CSTR振荡体系的动力学行为及控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自B-Z反应中的振荡现象被揭示以来,各种化学振荡体系中的非线性现象一直是国内外研究的前沿课题之一。由于化学反应在实际生产中的巨大应用价值,许多学者在该领域做出了大量的工作。近年来,迅速发展的现代非线性理论为各种复杂现象的深入探索提供了有力的工具。本文运用现代非线性分析方法,探讨了CSTR振荡体系的复杂现象及其机理,分析了不同物理参数、初始条件、时滞和耦合等因素对系统的动力学行为的影响,进而揭示了其复杂运动的本质。此外,对CSTR振荡体系的反同步与控制问题也进行了初步探讨。主要内容包括以下几个方面的工作:
     首先,给出了三变量CSTR自催化反应系统随着参数的变化经由Hopf分岔走向混沌的道路,分析了时滞反馈对原系统动力学行为的影响。分别探讨了时滞反馈对原系统稳定状态,周期运动和混沌状态的影响。数值仿真结果表明,时滞反馈可以用于控制反应过程,既可使系统从有序走向混沌,也可以从混沌走向有序。
     其次,在同时考虑溶液流动造成的时滞与入料溶液流速的扰动时,讨论了两种典型外激励频率下耦合CSTR振荡体系的复杂动力学行为。当外激励频率为原自治系统的固有频率时,反应过程中出现了结构复杂的混沌吸引子和概周期运动,存在混沌由倍周期分岔演变为新的混沌吸引子的过程;当外激励频率与自治系统的固有频率存在量级上差别时,Hopf分岔提前发生,反应过程中存在概周期运动,且存在概周期解的空间轨迹不断扩大而后演化为周期解的过程。数值模拟结果表明,在两种情况下系统的动力学行为差别很大,扰动频率的加入会明显改变系统的动力学演化过程。
     再次,设计了一种入料溶液流速随CSTR中溶液浓度的改变而改变的反应系统,并考虑由控制系统造成的时滞,给出了相应的数学模型。通过数值模拟发现,入料溶液的流速及浓度参考值均对系统的动力学行为有很大的影响,系统呈现出与原系统不同的动力学行为,反应过程中出现了概周期运动和倒倍周期分岔等丰富的动力学现象。
     最后,讨论了耦合CSTR振荡体系的延迟反同步控制问题。在反应系统中,将反应误差重新定义为实际反应状态与控制目标的差值,并基于Lyapunov稳定性理论和反同步思想,通过构造适当的控制器和控制输入信号可以使整个反应系统中各成分的浓度处于某种状态。该方法对系统无特殊要求,并且无需构造Lvapunov函数。最后用数值模拟验证了方法的有效性。
The nonlinear phenomenon in chemical oscillating systems has been an extensively investigated topic over the past decades since the B-Z oscillating reaction was discovered. Many theoretical and experimental results on chemical reaction have been published due to the great application in practical production. With the development of modern nonlinear theories, various complex phenomena in chemical oscillating systems have been deeply studied. For the CSTR oscillating systems or coupling systems, the complex mechanism is investigated by applying the modern nonlinear theory when parameters and initial conditions changed, and the anti-synchronization control and the delayed effect are also explored. The main contents are as follows:
     Firstly, for the autocatalytic chemical reaction of 3-variable CSTR system, the transiton to chaos can occur via a Hopf bifurcation solution when parameter is changed. Delayed effect on the original system's dynamical behaviors is analyzed. The steady state, periodic motion and chaos of the original system are affected by time delay. It is shown that the reaction process can be controlled with time delay. The states of the system can be changed between order and chaos under the influence of time-delayed feedback.
