齿轮系统的混沌控制及仿真
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于混沌动力学的混沌控制研究是当前非线性动力学的前沿问题。本文对综合考虑时变刚度、间隙非线性的齿轮系统的混沌动力学行为及其混沌控制问题进行了系统、深入的研究,取得了一些成果和进展,论文主要内容如下:
     1.针对单级齿轮系统,分别建立了具有分段线性特征的单自由度非线性动力学模型、综合考虑齿侧间隙和时变啮合刚度的三自由度非线性动力学模型,利用数值积分方法计算了系统的混沌响应,计算了系统的Lyapunov指数谱。
     2.研究了增量谐波平衡法在具有分段线性特征的齿轮系统中的应用和对分段线性项的特殊处理过程,以及利用Floquet理论对周期解的稳定性和分岔类型的进行判定的方法。分析了激励频率,轴承阻尼这些参数对系统动力学特性的影响,绘制了系统随激励频率变化的响应曲线,观测到系统通向混沌的倍周期分岔和拟周期分岔路径,以及导致系统出现多重稳态周期解的鞍。结分岔。研究表明,IHB方法计算得到的周期解能很好地与采用数值积分方法计算得到的结果相吻合。算例展示了IHB方法在求解具有分段线性特征的三自由度齿轮系统周期解的有效性和准确性。
     3.探讨了传统OGY方法的基本原理及其与现代控制理论的关系,证明了OGY控制方法其实质是一种特殊的极点配置技术;研究了如何将传统的OGY混沌控制方法拓展应用在齿轮系统这样的连续系统上,包括通过打靶法计算目标周期轨道位置,通过微分方程的变分形式计算目标周期轨道点处的Jacobi矩阵和敏感度向量;通过数值仿真成功地实现了单自由度齿轮系统多周期轨道的稳定化;给出了详尽的单自由度齿轮系统混沌控制的效果分析。
     4.在对齿轮系统混沌吸引子内部不稳定周期解分析的基础上,提出一种多步混沌控制的方法。分析表明齿轮系统在一定参数区域具有典型的非双曲性质,表现在周期轨道点处的不稳定维数和稳定维数变异、Jacobi矩阵存在位于单位圆上的复共轭特征值。因此针对不稳定维数和稳定维数发生变异的两种情况,分别建立相应的混沌控制策略,通过连续的参数扰动将系统状态驱动到周期轨道的局部稳定流形上。多步控制方法本质上是经典OGY控制算法在高维非双曲动力系统中的推广,并解决了具有复共轭特征值的长周期轨道控制的难题。
     5.利用延迟坐标技术建立了三自由度齿轮系统的混沌控制方案。通过对系统状态标量时间序列的分析,分别利用平均互信息函数方法和平均伪最近邻点方法获得了重构齿轮系统相空间的最优延迟时间和最小嵌入维数,建立了构建齿轮系统延迟坐标向量的完整方案。提出了在状态加参数系统中实现周期轨道稳定化的混沌控制算法,研究了从实测时间序列获得实现控制所需的各项参数的数据分析方法。数值仿真结果证实了混沌控制方法的有效性。
     6.在齿轮动力学试验台上对齿轮系统的动态响应进行了测试,与理论计算结果进行了比较,证明了分析模型和计算机方法的有效性。
Chaos control research based on the chaotic dynamics is the frontier problem inmodem nonlinear dynamics. The chaotic dynamics and chaos control issue ofnonlinear geared system with time-varying mesh stiffness and backlash has beenextensively studied in this dissertation, the main research works are as follows:
     1. For single-stage geared rotor-bearing system, a single-degree-of-freedomnonlinear dynamics model with piecewise linearity characteristic, and a3-degree-of-freedom nonlinear dynamics model involving gear backlash andtime-varying mesh stiffness are respectively developed. The chaotic responses of thetwo systems are calculated through numerical integration. The Lyapunov exponentspectrum of 3-d.o.f system is also calculated and plotted.
