紫外光对有机修饰硅氧烷Sol-Gel过程的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有机硅氧烷是有机-无机杂化材料合成领域中的一类重要前驱体。其在不同条件下发生水解-缩合反应,通过溶胶-凝胶过程可以制备出多种结构各异、性能多样的杂化材料。这类杂化材料因其化学性质稳定、光学透明以及机械性能方面的优越性而被广泛应用于光学器件、电子元件、生物医学传感、催化、功能涂层和薄膜等领域,是当今材料科学领域的研究热点之一。
     尽管人们发现,紫外光辐射在利用硅氧烷的溶胶-凝胶过程制备有机-无机杂化材料上存在着传统热处理所没有的众多优势,例如固化迅速、可室温下操作、能耗低、污染小以及产物结构和性能更加优异等。通过传统溶胶-凝胶法制备的材料在后期的干燥和热处理过程中,缩合作用受到影响从而导致产物性能出现缺陷,而同等条件下光照处理的产品则能够有效的避免或减少这一缺陷。但大部分有关紫外光辐射对硅氧烷的溶胶-凝胶过程研究都集中在材料制备方面,且多数研究者认为光照能促进硅氧烷的水解和缩合反应,从而引起有机基团光解使其发生结构重排。然而,对于机理的研究还没有定论。同时,在含有双键的可聚合有机硅氧烷研究中,多注重光敏剂存在下的光引发有机端烯键聚合,而往往忽视紫外光辐射对无机端水解-缩合反应产生的影响。鉴于有机端含有可聚合烯键的甲基丙烯酸丙酯三甲氧基硅烷(3-Methacryloxypropyltrimethoxysilanesilane, MAPTMS)的广泛应用,拟通过对其在紫外光照与非光照条件下水解-缩合反应的比较性研究,揭示紫外光对有机硅氧烷水解-缩合反应的作用机制。这些研究结果无疑对优化杂化材料合成条件以及材料的可控性合成均具有重要的理论意义与应用价值。
     正鉴于此,本论文开展了以下两部分研究工作:
     第一,以甲基丙烯酸丙酯三甲氧基硅烷、辛基三甲氧基硅烷和丙基三甲氧基硅烷三种典型的有机硅氧烷作为前驱体,利用荧光探针技术、ATR-IR、1H NMR、13C NMR以及29Si NMR等手段对比性地在线追踪了三种前驱体在紫外光照与非光照条件下的水解-缩合反应过程。荧光探针实验结果表明:与非光照体系相比,芘在含疏水性取代基的有机硅氧烷水解-缩合体系中的基激缔合物荧光特征峰在反应前期明显而快速增长,而后期逐渐减弱。该结果间接表明紫外光对水解和缩合反应均具有促进作用。红外光谱结果表明:紫外光辐照有机硅氧烷体系,反应前期的Si-OH特征峰随时间明显增加,反应后期Si-O-Si特征振动峰明显增加。说明紫外光辐照有利于水解和缩合反应进行。Si相关物种的29Si NMR结果表明:非光照体系的水解和缩合反应几乎是伴随发生,因而主要形成线性的Si-O-Si链,交联产物相对较少。从体系的宏观表现而言,即使体系反应数月甚至一年尽管粘度增加,但未发现胶凝现象。相反,光照体系使交联相关Si物种的特征信号明显增加,且在宏观上表现出短时间内的胶凝现象。同时,含可聚合双键的MAPTMS体系红外光谱检测结果表明:在紫外光辐射下,其分子中的双键并未发生显著变化。热分析结果也从侧面证明有机取代基未发生明显分解。上述研究结果表明:紫外光辐射对有机硅氧烷水解-缩合反应的促进作用主要发生在无机端。其主要特征是:紫外光辐射可促进前驱体水解反应更完全,形成易于交联的相关物种,最终导致有机硅氧烷体系胶凝。
     第二,研究紫外光辐射对有机硅氧烷水解-缩合反应的影响与自由基间的关联性。可提供羟基自由基的Fenton反应体系可以使难于胶凝的有机硅氧烷在很短时间内胶凝,且形成坚硬而透明的材料,该结果显示:羟基自由基具有促进硅氧烷溶胶-凝胶体系的胶凝化;在紫外光辐射含强荧光特性Ce3+的MATPMS水解-缩合体系时,荧光强度显著降低,这一结果表明:具有荧光特性的Ce3+被氧化成无荧光特性的Ce4+。说明紫外光辐射体系含具有氧化性的自由基;当体系存在自由基清除剂肾上腺素时,紫外光辐照体系凝胶作用被明显阻碍,上述实验结果间接地证明了紫外光促进有机硅氧烷体系的凝胶作用与其引发自由基的存在有明显关联性。即紫外光辐射和自由基对于硅氧烷Sol-Gel过程的作用具有一定的等效性。本研究工作为紫外光辐射促进有机修饰硅氧烷Sol-Gel过程的机理探讨提供了极具价值的信息。
Organically Modified Siloxane is one of the most important precursors to prepare organic-inorganic hybridized materials. Many hybridized materials with a great diversity of structure and property have been synthesized through sol-gel process of organically modified siloxane. Based on the outstanding properties of this kind of materials in chemical inertness and optical transparency, this kind of materials have been widely used in optical and electrical materials, biomedical/medical sensors, catalyst, multifunctional coatings and films etc. Therefore, the researches related to the fundament and applcation of organically modified siloxane have been extensively concerned.
     The fact that sol-gel process of siloxanes treated with UV-irradiation has some advantages in preparation of organic-inorganic hybridized materials compared with traditional heat-treating has been found. The traditional heated treatment could make the crystal structure of products defective but UV-irradiation could avoide or decrease the defects efficiently. Most researchers speculated that the irradiation could enhance the hydrolysis and condensation of siloxanes due to photodegradation of the organic