几类离散神经网络模型的动力学分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文首先介绍了几类离散神经网络模型的由来及其研究概况,利用Schauder不动点原理证明了一类具有广义输入输出函数的离散神经网络模型平衡点(也就是不动点)的存在性,利用Lyapunov函数逆定理给出了这类离散神经网络模型在时变权值下的一致渐近稳定性的充分条件。其次,利用反向可积极限方法证明了一类周期输入输出函数的离散神经网络模型在参数达到一定范围时产生Devaney意义下的混沌,并讨论了其一维情形的神经元模型出现倍周期分支和鞍-结点分支的情况。最后,利用重合度理论讨论了一类离散Cohen-Grossberg神经网络模型在定时滞和变时滞两种情形下周期解的存在性,并给出了这两种情形下周期解的存在唯一性及其全局指数稳定性的充分条件。
     在本文的第一章中,首先介绍了神经网络动力学中一些问题的研究背景,然后具体描述了几类重要的离散神经网络模型及其应用,阐述了用动力学方法研究神经网络的重要性,同时也给出了本文的结构。
     在本文的第二章中,首先介绍了一类具有广义输入输出函数的非自治离散神经网络模型,该模型把瞬时混沌神经网络模型中的输入输出函数推广到了一般的单调递增且连续可微的函数;其次,利用Schauder不动点原理和利用Lyapunov函数逆定理依次证明了模型平衡点的存在性和该模型在时变权值下的一致渐近稳定性;最后,对几个具体的例子进行数值模拟,数值模拟的结果更好地说明了我们的结论。
     在本文的第三章中,首先介绍了一类输入输出函数是正弦周期函数的离散神经网络模型,它比传统的单调输入输出函数的混沌神经网络模型具有更好记忆存储功能和更惊人的大存储容量;其次,利用倍周期分支和鞍-结点分支的判别法研究了一维正弦输出输入函数的神经元模型的分支情况;最后,利用反向可积极限方法证明了这类高维离散神经网络模型在参数达到一定范围时具有Devaney意义下的混沌,并给出了两个数值模拟的具体例子来进一步表明我们结论的正确性和有效性。
     在本文的第四章中,首先介绍了重合度理论,它是一些微分方程和差分方程证明周期解存在性的重要理论基础;其次,利用重合度理论和Lyapunov函数法,依次给出了一类定时滞和变时滞的离散Cohen-Grossberg神经网络模型周期解的存在性及其全局指数稳定性的充分条件;最后,同样给出了几个例子的数值模拟。
     本文的第五章列出了在离散神经网络模型中一些正在研究或者即将研究的问题。
In this thesis, we firstly introduce several class of discrete-time neural network models and the research progress of the neural networks. By Schauder fixed-point principle we prove the existence of an equilibrium (i.e. a fixed point) of a discrete-time neural network with generalized input-output function and by using the converse theorem of Lyapunov function we study the uniformly asymptotical stability of equilibrium in this discrete-time neural network with variable weight and give some sufficient conditions that guarantee the stability of it. Secondly, the existence of chaos in a special class of discrete-time neural network models with sinusoidal activation function in the sense of Devaney with some parameters of the systems entering some regions are rigorously presented by means of anti-integrable limit method. What's more, period-doubling bifurcation and saddle-node bifurcation in the neuron model are studied. Finally, the existence and global exponential stability of periodic solutions in a discrete-time Cohen-Grossberg neural network with variable and invariable delay are investigated by using the continuation theorem of coincidence degree theory. And sufficient conditions are given to guarantee the existence ofω—periodic solution and all other solutions are convergent to it globally exponentially.
     This thesis is divided into five chapters. In chapter 1, we introduce the mathematical models and the research progress for the discrete-time neural networks. We illustrate several class of important discrete-time neural networks and show that it is necessary to analysis the stability and the complex dynamics in the concrete mathematical models.
     In chapter 2, we firstly introduce the model of a discrete-time neural network with generalized input-output function. The model generalizes the input-output function in transiently chaotic neural network to a class of continuous, differentiable and monotone increasing functions. Secondly we study the uniformly asymptotical stability of equilibrium in the non-autonomous model. Finally, several examples and numerical simulations are given to illustrate and reinforce our theories.