     Secondly, complicated dynamical behaviors of the coupled CSTR system have been obtained under two typical external excited frequency when time delay caused by liquor flow and perturbation caused by the flow rate of feeding liquor are taken into consideration. If external excited frequency is the same as the natural frequency of the original autonomous system, nonlinear phenomena such as chaos and quasi-periodic oscillation can be observed. Further more, disturbance may cause another type of chaotic attractor via period-doubling bifurcations. If there exists order gap between the two frequencies, Hopf bifurcation occurs earlier, which leads to quasi-periodic oscillation. The attractors expend in space with the variation of the parameters and finally settle down to periodic movement. Numerical simulation results prove that the dynamic behavior of the system have great differences between two cases. Perturbation frequency will significantly change the evolution forms of dynamical behaviors.
     Thirdly, a new reaction system is designed on the assumption that the change of feeding liquor's flow rate comes with the change of concentration. A new model is proposed considering time delay which is caused by the controller. Numerical simulations suggest that the variation of the flow rate as well as the concentrations of the solution may cause great changes of the dynamics. Rich dynamical behaviors are obtained such as quasi-periodic occillations and cascading of period-doubling bifurcations.
     Finally, the anti-synchronization problem for the coupled CSTR system is explored when delayed effect is taken into consideration. In autocatalytic chemical reaction system, the reaction error is defined as the difference between actual reaction state and control objective. Based on Lyapunov stability theory and anti-synchronization thought, a general scheme is presented which can be used to control the concentration of the whole reaction system in some special states by selecting the controller and the input signal. The scheme has no special requirements to system, and without structuring Lyapunov functions. Numerical simulations are performed to demonstrate the effectiveness of the proposed scheme.
引文
[1]李如生,万荣.非线性非平衡化学.化学进展.1996(1):17-29
    [2]赵学庄,罗渝然等.化学反应动力学原理.北京:高等教育出版社,1984
    [3]Lotka A J.Contribution to the theory of periodic reactions.The Journal of Physical Chemistry.1910(3):271-274
    [4]Lotka A J.Undamped oscillations derived from the law of mass action.Journal of the American Chemical Society.1920(8):1595-1599
    [5]Bray W C.A periodic reaction in homogeneous solution and its relation to catalysis.Journal of the American Chemical Society.1921(6):1262-1267
    [6]Belousov B P.A periodic reaction and its mechanism,in collection of short papers on radiation medicine for 1958.Moscow:Medzig,1959
    [7]Zhabotinsky,A M.Periodical oxidation of malonic acid in solution(a study of the Belousov reaction kinetics).Biofizika.1964(9):306-311
    [8]Field R J,Koros E,Noyes R M.Oscillations in chemical systems.Ⅱ.Thorough analysis of temporal oscillation in the bromate-eerium-malonic acid system.Journal of the American Chemical Society.1972(25):8649-8664
    [9]Field R J,Noyes R M.Oscillations in chemical systems.Ⅳ.Limit cycle behavior in a model of a real chemical reaction.The Journal of Chemical Physics.1974(5):1877-1884