     2. The application and the special treatment process for piecewise linear items ofincremental harmonic balance method(IHB) in solving periodic motions of gearedsystem are studied. The method to determine the stability of the periodic motion andits bifurcation types by Floquet theory is also investigated. The effects of theparameters such as exciting frequency and bearing damping on the system dynamicsare studied, the response diagrams for exciting frequency are plotted. Period-doublingbifurcation route to chaos, quasi-periodic bifurcation route to chaos and multiplesteady state periodic solutions caused by saddle-node bifurcation are observed in someparameter regions. It is shown that IHB method can be used to seek both the stable andunstable periodic solutions which compare very well with the results obtained usingnumerical integration. The example shows the effectiveness and accuracy of IHBmethod for computing the periodic solutions of 3-d.o.f. geared system with piecewiselinearity characteristic.
     3. The principle of traditional OGY chaos control method and its relationship withmodem control theory are studied. It has been proved that OGY method is a specialpole placement technique in essence. The procedures to extend and adapt the OGYmethod into continuous system such as geared system are investigated, including theprocess of locating unstable period orbits(UPO) by shooting method, computing the Jacobian matrices and sensitivity vectors by variational form of differential equations.The stabilization of high period UPOs is achieved through numerical simulation. Theextensive effect analysis of chaos control of s.d.o.f geared system is presented.
     4. A multi-step chaos control method is presented to realize the stabilization ofUPOs embedded in the chaotic attractor of 3.d.o.f. geared system. By means of theanalysis of the structure of system's UPOs. the existence of complex-conjugateeigenvalues on the unit circle along UPOs and unstable dimension or stable dimensionvariability of the UPOs indicate the nonhyperbolicity of the geared system. The controlmethod is set up for the situations of unstable dimension and stable dimensionvariability respectively to drive the system state to lie on the local stable manifold ofUPOs through continuous parametric perturbations. The method is essentially thegeneralization of classical OGY method in nonhyperbolic and high-dimensionalsystem. Numerical simulation verifies the effectiveness of the control method for theUPOs even with long period.
     5. Assuming the prior knowledge of the geared system's dynamics is unknown, acomplete chaos control scheme is derived using delay coordinates technique. Theoptimal delay time and minimum embedding dimension for phase space reconstructionare acquired respectively by averaged mutual information method and averaged falsenearest neighbors method, the whole scheme for constructing delay coordinate vectorsof geared system is set up. Considering the dynamical dependence on the pastparameters, the chaos control method is constructed based on the combined dynamicsof state-plus-parameter system, the procedures to obtain the parameters forimplementing chaos control from experimental time series are investigated. Numericalsimulation shows the effectiveness of the method in practical applications.
     6. The dynamic response of geared system is tested in a testing machine ofnonlinear spur gear pair. The vibration acceleration of the gear pair in differentparameter conditions is obtained in the testing process. The testing results are analyzedand compared with the theoretical results, which verifies the effectiveness of theanalyzing model and the calculating methods.
     This work is supported by the National Natural Science Foundation of China (No.50075070).