     In chapter 3, we firstly introduce a specific class of discrete-time neural network models with sinusoidal activation function. This class of models have the ability of embedded pattern retrieval in the neural network beyond the conventional one with a monotonous activation function and possess a remarkably larger memory capacity than the conventional association system. Secondly, We obtain some sufficient conditions to ensure that there exists period-doubling bifurcation and saddle-node bifurcation in the neuron model. Finally, By means of anti-integrable limit method, the existence of chaos in the discrete-time neural network models in the sense of Devaney with some parameters of the systems entering some regions are rigorously presented. In addition, several concrete examples with their numerical simulations are further provided to reinforce our theoretical results.
     In chapter 4, we first introduce the continuation theorem of coincidence degree theory. It is very important theoretical basis for some differential equations and difference equations to prove the existence of the periodic solution. Secondly, the existence and global exponential stability of periodic solutions in a discrete-time Cohen-Grossberg neural network with variable and invariable delay are investigated by using the continuation theorem of coincidence degree theory. And sufficient conditions are given to guarantee the existence ofω—periodic solution and all other solutions are convergent to it globally exponentially.
     At the end of this dissertation, we list some problems for our future works which include stability and chaos in some more complex neural networks.
引文
[1] L. Chen and K. Aihara, Chaos and asymptotical stability in discrete-time neural networks, Physica D., 104(1997), 286-325.
    [2] D. Liu and A. N. Michel, Asymptotical stability of discrete-time systems with saturation nonlinearities with applications to digital filters, networks, IEEE. Trans. Circus. Syst. I., 39(1992), 798-807.
    [3] Z. Guan, G. Chen and Y. Qin, On equilibria, stability, and instability of Hopfields neural networks, IEEE. Trans. Neural Networks, 11(2000), 534-540.
    [4] J. Wang, L. Chen and Z. Jing, Chaos and asymptotically in discrete-time recurrent neural networks with generalized input-output function, Science in China, 44A: 2(2001), 193-200.
    [5] J. T. Schwartz, Nonlinear Functional Analysis, Gordon and Breach Science Publishers, New York, 1969.
    [6] J. Ruan, W. Lin, W. Zhao, On the mathematical clarification of the snap-back-repeller in high-dimensional system and chaos in a discrete neural network model, International Journal of Bifurcation and Chaos, 12: 5(2002), 1129-1139.
    [7] W. Zhao, W. Lin and R. Liu, Asymptotical stability in discrete-time neural networks, IEEE Trans. Circuits and Systems I, 49(2002), 1516-1520.
    [8] K. Aihara, T. Takabe and M. Toyoda, Chaotic neural networks, Phys. Lett. A., 144: 6/7(1990), 333-340.
    [9] D. Fang and T. G. Kincaid, Stability analysis of dynamical neural networks, IEEE Trans. Neural Networks, 7(1996), 996-1005.
    [10] V. L. Kocic and G. Ladas, Golbal Behavior of Nonlinear Difference Equations of Higher Order with Applications, Boston, MA: Kluwer, 1993.
    [11] A. N. Michel and K. Wang, Qualitative Theory of Dynamical System, New York: Marcel Dekker, 1995.
    [12] Ravi P. Agarwal, Difference Equations and Inequalities: Theory, Methods, and Applications, Marcel Dekker, Inc., 1995.
    [13] 刘荣颂,混沌离散神经网络的动力学行为,硕士论文,2002.
    [14] 阮炯,顾凡及,蔡志杰,神经动力学模型方法和应用,科学出版社,2002。
    [15] A.N.等著,张化光等译,递归人工神经网络的定性分析和综合,科学出版社,20024。
    [16] M. Adachi and K. Aihara. Associative dynamics in a chaotic neural networks. Neural Networks 1997, 10, 83-98.
    [17] H. N. Agiza. On the analysis of stability, bifurcation, chaos and chaos control of Kopel map. Chaos, Solitons and Fractals 1999, 10, 1906-1916.
    [18] K. Aihara, T. Takabe, and M. Toyoda. Chaotic neural networks. Phys. Lett. A 1990, 144, 333-340.
    [19] L. Chen and K. Aihara. Chaos and asymptotical stability in discrete-time neural networks. Phys. D 1997, 104, 286-325.
    [20] L. Chen and K. Aihara. Global searching ability of chaotic neural networks. IEEE. Trans. Circus. Syst. I 1999, 48, 974-993.