group and structural rearrangement. However, the mechanism regarding the process mentioned above is scarcely found in literatures. To get some information about the mechanism, octyltrimethoxysilane (OTMS), propyltrimethoxysilane(PTMS) and 3-methacryloxypropyltrimethoxysilanesilane (MAPTMS), the useful precursores, were selected, and the influences of UV photo-irradiation on the sol-gel process of the three precursors in molecular scale have been investigated by using various techniques including fluorescence spectrum, ATR-IR,1H NMR, 13C NMR and 29Si NMR. Based on the investigation of this research, the following results were obtained.
     First, the sol-gel processes of OTMS, PTMS and MAPTMS in HCl aqueous solution were respectively traced by fluorescence spectroscopy, ATR-IR,1H NMR,13C NMR and 29Si NMR. The results show that UV-irradiation could enhance the rates of hydrolysis and condensation of the three precursors throuth promotion of the complete hydrolysis of precursors and followed by the cross-linked condensation between the hydrolyzed products with multiple Si-OH groups. As a result, the corresponding gels quickly formed. According to the results from ATR-IR,1H NMR, and 13C NMR, the hydrolysis and condensation reactions of the siloxanes were dominant in presence of UV-irradiation. There are many Si-OH groups produced firstly and followed by the formation of Si-O-Si bonds. The 29Si NMR indicated that the condensation reaction accompanied with the hydrolysis reaction for the UV free system but the hydrolysis was predominant firstly to form the hydrolyzed species with multiple Si-OH groups and followed by cross-linked condensation. For UV free system, the lineary condensation products are dominant. For UV system, the cross-linked condensation products are preponderant.
     Second, based on the results from this research, some information about the mechanism on the effect of the UV-irradiation on the hydrolysis and condensation of organically modified siloxane were obtained. It was obseved that the siloxanes were easy to gel in presence of Fenton reagent containing free radicals. The results from the fluorescence probe of Ce3+ showed that the fluorescence intensity markedly decreased in presence of UV-irradiation, implying that Ce3+ was oxidized to Ce4+ without fluorescence by the free radicals produced by UV-irradiation. Interestingly, the scavenger of free radicals, adrenaline, was added to the UV-irradiation system to result in distinct retardation of the gelation. All aforementioned results indirectly proved that the effect of UV-irradiation on the gelation of organic siloxane is attibuted to free radical induced by UV-irradiation.
     All of the results in this research afforded some extremely valuable information on the mechanism of UV-irradiation promoting the hydrolysis and condensation reactions. It is sure that UV-irradiation and free radical are equivalent to influence the hydrolysis and condensation reactions of organic siloxane.