    [10]Sehmitz R A,Graziani K R and Hudson J L.Experimental evidence of chaotic states in the Belousov-Zhabotinskii reaction.The Journal of Chemical Physics.1977(7):3040-3044
    [11]Boissonade J,De-Kapper P.Transitions from bistability to limit cycle oscillations.Theoretical analysis and experimental evidence in an open chemical system.The Journal of Physical Chemistry.1980(5):501-506
    [12]Epstein I R,Kustin K.Systematic design of chemical oscillators.Part 27.A mechanism for dynamical behavior in the oscillatory chlorite-iodide reaction.The Journal of Physical Chemistry.1985(11):2275-2282
    [13]陆启韶.常微分方程的定性方法与分叉.北京:北京航空航天大学出版社,1989
    [14]陈予恕.非线性振动.天津:天津科学技术出版社,1983
    [15]Ott E,Greboyi C,York J A.Controlling chaos.Physical Review Letters.1990(11):1196-1199
    [16]Peng B,Petrov V,Showalter K.Controlling chemical chaos.The Journal of Physical Chemistry.1991(13):4957-4959
    [17]Petrov V,Gaspar V,Masere J,Showalter K.Controlling chaos in the Belousov-Zhabotinsky reaction.Nature.1993(17):240-243
    [18]Pyragns K.Continuous of chaos by self-controlling feedback.Physics Letters A.1992(6):421-428
    [19]Pyragas K,Tamasevicius A.Experimental control of chaos by delayed self-controlling feedback.Physics Letters A.1993(1-2):99-102
    [20]Roesky P W,Doumbouya S L Schneider F W.Chaos induced by delayed feedback.The Journal of Physical Chemistry.1993(2):398-402
    [21]Alamgir M,Epstein I R.Systematic design of chemical oscillators.17.Birhythmicity and compound oscillation in coupled chemical oscillators:chlorite-bromate-iodide system.Journal of the American Chemical Society.1983(8):2500-2502
    [22]Maselko M,Epstein I R.Systematic design of chemical oscillators.Part 22.Dynamical behavior of coupled chemical oscillators:chlorite-thiosulfate-iodide-iodine.The Journal of Physical Chemistry.1984(22):5305-5308
    [23]Orban M,De-Kepper P,Epstein I R.Systematic design of chemical oscillators.Part 7.An iodine-free chlorite-based oscillator.The chlorite-thiosulfate reaction in a continuous flow stirred tank reactor.The Journal of Physical Chemistry.1982(4):431-433
    [24]Crowley M F,Field R J.Electrically coupled Belousov-Zhabotinskii oscillators.1.Experiments and simulations.The Journal of Physical Chemistry.1986(9):1907-1915
    [25]Crowley M F,Epstein I R.Experimental and theoretical studies of a coupled chemical oscillator:phase death,multistability and in-phase and out-of-phase entrainment.The Journal of Physical Chemistry.1989(6):2496-2502
    [26]Doumbouya S I,Muenster A F,Doona C J,Schneider F W.Deterministic chaos in serially coupled chemical oscillators.The Journal of Physical Chemistry.1993(5):1025-1031
    [27]Doumbouya S I,Schneider F W.Transition from quasiperiodicity to chaos in coupled oscillators.The Journal of Physical Chemistry.1993(27):6945-6947
    [28]高庆宁,魏贤勇,侯哲,蔡遵生,赵学庄.闭系中硫(-Ⅱ)氧化的非线性动力学一般特征.物理化学学报.1999(4):351-355
    [29]高庆宇,李保民等.亚氯酸盐-硫脲反应体系的非线性动力学.物理化学学报.2001(03):257.260
    [30]李勇军,赵学庄等.功率谱方法重构混沌BZ反应体系的状态空间.科学通报.1998(13):1404-1408
    [31]李勇,毕勤胜.连续搅拌槽式反应器中自催化化学反应的延迟同步.物理学报.2008(10):6099-6102
    [32]Tyson T.Belousov-Zhabotinsky Reaction.Berlin:Springer-vedag,1976
    [33]Bray W C,Liebhafsky H A.Reactions involving hydrogen peroxide,iodine and iodateion.I.Introduction.Journal of the American Chemical Society.1931(1):38-44
    [34]Briggs T S,Rauscher W C.An oscillating iodine clock.Journal of Chemical Education.1973(7):496-497