引文
[1] 李润方,王建军.齿轮系统动力学—振动、冲击、噪声,科学出版社,1997
    [2] Kahraman A, Singh R. Nonlinear Dynamics of a Spur Gear Pair, Journal of Sound and Vibration, 1990,142(1):49-75
    [3] Kahraman A, Singh R. Nonlinear Dynamics of a Geared Rotor-Bearing System with Multiple Clearances. Journal of Sound and Vibration, 1991,144(3):169-506
    [4] Kahraman A, Singh R., Interactions between Time-varying Mesh Stiffness and Clearance Non-linearity in a Geared System, Journal of Sound and Vibration, 1991,146(1):135-156
    [5] Blankenship G W, Kahraman A. Steady State Forced Response of a Mechanical Oscillator with Combined Parametric Excitation and Clearance Type Non-linearity, Journal of Sound and Vibration, 1995, 185(5):734-765
    [6] Kahraman A, Blankenship G W. Interactions between Commensurate Parametric and Forcing in a System with Clearance, Journal of Sound and Vibration, 1996,194(3):371-336
    [7] Kahraman A, Blankenship G W. Experiments on Nonlinear Dynamic Behavior of an Oscillator with Clearance and Periodically Time-varying Parameters, Transactions of ASME, Journal of Applied Mechanics,1997, 64:217-226
    [8] Kahraman A, Blankenship G W. Effect of Involve Contact Ratio on Spur Gear Dynamics. ASME Journal of Mechanical Design, 1999, 121:112-118
    [9] Padmanabhan A , Singh R. Analysis of Periodically forced Nonlinear Hill's Oscillator with Application to a Geared System, Journal of the Acoustical Society of America, 1999,324-334
    [10] Theodossiades S, Natsiavas S. Nonlinear Dynamics of a Gear-Pair System with periodic Stiffness and Backlash, Journal of Sound and Vibration, 2000, 229(2):287-310
    [11] 孙涛(导师:沈允文).行星齿轮系统非线性动力学研究.[博士学位论文],西安:西北工业大学,2000
    [12] LiYN. Bifurcation and Chaos in Gear-pairs System withPiecewiseLinearity, Proceedings of the International Conference of Mechanical Transmissions, Chongqing, 2001, 239-242
    [13] 张锁怀,李忆平,丘大谋.齿轮耦合的转子-轴承系统非线性动力特性的研究,机械工程学报,2001,37(9):53-57
    [14] 张锁怀,沈允文,丘大谋.齿轮耦合的转子轴承系统的不平衡响应,机械工程学报,2002,3 8(6):51-55
    [15] 李华(合作导师:沈允文).基于AOM的非线性机械系统动力分析理论及其应用,[博士后研究工作报告],西安:西北工业大学,2002
    [16] 孙智民(导师:沈允文).功率分流齿轮传动系统非线性动力学研究.[博士学位论文],西安:西北工业大学,2001
    [17] 刘梦军(导师:沈允文).齿轮系统非线性动力学特性的研究.[博士学位论文],西安:西北工业大学,2005
    [18] Wang S M, Shen Y W and Dong H J. Bifurcation and Chaos in a Multi-Degree-of-Freedom System with Backlash and Friction. Proceedings of the 5th International Conference on Vibration Engineering(Nanjing, China, Sept.), China Aviation Industry Press, 2002
    [19] 王三民(导师:沈允文).随机非线性机械系统的分解算法及应用研究.[博士学位论文],西安:西北工业大学,2004
    [20] 董海军(导师:沈允文).非线性齿轮系统的拍击振动特性研究.[博士学位论文],西安,西北工业大学,2005
    [21] 郜志英(导师:沈允文).齿轮系统分岔的混沌动力学研究.[博士学位论文],西安:西北工业大学,2003
    [22] Guckenheimer P. On the Bifurcations of Maps of the Interval, Invent. Math., 1977, 39: 165-178
    [23] Feigenbaum M J. The Universal Metric Properties of Nonlinear Transformations, J. Stat. Phys., 1978, 19:25-52
    [24] 于渌,郝柏林.相变和临界现象,北京:科学出版社,1984
    [25] Zeng W Z, Hao B L, Wang G R et al. Scaling Property of Period-n-tupling Sequences in One-dimensional Mappings. Commun. Theor. Phys., 1984, 3: 283-295
    [26] 王光瑞,陈式刚.物理学报,一维单峰映象中高周期序列的普适常数与普适函数,1986,35(1):58-65.