引文
[1]沈新春,王大喜,栗秀刚.聚倍半硅氧烷的研究现状和发展趋势[J].有机硅材料,2004,18:22-26.
    [2]李光亮.有机硅高分子化学[M].北京:科学出版社,1998:103.
    [3]R.H.Baney, M.Itoh, A.Sakakibara, et al.Silsesquioxanes [J].Chem.Rev., 1995,95:1409-1430.
    [4]Y. Abe, T. Gunji.Oligo-and polysiloxanes [J].Prog. Polym.Sci.,2004,29: 149-182.
    [5]D.W. Scott. Thermal rearrangement of branched chain methylpolysiloxanes [J].J.Am. Chem.Soc.,1946,68(3):356-358.
    [6]郭增昌,王云芳,王汝敏,郑水蓉.倍半硅氧烷合成进展[J].高分子通报,2006,1:16-27.
    [7]M.G.Voronkov, V.I.Lavrent'yev. Polyhedral oligosilsesquioxanes and their homo derivatives [J].Top.Curr. Chem.,1982,102:199-235.
    [8]马祥梅,秦基楼.多面体低聚倍半硅氧烷(POSS)的合成与应用研究进展[J].安徽化工,2009,35(1):14-16.
    [9]卢婷利,梁国正,宫兆合,任鹏刚,张增平.含倍半硅氧烷的杂化聚合物[J].高分子通报,2004,1:15-20.
    [10]L. A.Utracki.Clay-containing Polymeric Nanocompositions[M].UK:Rapra, 2004:66-68.
    [11]V.Santen, R. A. Abbenhuis, H.C. Louis, et al.Method for producing silasequioxane metal complexes, novel silasesquioxane metal complexes and use thereof. USP:6127557[P],1998-8-22.
    [12]王天玉,黄玉东,张学忠.笼型多面体低聚倍半硅氧烷研究进展[J].材料科学与工艺,2007,15(3):387-392.
    [13]I.J.Cho, J.Harcup, A. F. Yee, et al.Organic/inorganic hybrid composites from cubic silsesquioxanes [J].J.Am. Chem.Soc.,2001,123(31): 11420-11430.
    [14]M.Libor, D. Oxana, H.Drahomira, et al.Cyclization and self-organization in polymerization of trialkoxysilanes [J].Macromolecules,2001,34(16): 6904-6914.
    [15]D.A.Loy, B.M.Baugher, C.R. Baugher, et al.Substituent effects on the sol-gel cheistry of organotrialkoxysilanes [J].Chem Mater,2000,12(13): 3624-3632.
    [16]K. Piana, U.Shubert.Catalyst influence on the molarmass distribution of hydrolyzed (3-Glycidoxypropyl)trimethoxysilane and (3-Methacryloxypropyl)trimethoxysilane [J].Chem. Mater,1994,6(9): 1504-1508.
    [17]T. Kudo, M.S.Gordon. Exploring the mechanism for the synthesis of silsesquioxanes.3.The effect of substituents and water [J].J.Phys. Chem. A, 2002,106(23):11347-11353.
    [18]A.Sellinger, R.M.Laine. Silsesquioxanes as synthetic platforms.thermally curable and photocurable inorganic/organic hybrids [J].Macromolecules, 1996,29(8):2327-2330.
    [19]D. A.Loy, B.Mather, A.R.Strumanis, et al.Effect of pH on the gelation time of hexylene-bridged polysilsesquioxanes [J].Chem. Mater.,2004, 16(11):2041-2043.
    [20]C.X. Zhang, R.M.Laine. Hydrosilylation of allyl alcoholwith [HSiMe2OSiO1.5]g:octa(3-hydroxypropyldimethylsiloxy)octasilsesquioxane and its octamethacrylate derivative as potential precursors to hybrid nanocomposites [J].J.Am. Chem.Soc.,2000,122(23):6979-6988.
    [21]A.Sellinger, R.M.Laine. Silsesquioxanes as synthetic platforms.3. photocurable, liquid epoxides as inorganic/organic hybrid precursors [J]. Chem. Mater.,1996,8(3):1592-1593.
