascade Flow Fields Using a TVD FiniteVolume Method.ASME 90-GT-260.
    [76]A.Harten,S.Osher.Uniformly High-Order Accurate Non-oscillatory Schemes Ⅰ.SIAM J.Num.Anal.Vol.24,1987,pp.279-309.
    [77]A.Harten,S.Osher,B.Engquist,S.R.Chakravarthy.Some Results on Uniformly High Order Accurate Essentially Non-Oscillatory Schemes.J.Appl.Numer.Math.,Vol.2,No.2,1986,pp.347-367.
    [78]J.Y.Yang.Uniformly Second-Order Accurate Essentially Non-Oscillatory Schemes for the Euler Equations.AIAA J.,Vol.28,No.12,1990,pp.2069-2076.
    [79]J.Y.Yang.Third-Order Non-Oscillatory Schemes for the Euler Equations.AIAA J.,Vol.29,No.10,1991,pp.1611-1618.
    [80]J.Y.Yang,C.A.Hsu.High-Resolution Non-Oscillatory Schemes for Unsteady Com- pressible Flows.AIAA J.,Vol.30,No.6,1992,pp.1570-1575.
    [81]J.Casper,H.L.Atkins.A Finite-Volume High-Order ENO Scheme for Two Dimensional Hyperbolic Systems.J.Comp.Phys.,Vol.106,1993
    [82]张涵信.无波动、无自由参数的耗散差分格式.空气动力学学报,Vol.6,No.2,1988,pp.143-165.
    [83]张涵信.差分计算中激波上、下游解出现波动的探讨.空气动力学学报,第一期,1984,pp.12-19.
    [84]邓小刚,张涵信.NND格式的推广及在粘流计算中的应用.空气动力学学报,Vol.12,No.2,1994,pp.121-129.
    [85]A.Jameson,W.Schmidt,E.Turkel.Numerical Solution of the Euler Equations by Finite Volume Methods Using Runge-Kutta Time Stepping Schemes.AIAA 81-1259.
    [86]E.Yurkel.Acceleration to a Steady State for the Euler Equations,in Numerical Methods for the Euler Equations of Fluid Dynamics.SIAM,1985,pp.281-311.
    [87]A.Moitra,E.Turkel,A.Kumar.Application of a Runge-Kutta Scheme for High-Speed Inviscid Internal Flows.AIAA 86-0104.
    [88]J.F.Thompson,E.U.A.Warsi,C.W.Mastin.Numerical Grid Generation.Elsevier Science Publishing Co.,1985.
    [89]J.F.Thompson,N.P.Weatherill.Aspects of Numerical Grid Generation:Current and Art.AIAA 93-3539.
    [90]D.J.Mavriplis.Adaptive Mesh Generation for Viscous Flows Using Delaunay Triangulation.J.Comp.Physics,Vol.90,No.12,1990,pp.271-291.
    [91]Y.J.Barth,N.L.Wiltberger,and A.S.Gandhi.Three-Dimensional Unstructured Grid Generation via Incremental Insertion and Local Optimization,In Software Systems for Surface Modeling and Grid Generation.Langley Research Center,Hampton,Virginia,April 1992.NASA Conference Publication 3143.
    [92]J.D.M(u|¨)ller,P.L.Roe,and H.Deconinck.A Frontal Approach for Node Generation in Delaunay Triangulations.Inter.J.Num.Methods in Fluids,Vol.17,No.3,1993,pp.241-255.
    [93] Y. Kallinderis and S. Ward. Prismatic Grid Generation for Three-Dimensional Complex Geometries. AIAA J., Vol.31, No.10,1993, pp.1850-1856.
    [94] K.R. Blake and G.S. Spragle. A 3D Delaunay Unstructured Grid Generator Applied to Trains, Planes, and Automobiles. AIAA 93-0673.
    [95] S. Pirzadeh. Unstructured Viscous Grid Generation by the Advancing-Layers Method. AIAA J., Vol.32, No.8, 1994, pp.1735-1737.
    [96] R.J. Busch. Computational Fluid Dynamics in the Design of the Northrop/ McDonnell Dougles YF-23 ATP Prototype. AIAA 91 -1627.
    [97] L.H. Bangert, L.E. Johnston, M.J. Schoop. CFD Application in F-22 Design.AIAA 93-3055.
    
    [98] 是勋刚.湍流.天津大学出版社, 1994
    [99] Fluent 5 User's Guide. Fluent Inc., 1998
    [100] B.A. Galperin and S.A. Orszag. Large Eddy Simulation of Complex Engineering and Geophysical Flows. Cambridge University Press, 1993.
    [101] B.E. Launder, D.B. Spalding. Lectures in Mathematical Models of Turbulence.Academic Press, London, England, 1972.
    [102] T.H. Shih, W.W. Liou, A. Shabbir, and J. Zhu. A New k- ∈ Eddy-Viscosity Model for High Reynolds Number Turbulent Flows: Model Development and Validation. Computers Fluids, Vol.24, No.3,1995, pp.227-238.
    [103] S.E. Kim, D. Choudhury, B. Patel. Computations of Complex Turbulent Flows Using the Commercial Code FLUENT. In Proceedings of the ICASE/LaRC/AFOSR Symposium on Modeling Complex Turbulent Flows, Hampton, Virginia,1997.
    
    [104] D.C. Wilcox. Turbulence Modeling for CFD. DCW Industries, Inc., CA, 1993.
    [105] S. Sarkar and L. Balakrishnan. Application of a Reynolds-Stress Turbulence Model to the Compressible Shear Layer. ICASE Report 90-18, NASA CR 182002,1990.
    [106] B.E. Launder and D.B. Spalding. The Numerical Computation of Turbulent Flows. Computer Methods in Applied Mechanics and Engineering, Vol.3, 1974,pp.269-289.
    [107] S.E. Kim, D. Choudhury. A Near-Wall Treatment Using Wall Functions Sensitized to Pressure Gradient. In ASME FED Vol.217, Separated and Complex Flows. ASME, 1995.
    [108] M. Wolfstein. The Velocity and Temperature Distribution of One-Dimensional Flow with Turbulence Augmentation and Pressure Gradient Int. J. Heat Mass Transfer, Vol.12,1969, pp.301-318.
    [109] H.C. Chen and V.C. Patel. Near-Wall Turbulence Models for Complex Flows Including Separation. AIAA J., Vol.26, No.6,1988, pp.641-648.
    [110] J.R. Viegas, M.W. Rubesin, C.C. Horstman. On the Use of Wall Functions as Boundary Conditions for Two-Dimensional Separated Compressible Flows.AIAA-85-0180.
    [111] R.W. MacCormack, A.J. Paullay. Computational efficiency achieved by time splitting of finite difference operators. AIAA 72-154.
    [112] T.J. Barth, D. Jespersen. The design and application of upwind schemes on unstructured meshes. AIAA-89-0366.
    [113] J.M. Weiss, W.A. Smith. Preconditioning Applied to Variable and Constant Density Flows. AIAA J., Vol.33, No.11, 1995, pp.2050-2057.
    [114] S. Venkateswaran, J.M. Weiss, C.L. Merkle. Propulsion Related Flowfields Using the Preconditioned Navier-Stokes Equations. AIAA-92-3437.
    [115] J.M. Weiss, J.P. Maruszewski, W.A. Smith. Implicit Solution of the Navier-Stokes Equations on Unstructured Meshes. AIAA-97-2103.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700