    [27] 胡海岩.应用非线性动力学,北京:航空工业出版社,2000
    [28] Ruelle D, Takens F. On the Nature of Turbulence, Commun.Math.Phys. 1971 20(1):167-192
    [29] Manneville P, Pomeau Y. Intermittency and the Lorenz Model. Phys. Lett., 1979, 75A:1-2
    [30] Pomeau Y, Manneville P. Intermittent Transition to Turbulence in Dissipative Dynamical System, Commun. Math. Phys., 1980, 74:189-195
    [31] 郑伟谋,郝柏林.实用符号动力学,上海:上海科技教育出版社,1994
    [32] Li J N, Hao B L. Bifurcation Spectrum in a Delay-differential System Related to Optical Bistability, Commun. Theor. Phys., 1989, 11:265-278
    [33] 郝柏林.从抛物线谈起:混沌动力学引论,上海:上海科技教育出版社,1995
    [34] Ott E, Chaos in Dynamical System. Cambridge: Cambridge University Press, 1992
    [35] Crutchfield J, Farmer D. Power Spectral Analysis of a dynamical system. Phys. Lett. A, 1980, 76(1):1-4
    [36] 郜志英,沈允文,董海军.齿轮系统倍周期分岔和混沌层次结构的研究,机械工程学报,2005,41(4):48-52
    [37] Wolf A. Determining Lyapunov Exponents from a Time Series, Physica D, 1985, 16(3): 285-317
    [38] Stefan P. A Theorem of Sarkovskii on the Existence of Periodic Orbits of Continuous Endomorphisms of the Real Line, Commun. Math. Phys., 1977, 54:237-248
    [39] Li T Y , Yorke J A. Monthly Period Three Implies Chaos, Am. Math. Monthly, 1975, 82:985-992
    [40] Crutchfield J P, PackardNH. Symbolic Dynamics of Noisy Chaos, Physica D, 1983, 7(1): 201-223
    [41] Boyle M. An introduction to Symbolic Dynamics and Coding. SIAM Review, 1997, 39(2):334-335
    [42] Chai W W, Chua L O. Symbolic dynamics of piecewise-linear maps. IEEE Transactions on Circuits and Systems. Part Ⅱ, Analog and Digital Signal Processing. 1994, 41(6):420-424
    [43] Hao B L. Elementary Symbolic Dynamics and Chaos in Dissipative Systems, World Scientific, 1989
    [44] Grebogi C, Ott E, Yorke J A. Controlling Chaos, Phys. Rev. Lett., 1990, 64: 1990, 64
    [45] Chen G, Dong X. From Chaos to Order: Perspectives and Methodologies in Controlling Chaotic Nonlinear Dynamical System. Intern. J. of Bifurcation and Chaos, 1993 , 3(6):1363-1409.
    [46] 方锦清.非线性系统中混沌控制方法、同步原理及其应用前景.物理学进展,1996,16(2):1.
    [47] Lima R, Pettini M, Parametric Resonant Control of Chaos. Intern. J. Bifurcation and Chaos, 1998(8):1675-1684.
    [48] Meucci R, Gadomski W, Ciofini M et al. Experimental Control of Chaos by Means of Weak Parametric Perturbations,Phys. Rev. E., 1994,49(4):2528-2531
    [49] Braiman Y, Goldhirsch I. Taming Chaotic Dynamics with Weak Periodic Perturbations, Phys. Rev. Lett.,1991,66:2545-2548
    [50] Pyragas K, Continuous Control of Chaos by Self-Controlling Feedback. Phys. Lett. A., 1992, 170: 421-428.
    [51] Boccaletti S, Arecchi F T. Adaptive Control of Chaos, Europhys. Lett., 1995, 31(3):127-132
    [52] Basso M, Genesio R, Giovanardi et al. On Optimal Stabilization of Periodic Orbits via Time Delayed Feedback Control. Intern. J. of Bifurcation and Chaos, 1998, 8:1699-1706
    [53] Romeiras F J, Grebogi C, Ott E et al. Controlling Chaotic Dynamical Systems, Physica D, 1992:165-192
    [54] Epureanu B I, Dowell E H. On the Optimality of the Ott-Grebogi-Yorke Control Scheme, Physica D, 1998, 116:1-7
    [55] Epureanu B I, Dowell E H. Optimal Multi-Dimensional OGY Controller, Physica D, 2000, 139:87-96
    [56] Aston P J, Bird C M. Analysis of the Control of Chaos-Extending the Basin of Attraction. Chaos, Solltons and rractals, 1997, 8: 1413-1429