    [22]E.O. Dare, G. A.Olatunji, D.S.Ogunniyi.Organic-inorganic hybrid material. I.Synthesis, characterizaton, and thermal property of a novel polyhedral cubic silsesquioxane [J].J.App. Polym. Sci.,2004,93(2):907-910.
    [23]张利利,刘安华,曾幸荣.倍半硅氧烷的合成研究进展[J].化学通报,2006.69:1-7.
    [24]G. B.Hoflund, R. I.Gonzalez, S.H.Phillips. In-situ oxygen-atom erosion study of a polyhedral oligomeric silsesquioxane-polyurethane copolymer. J. Adhes. Sci.Technol,2001,15:1199-1211.
    [25]L. Pinchuka, G.J.Wilsonb, J.J.Barry, et al.Medical applications of poly(styrene-block-isobutylene-block-styrene)("SIBS")[J].Biomaterials, 2007,9(41):1-13.
    [26]F. J.Feher, K. D. Wynddam, R. K.Baldwin et al.Methods for effecting monofunctionalization of (CH2=CH)gSigO12 [J].Chem.Commun.,1999,14: 1289-1290.
    [27]陈辉,周树学,游波,武利民.取代基对聚倍半硅氧烷结构和表而特性的影响[J].材料科学与工程学报,2006,24(1):49—52.
    [28]D.A.Loy, K.J.Shea, et al.Bridged polysilsesquioxanes:Highly porous hybrid Organic-Inorganic Materials [J].Chem. Rev.,1995,95:1431-1442.
    [29]刘丰袆,符连社.桥联聚倍半硅氧烷的近期研究进展-单体合成及应用[J].化学通报,2003,6:382-387.
    [30]A.Dabrowski and M.Barczak. Bridged polysilsesquioxanes as a Promising Class of Adsorbents[J].Croat. Chem. Acta,2007,80:367-380.
    [31]P.Silberzan, L. L eger, et al.Silanation of silica surfaces.A new method of constructing pure or mixed monolayers [J].Langmuir,1991,7:1647-1651.
    [32]C.P. Tripp, M. L. Hair, et al.An infrared study of the reaction of octadecyltrichlorosilane with silica [J].Langmuir,1992,8:1120-1126.
    [33]A.N.Parikh. An intrinsic relationship between molecular structure in self-assembled n-alkylsiloxane monolayers and deposition temperature [J].J. Phys.Chem.,1994,98:7577-7590.
    [34]A.N.Arikh, M.A.Schivley, et al.n-Alkylsiloxanes:From single monolayers to layered crystals.The formation of crystalline polymers from the hydrolysis of n-Octadecyltri-chloroilane [J].J.Am.Chem.Soc.,1997,119: 3135-3143.
    [35]S.R. Carino, R. S.Duran, et al.Chemical cross-linking, surface compressional modulus, and viscosity of n-octadecyltrimetnoxy silane monolayer [J].J.Am.Chem. Soc.,2001,123:2103-2104.
    [36]H.Schmidt, B.Seiferling, et al.Better ceramics through chemistry Ⅱ [M]. Mater. Res. Soc.,1986,739.
    [37]M.Popall,H.Durand, et al.Inorganic-organic copolymers as solid state Li+ electrolytes [J].Electrochim.Acta,1992,37:1593-1597.
    [38]F. Zhang, M.P. Srinivasan, et al.Self-assembled molecular films of aminosilanes and their immobilization capacities [J].Langmuir,2004,20: 2309-2314.
    [39]G. Hernandez,R. Rodriguez, et al.Adsorption properties of silica sols modified with thiol groups [J].J.Non-Cryst. Solids,1999,246:209-215.
    [40]M.Abdelmouleh, S.Boufi,et al.Interaction of silane coupling agents with cellulose [J].Langmuir,2002,18:3203-3208.
    [41]P. Innocenzi,G Brusatin, et al.Competitive polymerization between organic and inorganic networks in hybrid materials [J].Chem. Mater.,2000,12: 3726-3732.
    [42]J.J.E.Moreau, L. Vellutini,et al.New hybrid organic-inorganic solids with helical morphology via H-bond mediated sol-gel hydrolysis of silyl derivatives of chiral (R,R)-or (S,S)-diureidocyclohexane [J].J. Am. Chem. Soc.,2001,123:1509-1510.