    [21] L. Chen and K. Aihara. Chaotic simulated annealing by a neural networks model with transient chaos. Neural Networks 1995, 8, 915-930.
    [22] X. Gong. On the control of chaotic neurons. Chaos Solitons and Fractals 1996, 7, 1397-1409.
    [23] L. Chen and K. Aihara. Chaotic simulated annealing and its application to a maintenance scheduling problem in a power system. Int. Symp. on Nonlinear Theory and Its Appl, Hawaii, USA, 1993, 2, 695-700.
    [24] L. Chen and K. Aihara. Transient chaotic neural networks and chaotic simulated annealing. Towards the Harnessing of Chaos. ed. M. Yanmaguti (Elsevier, Amsterdam, 1994), 6459-6489.
    [25] L. Chen and K. Aihara. Chaotic simulated annealing by a neural network model with transient chaos. Neural Networks 1995, 8, 199-223.
    [26] L. Chen and K. Aihara. Strange attractors in chaotic neural networks. IEEE Transaction on circuits and systems I 2000, 47, 1455.
    [27] J. Hopfield and A. V. M. Herz. Rapid local synchronization of action potentials: towards computation with coupled integrate-and-fire neurons. Proc. Nat. Acad. Sci 1995, 92, 6655-6662.
    [28] Z. Yuan, D. Hua, and L. Huang, Stability and bifurcation analysis on a discrete-time neural network. Journal of Computational and Applied Mathematics 2005, 177, 89-100.
    [29] H. Zhu, L. Huang. Dynamics of a class of nonlinear discrete-time neural networks. Computers and Mathematics with Applications 2004, 48.
    [30] K. C. Tana, H. J. Tanga, and Z. Yib. Global exponential stability of discrete-time neural networks for constrained quadratic optimization. Neurocomputing 2004, 56, 399-406.
    [31] S. Mohamad and K. Gopalsamy. Exponential stability of continuous-time and discrete-time cellular neural networks with delays. Applied Mathematics and Computation 2003, 135, 17-38.
    [32] S. Mohamad and K. Gopalsamy. Dynamics of a class of discrete-time neural networks and their continuous-time counterparts. Mathematics and Computers in Simulation, 2000, 53, 1-39.
    [33] Z. Zhou and J. Wu. Stable periodic orbits in nonlinear discrete-time neural networks with delayed feedback. Computers and Mathematics with Applications 2003, 45, 935-942.
    [34] F. Chen and Z. Liu. Chaotic stationary solutions of cellular neural networks. Int. J. of Bifur. and Chaos 2003, 11, 3499-3504.
    [35] M. Nakagawa. A study of chaos neural network with a periodic activation function. 2nd New Zealand Two-Stream International Conference on Artificial Neural Networks and Expert Systems (ANNES'95) November 20-23, 1995 Dunedin, New Zealand.
    [36] W. Lin, Some theoretical problems in complex systems and their applications, PhD. dissertation, Inst. of Math., Fudan Univ., Shanghai, China, 2002.
    [37] W. Lin. Rigorous chaotic dynamics in discrete-time neural network models. preprint, 2005.
    [38] G. Chen, S. Hsu, J. Zhou, Snap-back repellers as a cause of chaotic vibration of the wave equation with a Van der Pol boundary condition and energy injection at the middle of the span. J. Math. Phys. 1998, 39(12), 6459.
    [39] F. R. Marotto. Snap-back repellers imply chaos in R~n. J. Math. Anal. Appl. 1978, 63, 199-223.
    [40] W. Lin, J. Wu, and G. Chen, Generalized Snap-back repellers and semiconjugacy to shift operators of piecewise continuous transformations. preprint, 2005.
    [41] T. Y. Li and J. A. Yorke. Period three implies chaos. Amer. Math. Monthly 1975, 82, 985-992.
    [42] C. Robinson. Dynamical Systems: Stability, Symbolic Dynamics, and Chaos. (Florida: CRC Press 1998).
    [43] M. Martelli, M. Dang, and T. Seph. Defining chaos. Math Mag 1998, 71, 112-122.
    [44] R. L. Devaney. An introduction to chaotic dynamical systems.(New York: Addison-Wesley Publishing Company 1987).
    [45] S. Aubry and A. Abramovici. Chaotic trajectories in the standard map, the concept of anti-integrability. Phys. D 1990, 43, 199-219.