    [57] Aston P J, Bird C M. Using Control of Chaos to Refine approximations to Periodic Points, Intern. J. of Bifurcation and Chaos, 2000,10:227-235
    [58] Hubinger B, Doerner R, Martienssen W el al. Controlling Chaos experimentally in Systems Exhibiting Large Effective Lyapunov Exponents, Phys. Rev. E, 1994, 50(2):932-48
    [59] Ritz T, Schweinsberg A S Z, Dressler U et al. Chaos control with adjustable control times, Chaos, Solitons and Fractals, 1997, 8(9):1559-1576
    [60] Francisco H I, Pereira P, Armando M F et al. Chaos Control in a Nonlinear Pendulum Using a Semi-Continuous Method, Chaos, Solitons and Fractals, 2004, 22:653-668
    [61] Kwon J, Lee H. Controlling Chaos to Solutions with Complex Eigenvalues, Physical Review E, 2003, 67(2):026201-026204
    [62] Yu X H, Chen G R, Xia Yet al. An Invariant-Manifold-Based Method for Chaos Control, IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I, 2001, 48(8):930-937
    [63] Auerbach D, Grebogi C, Ott E et al. Controlling Chaos in High Dimensional systems, Phys. Rev. Lett., 1992, 69(24):3479-3482
    [64] Reyl C, Flepp L, Badii R. Control of NMR-Laser Chaos in High-Dimensional Embedding Space, Phys. Rev. E, 1993, 47(1):267-272
    [65] Huang D B. Failure of the Ott-Grebogi-York-Type Controllers for Nonhyperbolic Chaos. Chin. Phys. Lett., 2002, 19(6):762-764
    [66] Huang D B. Stabilizing Near-Nonhyperbolic Chaotic Systems with Applications, Phys. Rev. Lett., 2004, 93(21): 214101-1-214101-4
    [67] Dressier U, Nitsche G. Controlling Chaos Using Time Delay Coordinates, Phys. Rev. Lett., 1992, 68(1):1-4
    [68] Paul S, Ott E. Controlling Chaos Using Time Delay Coordinates via Stabilization of Periodic Orbits, Phys. Rev. E, 1995, 51(4):2995-2962
    [69] Ding M Z, Yang W M, In Vet al. Controlling Chaos in High Dimensions: Theory and Experiment, Phys. Rev. E, 1996, 53(5):4334-4344
    [70] Ditto W L, Rauseo S N, Spano M L. Experimental Control of Chaos, Phys. Rev. Lett., 1990, 65(26):3211-3214
    [71] Hunt E R. Stabilizing High Period Orbits in a Chaotic System: The Diode Resonator. Phys. Rev. Lett., 1991, 67:1953-1955
    [72] Roy R, Murphy T W, Maier T D et al. Dynamical Control of a Chaotic Laser: Experimental Stabilization of A Globally Coupled System, Phys. Rev. Lett., 1992, 68(9):1259-1262
    [73] Singer J, Wang Y Z, Bau H H. Controlling A Chaotic System, Phys. Rev. Lett. 1991, 66(9):1123-1125
    [74] Garfinkel A, Spano M, Ditto W et al. Controlling Cardiac Chaos, Science, 1992, 257(5074): 1230-1235
    [75] Raghothama A, Narayanan S. Bifurcation and chaos in Geared Rotor-Bearing System by Incremental Harmonic Balance Method, Journal of Sound and Vibration, 1999, 226(3): 469-492
    [76] Parker T S, Chua L O. Practical Numerical algorithms for Chaotic Systems, New York:Springer, 1989
    [77] Eckmann J P, Ruelle D. Ergodic Theory of Chaos, Rev. Mod. Phys., 1985, 57(3):617-656
    [78] Lau S L, Cheung Y K. Amplitude Incremental Variational Principle for Nonlinear Vibration of Elastic Systems, Journal of Applied Mechanics, 1981,48:959-964
    [79] 刘延柱,陈立群.非线性振动,西安:西安交通大学出版社,2001
    [80] Friedmann P, Hammond C E et al. Efficient Numerical Treatment of Periodic Systems with Application to Stability Problems. Int. J. Numerical Methods in Engineering, 1977, 11:1117-76.