    [43]M.Barboiu, S.Cerneaux, et al.Ion-driven ATP pump by self-organized hybrid membrane materials [J].J.Am.Chem. Soc.,2004,126:3545-3550.
    [44]D.GBucknall,H.L.Anderson.Polymers Get Organized [J].Science 2003, 302:1904-1905.
    [45]徐彩宣,陆文雄.有机硅化合物的疏水性能及其在水性建筑涂料中的应用研究进展[J].上海大学学报,2000,6:420-424.
    [46]孙江安.界面科学与硅烷系防水涂料[J].化学建材,1996,12:9-10.
    [47]D. P. Dworak, M.D.Soucek.Protective space coatings:a ceramer approach for nanoscale materials [J].Progr. Org. Coatings,2003,47:448-457.
    [48]余慧明,陈雪梅.沉淀纳米SiO2的聚硅氧烷原位改性及应用研究[J].化工新型材料,2008(36):74-76.
    [49]胡生隆,冯武.环糊精侧基聚硅氧烷的合成及其应用研究[J].针织工业,2009(10):58-80.
    [50]R. Murthy, C.D.Cox, M.S.Hahn, et al.Protein-resistant silicones: incorporation of poly(ethyleneoxide) via siloxane tethers [J]. Biomacromolecules,2007,8(10):3244-3252.
    [51]M.Oaten, N. R. Choudhury. Silsesquioxane-urethane hybrid for thin film applications [J].Macromolecules,2005,38(15):6392-6401.
    [52]M.Rutnakornpituk, P. Ngamdee. Surface and mechanical properties of microporous membranes of poly(ethyleneglycol) epolydimethylsiloxane copolymer/chitosan [J].Polymer,2006,47(23):7909-7917.
    [53]B.L. Frankamp, N.O.Fischer, R. Hong, et al.Surface modification using cubic silsesquioxane ligands. Facile synthesis of water-soluble metal oxide nanoarticles[J].Chem. Mater.2006,18(4):956-959.
    [54]W. J.Lin, W. C. Chen, W. C.Wu, et al.Synthesis and optoelectronic properties of starlike polyfluorenes with a silsesquioxane core [J]. Macromolecules,2004,37(7):2335-2341.
    [55]J.Lee, H.J.Cho, B.J.Jung, et al.Stabilized blue luminescent polyfluorenes: introducing polyhedral oligomeric silsesquioxane [J].Macromolecules,2004, 37 (23):8523-8529.
    [56]R. M.Laine, J.Choi, et al.Organic/inorganic nanocomposites with completely defined interfacial interactions [J].Adv. Mater.,2001,13: 800-803.
    [57]R.Lindberg, G.Sundholm, G. Oye, J. Sjoblom.A new method for following the kinetics of the hydrolysis and condensation of silanes [J].Colloids and Surface,1998,135:53-58.
    [58]王喜贵,赵惠,张强,吴红英.正硅酸乙酯水解过程的研究进展[J].内蒙古石油化工,2001,24:17~19.
    [59]R. J.Hook. A 29Si-NMR Study of the sol-gel polymerisation rates of substituted ethoxysilanes [J].J.Non-Cryst. Solids,1996,195:1-15.
    [60]K. D.Keefer. Silicon-Based Polymer Science:A comprehensive resource [M]. Am.Chem. Soc.,1990:227-240.
    [61]L. L. Hench, D.R..Ulrich. In ultra structure processing of ceramics, glasses, and composites [C].John Wiley and Sons, New York,1984:100-125.
    [62]C. J.Brinker. Hydrolysis and condensation of silicates:effects on structure [J].J.Non-Cryst.Solids,1988,100:31-50.
    [63]余锡宾,吴虹.正硅酸乙酯的水解、缩合过程研究[J].无机材料学报,1996,11(4):703-707.
    [64]C.J.Brinker, G.W. Scherer. Sol-Gel Science:The physics and chemistry of sol-gel processing [M].Academic Press, Inc.:New York,1990.