    [46] R. S. Mackay and S. Aubry. Proof of existence of breather for timereversible or Harmiltonian networks of weakly coupled oscillators. Nonlinearity 1994, 7, 1623-1643.
    [47] R. S. Mackay and J. A. Sepulchre. Multistability in networks of weakly coupled bistable units. Phys. D 1995, 82, 243-254.
    [48] S. Aubry. Breathers in nonlinear lattices: existence, linear stability and quantization. Phys. D 1997, 103, 201-250.
    [49] Y. Zheng, G. Chen, and Z. Liu. On chaotification of discrete systems. Int. J. of Bifur. and Chaos 2003, 13, 3443-3447.
    [50] E. Zeidler. Nonlinear functional analysis and its applications. Vol. Ⅰ. Fixed-Point Theorems. (Springer, Berlin 1986).
    [51] Ruan Jiong, Zhao Weirui, Liu Rongsong, Chaos in transiently chaotic neural networks. Applied Mathematics and Mechanics(English Edition), 2003, 24(8), 989-996.
    [52] 张强等具有暂态混沌动力学的神经网络及其在函数优化计算中的应用.自然科学进展 2003,13(1),104-107.
    [53] Clark Robinson. Dynamical systems: stability, symboic dynamics, and chaos. CRC Press, Boca Raton, London New York, Washington, D. C. 1999.
    [54] M. Nakagawa, A chaos associative model with a sinusoidal activation function. Chaos, solitons and Fractals, 10(9), 1437-1452, 1999.
    [55] M. Nakagawa, A super memory retrieval with chaos associative model. Journal of the Physical Society of Japan, 68(7), 2457-12465, 1999.
    [56] M. A. Cohen, S. Grossberg. Absolute stability and global pattern formation and parallel memory storage by competitive neural networks. IEEE Trans. Systems Man Cybernet 1983; SMC-13; 815-821.
    [57] L. Wang, X. Zou. Exponential stability of Cohen-Grossberg neural networks. Neural Networks 2002; 15; 415-422.
    [58] A. Michel, K. Wang. Qualitative analysis of Cohen-Grossberg neural networks with multiple delay. Phys. Rev. E 1995; 51; 2611-2618.
    [59] Tianping Chen, Libin Rong. Delay-independent stability ananlysis of Cohen-Grossberg neural networks. Physics letters A 2003; 317; 436-449.
    [60] L. Wang, X. F. Zhou. Harmless delays in Cohen-Grossberg neural network. Physica D 2002; 170; 162-173.
    [61] Yongkun Li. Existence and stability of periodic solutions for CohenGrossberg neural networks with multiple delays. Chaos, Solitons and Fractals 2004; 20; 459-466.
    [62] Xiaofeng Liao, Chunguang Li, Kwok-wo Wong. Criterica for exponential stability of Cohen-Grossberg neural networks. Neural networks 2004; 17; 1401-1414.
    [63] Gain R. E, Mawhin J. L, Coincidence Degree and Nonlinear Differential Equations[M]. Lecture Note in Math, 567; Berlin: Springer-Verlag 1977; 40-41.
    [64] Lan Xiang, Jin Zhou, Zengrong Liu, Shu Sun. On the asymptotic behavior of Hopfield neural network with periodic inputs. Applied Mathematics and Mechanics 2002; 23(12); 1220-1226.
    [65] Zhang Chen, Jiong Ruan. Global stability analysis of impulsive CohenGrossberg neural networks with delay. Physics Letters A 2005; 245; 101-111.
    [66] S. Guo, L. Huang. Hopf bifurcating periodic orbits in a ring of neurons with delays. Physica D 2003; 183; 19-44.
    [67] Yongkun Li. Global stability and existence of periodic solutions of discrete delayed cellular networks. Physics Letters A 2004; 333; 51-61.
    [68] Jinde Cao. Periodic solution and exponential stability for cellular neural networks with delays. Science in China(Series E) 2000; 30(6); 541-549.
    [69] Wenlian Lu, Tianping Chen. On Periodic Dynamical Systems. Chin. Ann. Math.(series B) 2004; 25(4); 455-462.
    [70] Lin Wang. Stability of Cohen-Grossberg neural networks with distributed delays. Applied Mathematics and Computation 2005; 160; 93-110.