    [81] HsuC S. On Approximating a General Linear Periodic System. J Math Anal Appl., 1974, 45: 234-51
    [82] Wong C W, Zhang W S, Lau S L. Periodic Forced Vibration of Unsymmetrical Piecewise Linear Systems by Incremental Harmonic Balance Method, Journal of Sound and Vibration, 1991, 149:91-105
    [83] Lau S L, Zhang W S. Nonlinear Vibrations of Piecewise Linear Systems by Incremental Harmonic Balance Method, Journal of Applied Mechanics, 1992, 59: 153-160
    [84] Leung A Y, Chui S K. Nonlinear Vibration of Coupled Duffing Oscillators by an Improved Incremental Harmonic Balance Method, Journal of Sound and Vibration, 181(4):619-633
    [85] Cheung Y K, Chen S H. Application of the Incremental Harmonic Balance Method to Cubic Non-linearity Systems, Journal of Sound and Vibration, 1990, 140(2):273-286
    [86] Ferri A A. On the Equivalence of the Incremental Harmonic Balance Method and the Harmonic Balance-Newton Raphson Method, Journal of Applied Mechanics, 1986, 53:455-457
    [87] Padmanabhan C and Singh R. Analysis of Periodically Excited Non-linear Systems by a Parametric Continuation Technique, Journal of Sound and Vibration, 1995, 184(1):35-58
    [88] Pierre C, Ferri A A, Dowell E H. Multi-Harmonic Analysis of Dry Friction Damped Systems Using and Incremental Harmonic Balance Method, Transactions of the ASME, 1985, 52:958-964
    [89] 林瑞霖,黄次浩,唐开元.柴油机轴系非线性扭振响应的IHB计算方法,内燃机学报,2002:20(2):93-95
    [90] 白鸿柏,黄协清.三次非线性粘性阻尼双线性滞迟振动系统IHB分析方法,西安交通大学学报,1998,32(10):38-41
    [91] Boccaletti S, Grebogi C, Lai Y C et al. The Control of Chaos: Theory and Applications, Physics Reports, 2000, 329:103-197
    [92] Fradkov A L, Evans R J. Control of Chaos: Survey 1997-2000, 15th IFAC World Congress on Automatic Control, Barcelona, 2002, 143-154.
    [93] Lai YC, Gregobi C, Kurths J. Modeling of Deterministic Chaotic Systems, Phys. Rev. E., 1999, 59(3): 2907-2910.
    [94] Kostelich E J, Kan I, Grebogi C et al. Unstable Dimension Variability: A Source of Nonhyperbolicity in Chaotic Systems, Physica D, 1997, 109:81-90
    [95] Crawford J D. Introduction to Bifurcation Theory, Rev. Mod. Phys., 1991, 63(4):991-1037
    [96] Wiggins S. Introduction to Applied Nonlinear Dynamical System and Chaos, New York:Springer, 1990
    [97] 马军海.复杂非线性系统的重构技术,天津:天津大学出版社,2005
    [98] Abarbanel, H D I, Gilpin M E, Rotenberg M. Analysis of Observed Chaotic Data, Berlin:Springer-Verlag, 1998
    [99] 胡岗,萧井华,郑志刚.混沌控制,上海:科技教育出版社,2000
    [100] Otani M, Jones A J. Guiding chaotic orbits. Research Report, Imperial College of Science Technology and Medicine, London, 1997
    [101] Packard N J, Crutchfield J P, Fromer J D et al. Geometry from a Time-Series, Phys. Rev. Lett.,1985, 45: 712-716
    [102] Takens F.. Detecting Strange Attractors in Turbulence. Lecture Notes inMathematics, 1981, 898: 366-381
    [103] Ruelle D, Ergodic Theory of Differentiable Dynamical Systems, Mathematique of the Institut des Hautes Etudes Scientifiques, 1979,5:27
    [104] Box G G P, Jenkins G M, Reinsel G C. Time Series Analysis, Prentice Hall, 1994
    [105] Fraser A M, Swinney H L. Independent Coordinates for Strange Attractors from Mutual Information. Phys. Rev. A, 1986, 33(2):1134-1140