    [65]C.V. Santilli,V. H.V. Sarmento, K. Dahmouche, S.H.Pulcinelli,A.F. Craievich. Effects of synthesis conditions on the nanostructure of hybrid sols produced by the hydrolytic condensation of (3-methacryloxypropyl)-trimethoxysilane [J].J.Phys.Chem.C,2009,113:14708-14714.
    [66]T. N. M. Bernards, M. J. van Bommela, A. H. Boonstra. Hydrolysis-condensation processes of the tetraalkoxysilanes TPOS, TEOS and TMOS in some alcoholic solvents [J].J.Non-Cryst.Solids,1991,134: 1-13.
    [67]M.J.van Bommela, T. N.M.Bernardsa, A.H.Boonstra. The influence of the addition of alkyl-substituted ethoxysilane on the hydrolysis-condensation process of TEOS [J].J.Non-Cryst. Solids,1991,128(3):231-242.
    [68]C.A.Fyfe, P. P. Areca, et al.A kinetic analysis of the initial stages of the sol-gel reactions of methyltriethoxysilane(MTES) and a mixed MTES/tetraethoxysilane system by highresolution 29Si NMR spectroscopy [J].J.Phys.Chem.B,1997,101:9504-9509.
    [69]L. Matejka, O. Dukh, et al.Cryclization and self-organization in polymerization of trialkoxysilanes [J].Macromolecules,2001,34: 6904-6914.
    [70]Y. Sugahara, T. Inoue.29Si NMR study on co-hydrolysis processes in Si(OEt)4-RSi(OEt)3-EtOH-water-HCl system (R=Me, Ph):effect of R groups [J].J.Mater. Chem.,1997,7:53-59.
    [71]F. Goethals, C.Vercaemst, V. Cloet, et al.Comparative study of ethylene-and ethenylene-bridged periodic mesoporous organosilicas [J].Microporous Mesoporous Mater.,2010,131:68-74.
    [72]D.D.Hu, C.C.Barghorn, M.Feuillade. Fluorescence study of the sol-gel process in hybrid precursors:evidence of concentration fluctuations at the local scale [J].J.Phys. Chem. B,2005,109:15214-15220.
    [73]辛玲玲,肖来龙,赵丽,陈曦,王小如.荧光猝灭响应的溶解氧有机改性溶胶-凝胶传感膜的构筑[J].科学通报,2006,51(18):2114-2118.
    [74]M.Llusar, G. Monros, C.Roux, et al.,One-pot synthesis of phenyl-and amine-functionalized silica fibers through the use of anthracenic and phenazinic organogelators [J].Mater. Chem.,2003,13(10):2505-2514.
    [75]J.X. Chen, M.D.Soucek. Photoinitiated cationic polymerization of cycloaliphatic epoxide with siloxane or alkoxysilane Functionalized Polyol Coatings [J].Eur. Polym. J.,2003,39(3):505-520.
    [76]S.Okuzaki,K. Okude, T. Ohishi.Photoluminescence behavior of SiO2 prepared by Sol-Gel processing [J].J.Non-Cryst. Solids,2000,265:61-67.
    [77]S.Okusaki,T. Ohishi.The Effect of Photo-irradiation in Hydrolysis and Condensation of Silicon Alkoxide [J].J. Non-Cryst. Solids,2003,319: 311-313.
    [78]T. Ohishi,S.Maekawa. Preparation and properties of anti-reflection /anti-static thin films for cathode ray tubes prepared by Sol-Gel method using photoirradiation [J].J.Sol-Gel Sci.Technol.,1997(8):511-515.
    [79]S.Maekawa, K. Okude, T. Ohishi.Synthesis of SiO2 thin films by sol-gel method using photoirradiation and molecular structure analysis [J].J. Sol-Gel Sci.Technol.,1994,2:497-501.
    [80]T. Ohishi.Preparation and properties of anti-reflection/anti-static thin films formed on organic film by photo-assisted Sol-Gel method [J].J.Non-Cryst. Solids,2003,332:87-92.
    [81]赵晓辉,沈淑坤,左冬梅,胡道道.紫外光辐射对有机硅氧烷水解缩合过程的影响研究[J].陕西师范大学学报,2008,36(4):51-55.
    [82]李钦玲.自由基反应[J].青海师专学报,1993,4:95-100.