    [35]Stoupine D Y,Gusev Y K,Lachkova D V.Generation of an oscillating chemical reaction in a heterogeneous system by the oxidation of the alkaline solution of luminol with sodium ferrate in the presence of copper ions.Russian Chemical Bulletin.2001(1):159-160
    [36]Geest T,Olsen L F,Steinmetz C G,Larter R,Schaffer W M.Nonlinear analyses of periodic and chaotic time series from the peroxidase-oxidase reaction.The Journal of Physical Chemistry.1993(32):8431-8441
    [37]Kirkor E S,Schedine A.Principal component analysis of dynamical feature in the peroxidase-oxidase reaction.Analytical Chemistry.2002(7):1381-1388
    [38]Gleick J.Chaos:Making a New Science.New York:Penguin,1987
    [39]Minoru Yoshimoto.Noise effects on the one-dimensional return map of the high flow rate chaos of the Belousov-Zhabotinsky reaction.Physics Letters A.2003(1-2):59-64
    [40]Field R J,Koros E,Noyes R M.Oscillations in chemical systems.Ⅰ.Detailed mechanism in a system showing temporal oscillations.Journal of the American Chemical Society.1972(4):1394-1395
    [41]Orban M.Chemical osciallations during the uncatalyzed reaction of aromatic compounds with bromate.1.Search for chemical oscillations.The Journal of Physical Chemistry.1978(14):1672-1674
    [42]Orban M,R M Noyes.Chemical oscillations during the uncatalyzed reaction of aromatic compounds with bromate.2.A plausible skeleton mechanism.The Journal of Physical Chemistry.1979(23):3056-3057
    [43]Geiseler W.Multiplicity,stability and oscillations in the stirred flow oxidation of manganese (Ⅱ) by acidic bromate.The Journal of Physical Chemistry.1982(22):4394-4399
    [44]Strizhak P,Menzinger M.Stirring effect on the bistability of the Belousov-Zhabotinsky reaction in a CSTR.The Journal of Physical Chemistry.1996(49):19182-19186
    [45]Tikhonova L P,Zakrevskays L N,Yatsimirskii K B.Catalytic determination of ruthenium based on an oscillating chemical reaction.Journal of Analytical Chemistry USSR.1978(33):1991-1998
    [46]Rafael J P,Manuel S,Dohores P B.Analyte pulse perturbation technique:a tool for analytical determinations in far-from-equilibrium dynamic systems.Analytical Chemistry.1995(4):729-734
    [47]Rafael J P,Manuel S,Dohores P B.Simultaneous determination of gallic acid and resorcinol based on an oscillating chemical reaction by the analyte pulse perturbation technique.Analytica Chimica Acta.1996(3):323-330
    [48]任杰,杨武,刘秀辉等.尿液对化学振荡的扰动作用.西北师范大学学报(自然科学版).2002(1):55-57
    [49]陈庆安.血液对化学振荡的微扰作用.生物化学与生物物理进展.1986(6):41-43
    [50]沈振文,蒋萍初,李和兴等.化学振荡用于临床检验的探索一人血清对化学振荡的影响.上海师范大学学报(自然科学版).1994(4):57-61
    [51]范少华,安从俊.维生素B1对B-Z振荡反应的影响及反应动力学.物理化学学报.1999(12):178-181
    [52]李和兴,陆靖.生物表面活性剂和氨基酸或多肽构成的界面振荡.科学通报.1998(2):265-267
    [53]贺占博.化学振荡的应用.化学工业与工程.1992(4):29-32
    [54]秦元勋等.带有时滞的动力系统的稳定性.第二版.北京:科学出版社,1989
    [55]徐鉴.非线性时滞、时变系统分岔和非线性模态研究.博士论文.北京:北京航空航天大学,1996
    [56]徐鉴,陆启韶,黄克累.一类van der Pol型时滞系统的稳定性和Hopf分岔.见:庄逢甘主编.现代力学与科技进步——庆祝力学学会成立40周年,现代力学与科技进步学术大会.北京:清华大学出版社,1997:1551-1554
    [57]Wang Z H,Hu H Y,Wang H L.Robust stabilization to nonlinear delayed systems via delayed state feedback:the averaging method.Journal of Sound and Vibration.2005(3-5):937-953
    [58]Hu H Y.Using delayed state feedback to stabilize periodic motions of an oscillator.Journal of Sound and Vibration.2004(3-5):1009-1025
    [59]Hu H Y,Wang Z H.Nonlinear dynamics of controlled mechanical systems with time delays.Progress in Natural Sciences.2000(11):801-811