    [106] Broomhead, D S, King, G P. Extracting Qualitative Dynamics from Experimental Data, Physica D, 1986, 20: 217-236
    [107] Kennel, MB, Brown R, Abarbanel HDI. Determining Embedding Dimension from Phase-space Reconstruction Using a Geometrical Construction', Phys. Rev. A,1992,25:3403-3411
    [108] Cao L. Practical Method for Determining the Minimum Embedding Dimension of a Scalar Time Series, Physica D, 1997,43:110
    [109] Franca L F P, Savi M A. Distinguishing Periodic and Chaotic Time Series Obtained from an Experimental Nonlinear Pendulum, Nonlinear Dynamics, 2001, 26:253-271
    [110] Macau E E N, Grebogi C. Driving Trajectories in Chaotic Systems, Intern. J. of Bifurcation and Chaos, 2001, 1.1(5):1423-1442
    [111] Macau E E N, Grebogi C, Lai YC. Active Synchronization inNonhyperbolic Hyperchaotic Systems, Phys. Rev. E., 2002, 65: 027202
    [112] Lai Y C, Ding M Z, Celso G. Controlling Hamiltonian Chaos. Phys. Rev. E, 1993, 47(1):86-92
    [113] ParkerT S, ChuaLO. Practical Numerical Algorithms for Chaotic Systems. New York: Springer, 1992
    [114] 于洪洁,吕和祥.动态油膜—柔性转子系统混沌运动的控制.机械工程学报,2002,38(9):91-95
    [115] 刘梦军,沈允文,董海军.单级齿轮非线性系统吸引子的数值特性研究,机械工程学报,2003,39(10):111-116
    [116] 刘晓宁,王三民,沈允文.三自由度齿轮传动系统的非线性振动分析.机械科学与技术,2004,23(10):59-61
    [117] 刘晓宁,沈允文,王三民,等.基于OGY方法的间隙非线性齿轮系统混沌控制的研究,机械工程学报,2005,41(11):26-31
    [118] 刘晓宁,沈允文,王三民.3自由度齿轮系统的混沌控制,机械工程学报,2006,42(12):52-57
    [119] Liu X N, Shen Y W, Wang S M. Controlling Chaos in Geared System, Proceedings of the International Conference of Mechanical Transmissions, Chongqing, 2006, 175-179
    [120] Ditto W L, Spano M L, Lindner J F. Techniques for the Control of Chaos, Physica D, 1995, 86(1-2):198-211
    [121] Epureanu B, Trickey S T, Dowell E. Stabilization of Unstable Limit Cycles in Systems with Limited Controllability: Expanding the Basin of Convergence of OGY-Type Controllers. Nonlinear Dynamics, 1998, 15(2): 191-205
    [122] Bollt E M. Controlling Chaos, Targeting, and Transport, 博土论文, University of Colorado, 1995
    [123] Starrett J D. Geometric Control of Low-Dimensional Chaotic Systems, 博士论文, University of Colorado, 2002
    [124] Barreto E, Grebogi C. Multi-Parameter Control of Chaos, Phys. Rev. E., 1995, 52(4): 3553-3557
    [125] Lai Y C, Grebogi C, Yorke J A et al. How Often are Chaotic Saddles Nonhyperbolic, Nonlinearity, 1993, 6:779-797
    [126] Hill D L. On the Control of High Dimensional Chaotic Dynamical System Using Nonlinear Approximations, Intern. J. of Bifurcation and Chaos, 2001, 11(6):1753-1760
    [127] Guckenheimer J, Holmes P J. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Berlin: Springer-Verlag, 1983
    [128] Gilmore R. Topological Analysis of Chaotic Dynamical Synamical Systems, Rev. Mod. Phys., 1998, 70(4): 1455-1529
    [129] Echmann J P, Rulle D. Ergodic Theory of Chaos and Strange Attractors, Rev. Mod. Phys. 1985, 57:617-656
    [130] 陈予恕.非线性振动,天津:天津科技出版社,1983
    [131] 刘式达,刘式适.非线性动力学和复杂现象,北京:气象工业出版社,1989
    [132] 关新平.混沌控制及其在保密通信中的应用,北京:国防工业出版社,2002
    [133] 方锦清.驾驭混沌与发展高新技术,北京:原子能出版社,2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700