    [83]J.Weiss. Investigation on the radical HO-in solution [J].Trans. Faraday Soc., 1935,31(3):668-675.
    [84]S.Meric, H.Selcuk, M.Gallo, V. Belgiorno. Decolourisation and detoxifying of remazol red dye and its mixture using Fenton's reagent [J].Desalination, 2005,173:239-248.
    [85]N.S.S.Mart'inez,J.F. Fernandez,X.F. Segura,A.S.Ferrer. Pre-oxidation of an extremely polluted industrial wastewater by the Fenton's reagent [J].J. Hazard. Mater.,2003,101:315-322.
    [86]S.H.Lin, M.L. Chen.Fenton process for treatment of desizing waste water [J].Water Res.,1997,31:2051-2056.
    [87]V. M.Graubner, R. Jordan, O. Nuyken. Photochemical modification of cross-linked poly(dimethylsiloxane) by irradiation at 172 nm [J]. Macromolecules,2004,37:5936-5943.
    [88]J.H.Kim, H.I.Lee. Effect of surface hydroxyl groups of pure TiO2 and modified TiO2 on the photocatalytic oxidation of aqueous cyanide [J]. Korean J.Chem.Eng.,2004,21(1):116-122.
    [89]G. J.M. Fechine, J.A. G. Barros, L.H.Catalani.poly(N-vinyl-2-pyrrolidone) hydrogel production by ultraviolet radiation:new methodologies to accelerate cross linking [J].Polymer,2004,45:4705-4709.
    [90]王德海,江棂.紫外光固化材料-理论与应用[M].北京:科学出版社,2001.
    [91]A. V.Cunliffe, S.Evans, D.A.Tod. Optimum preparation of silanes for steel pre-treatment [J].Int. J.Adhes. Adhes.,2001,21(4):287-296.
    [92]B.Alonso, D.Massiot, F. Babonneau. Structural control in germania hybrid organic-inorganic materials [J].Chem.Mater.,2005,17:3172-3180.
    [93]R. J.Hook. A 29Si NMR study of the Sol-Gel polymerisation rates of substituted ethoxysilanes [J].J. Non-Cryst. Solids,1996,195:1-15.
    [94]P. Innocenzi,G. Brusatin.Competitive polymerization between organic and inorganic networks in hybrid materials [J].Chem.Mater.,2000,12: 3726-3732.
    [95]M.Gnyba, M.Keranen, M.Kozanecki.Raman investigation of sol-gel derived hybrid polymers for optoelectronics [J].Opto-Electron. Rev.,2002, 10(2):137-143.
    [96]L. Matejka, O. Dukh, Drahomira. Cyclization and self-organization in polymerization of trialkoxysilanes [J].Macromolecules,2001,34: 6904-6914.
    [97]Y. Wei,D.Jin, D. J.Brennan. atomic force microscopy study of organic-inorganic hybrid materials[J].Chem. Mater.,1998,10:769-772.
    [98]K. Piana, U.Schubert. Catalyst influence on the molar mass distribution of hydrolyzed (3-Glycidoxypropyl) trimethoxysilane and (3-methacryloxypropyl)trimethoxysilane [J].Chem.Mater.,1994,6: 1504-1508.
    [99]Y.Kaneko, N.Iyi,K. Kurashima. Hexagonal-structured polysiloxane material prepared by sol-gel Reaction of aminoalkyltrialkoxysilane without using surfactants [J].Chem.Mater.,2004,16:3417-3423.
    [100]T. K. Tucker, J.D. Brennan.Fluorescent probes as reporters on the local structure and dynamics in sol-gel derived nanocomposite materials [J]. Chem. Mater.,2001,13:3331-3350.
    [101]S.Yano, K. Iwata, K. Kurita. Physical properties and structure of organic-inorganic hybrid materials produced by sol-gel process [J].Mater. Sci.Eng. C,1998,6:75-90.
    [102]R. Winter, D.W. Hua, X. Song. Structural and dynamical properties of the sol-gel transition [J].J.Phys. Chem.,1990,94:2706-2113.
    [103]F. M.Winnik. Photophysics of preassociated pyrene in aqeous polymer solutions and in other organized media [J].Chem. Rev.,1993,93:587-614.