    [71] Shangjiang Guo, Lihong Huang. Periodic oscillation for discrete-time Hopfield neural networks. Physics Letter A 2004; 329; 199-206.
    [72] Z. H. Guan, James Lain, and G. R. Chen. On impulsive autoassociative neural networks. Neural Networks 2000; 13; 63-69.
    [73] Wenjun Xiong, Jinde Cao. Global exponential stability of discrete-time Cohen-Grossberg neural networks. Neurocomputing 2005; 64; 433-446.
    [74] S. Mohamad, K. Gopalsamy. Exponential stability of continuous-time and discrete-time cellular neural networks with delays. Applied Mathematics and Computation 2003; 135; 17-38.
    [75] W. S. McCulloch, W. Pitts. Alogical calculas of ideas immanent in nervous activity. Bull. Math. Biophysics 1949; 5; 115-133.
    [76] Weirui Zhao, Dynamics of Transiently Chaotic Neural Networks and A Class of Delay Differential Equations, PhD. dissertation, Inst. of Math., Fudan Univ., Shanghai, China, 2003.
    [77] A. L. Hodgkin, A. F. Huxley. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol 1952; 117; 500-544.
    [78] T. R. Chay, Chaos in a three-variable model of an excitable cell, Physica. D. 1985; 16; 233-242.
    [79] 向兰等,具有周期输入Hopfield型神经网络的全局渐近性质.应用数学和力学,2002,23(12),1220-1226.
    [80] 阮炯,具有非对称权矩阵的连续Hopfield神经网络的稳定性分析.复旦学报,1992,31(2),227-232.
    [81] J. Ruan, L. Li, W. Lin. Dynamics of some neural network models with delay. Phys. Review E, 2001, 63(2), 1.
    [82] 廖晓昕等,Stability of general neural networks with reaction-diffusion.中国科学F辑(英文版),2001,44(5),389-395.
    [83] Luo Qi,Deng Feiqi,Bao Jundong,Zhao Birong,FU Yuli,Stabilization of stochastic Hopfield neural network with distributed parameters.中国科学F辑(英文版)2004,47(6),752-762.
    [84] S. Mohamad, K. Gopalsamy Dynamics of a class of discrete-time neural networks and their continuou-time counterparts. Mathematics and Computers in Simulation, 2000, 53, 1-39.
    [85] Guo Zhiming, Yu Jianshe, Existence of periodic and subharmonic solutions for second-order superlinear difference equations. 中国科学A辑(英文版), 2003, 46(4), 506-515.
    [86] 赵维锐,阮炯,具时滞的连续神经网络的稳定性分析.复旦学报 1994,33(2).
    [87] 阮炯,具有延时的神经网络的稳定动力学行为分析.复旦学报 1995,34(2).
    [88] 谢惠琴,王全义.时延细胞神经网络的概周期解的存在性和指数稳定性.数学研究 2004,37(3),272-278.
    [89] 朱惠延,黄立宏.一类二元离散神经网络模型的渐近性.数学研究与评论 2004,24(2),267-272.
    [90] 阮炯,具时滞的非线性神经网络连续系统的混沌.复旦学报,1994,33(3).
    [91] Jinde Cao, Jinling Liang, Boundedness and stability for Cohen-Grossberg neural network with time-varying delays. J. Math. Anal. Appl. 2004, 296(12), 665-685.
    [92] Daoyi Xu, Linshan Wang. Globally exponential stability of Hopfield reaction-diffusion neural networks with time-varying delays. 中国科学F辑(英文版)2003, 46(6), 466-474.
    [93] 曹进德,时延细胞神经网络的指数稳定性和周期解.中国科学E辑,2000,30(6),541-549.
    [94] Rong Linbin, Lu Wenlian, Chen Tianping. Golbal exponential stability in Hopfield and bidirectional associative memory neural networks with time delays.数学年刊B辑(英文版)2004,25(2),255-262.
    [95] Jack K. Hale, H. Kocak. Dynamics and Bifurcations. Springer-Verlag, New York Berlin Heidelberg London Paris, Tokyo Hong Kong Barcelona Budapest, 1991.
    [96] Robert L. Devaney. An Introduction to Chaotic Dynamical Systems(second edition). Addison-Wesley Pubilishing Company, Inc. 1989.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700