    [104]Y. Itoh, H.Satoh, et al.Amphiphilic alternating carbazole copolymers: photophysical properties of poly[N-vinylcarbazole-altcitraconic acid] in aqueous solution[J].Macromolecules,1994,27:1434-1439.
    [105]L. N.Gao, Y. Fang, et al.Monomolecular layers of pyrene as a sensor to dicarboxylic acids [J].J.Phys. Chem.B,2004,108:1207-1213.
    [106]S.K. Shen, D.D.Hu. Fluorescent probe as reporter on the local structure and dynamics in hydrolysis-condensation process of organotrialkoxysilanes [J],J. Phys.Chem. B,2007,111:7963-7971.
    [107]X. C.Li,T. A.King, et al.Spectroscopic studies of sol-gel derived organically modified silicates [J].J.Non-Cryst. Solids,1996,204:235-242.
    [108]B.Riegel,W. Kiefer, et al.FT-Raman-spectroscopic investigation of the system glycidoxypropyltrimethoxysilane/aminopropyltriethoxysilane [J].J. Sol-Gel Sci.Technol.,1998,13:385-390.
    [109]R. Lindberg, G. Sundholm, et al.A new method for following the kinetics of the hydrolysis and condensation of silanes [J].Colloids Surf. A,1998,135: 53-58.
    [110]C. J. Morin, L. Geulin, et al. Study of the acid hydrolysis of (3-menthacryloxypropyl)trimethoxysilane by capillary electrophoresision-trap mass spectrometry [J].J.Chromatogr. A,2004,1032:327-334.
    [111]F. Frga, S.Burgo, E.R.Nunez. Curing kinetic of the epoxy system badge n=0/1,2 DCH by fourier transform infrared spectroscopy (FTIR) [J].J.Appl. Polym. Sci.,2001,82:3366-3372.
    [112]J.Oh, H.Imai,H.Hirashima. Direct deposition of silica films using silicon alkoxide solution [J].J.Non-Cryst. Solids,1998,241:91-97.
    [113]周宁琳等.有机硅聚合物导论[M].北京:科学出版社,2000:224.
    [114]Z. Sassi,J.C.Bureau, et al.Spectropscopic study of TMOS-TMSM-MMA gels previously identification of the networks inside the hybid material [J]. Vib. Spectrosc.,2002,28:299-318.
    [115]P. Innocenzi.Infrared spectroscopy of sol-gel derived silica-based films:a spectra-micro-structure overview [J].J.Non-Cryst. Solids,2003,316: 309-319.
    [116]Spectral database for organic compounds SDBS,National Institute of Advanced Industrial Science and Technology (AIST), SDBS No. 6845HSP-01-562. [DB]
    [117]冯圣玉,张洁等.有机硅高分子及其应用[M].北京:化学工业出版社,2004:421-423.
    [118]R. J.Hook.A 29Si NMR study of the sol-gel process polymerization rates of substituent ethoxysilanes[J].J.Non-Cryst. Solids,1996,195:1-15.
    [119]刘瑞丽,徐耀等.29Si NMR研究Stber反应的化学动力学[J].化学学报,2004,62(1):22-27.
    [120]O.Soppera, C.Barghorn, et al.Real-time FT IR study of free-radical UV-induced polymerization of hybrid sol-gel.I.Effect of silicate backbone on photopolymerization kinetics [J].J.Polym. Sci.,Part A:Polym.Chem., 2003,41:716-724.
    [121]E.I.Iiskola, et al.A 29Si and 13C CP/MAS NMR study on the surface species of gas-phase-deposited aminopropylalkoxysilanes on heat-treated silica [J].J. Phys. Chem. B,2004,108:11454-11463.
    [122]L. L. Hench, J.K. West. The sol-gel process[J].Chem.Rev.,1990,90: 33-72.
    [123]沈钟,赵振国等.胶体与表面化学[M].北京:化学工业出版社,2004:142-143.
    [124]B. Fubinia, E. Giamelloa, L. Pugliesea, M.Volante. Mechanically induced defects in quartz and their impact on pathogenicity [J].Solid State Ionics, 1989,32-33(1):334-343.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700