    [60]Schneider F W,Muenster A F.Chemical oscillations,chaos,and fluctuations in flow reactors.The Journal of Physical Chemistry.1991(6):2130-2138
    [61]Foster A,Hauck T,Schneider F W.Chaotic resonance of a focus and entrainment of a limit cycle in the periodically driven peroxidase-oxidase reaction in a CSTR.The Journal of Physical Chemistry.1994(1):184-189
    [62]Scott S K.Chemical Chaos.Oxford:Clarenden Press,1991
    [63]Lengyel I,Rabai G,Epstein I R.Systematic design of chemical oscillators.Part 65.Batch oscillation in the reaction of chlorine dioxide with iodine and malonic acid.Journal of the American Chemical Society.1990(11):4606-4607
    [64]Gary P,Scott S K.Autocatalytic reactions in the isothermal,continuous stirred tank reactor isolas and other forms of multistability.Chemical Engineering Science.1983(1):29-43
    [65]M E E Abashar,M R Judd.Synchronization of chaotic nonlinear oscillators:study of two coupled CSTRs.Chemical Engineering Science.1998(21):3741-3750
    [66]Antoniades C,Christofides P D.Feedback control of nonlinear differential difference equation systems.Chemical Engineering Science.1999(23):5677-5709
    [67]Lynch D T.Chaotic behavior of reaction system:parallel cubic autocatalators.Chemical Engineering Science.1992(2):347-355
    [68]Kittel A,Parisi J,Pyragas K.Delayed feedback control of chaos by self-adapted delay time.Physics Letters A.1995(5-6):433-436
    [69]Lin G,Li W T.Travelling wavefronts of Belousov-Zhabotinskii system with diffusion and delay.Applied Mathematics Letters.2009(22):341-346
    [70]Rao A S,Chidambaram M.Analytical design of modified Smith predictor in a two-degrees-of-freedom control scheme for second order unstable processes with time delay.ISA Transactions.2008(4):407-419
    [71]闫正楼,彭新俊,周文,刘焕,王翼飞.模拟时滞化学反应系统的自适应 τ-Leap算法.应用数学与计算数学学报.2008(2):118-125
    [72]Venkataraman B,Srrensen P G ESR studies of the oscillations of the malonyl radical in the Belousov-Zhabotinsldi reaction in a CSTR.The Journal of Physical Chemistry.1991(15):5707-5712
    [73]Rabai G,Epstein I R.Systematic design of chemical oscillators.80.PH oscillations in a semibatch reactor.Journal of the American Chemical Society.1992(4):1529-1530
    [74]Otawara K,Fan L T.Enhancing the performance of spontaneously oscillatory chemical reactions.The Journal of Physical Chemistry A.1997(50):9678-9680
    [75]Buchholtz F G,Broecker S.Oscillations of the Bray-Liebhafsky reaction at low flow rates in a continuous flow stirred tank reactor.Journal of the American Chemical Society.1998(9):1556-1559
    [76]Kern M,Menzinger M.Experiments on flow-distributed oscillations in the Belousov-Zhabotinsky reaction.The Journal of Physical Chemistry A.2002(19):4897-4903
    [77]Davies M L,Schreiber I,Scott S K.Dynamical behaviour of the Belonsov-Zhabotinsky reaction in a fed-batch reactor.Chemical Engineering Science.2004(1):139-148
    [78]柴俊,张正娣.三变量CSTR化学反应的复杂动力学行为分析.动力学与控制学报.2007(1):34-38
    [79]Li Q S,Zhu R.Chaos to periodicity and periodicity to chaos by periodic perturbations in the Belonsov-Zhabotinsky reaction.Chaos,Solitons and Fractals.2004(19):195-201
    [80]Xu W G,Li Q S.Chemical chaotic schemes derived from NSG system.Chaos,Solitons and Fractals.2003(15):663-671
    [81]宗春燕,高庆宇,王玉梅等.CSTR中Ferroin催化B-Z反应中的倍周期振荡和混沌.中国科学B辑化学.2006(6):449-455
    [82]朱学峰.CSTR的非线性预测控制.华南理工大学学报(自然科学版).1995(6):7-15
    [83]Li Y N,Chen I,Cai Z S.Study on chaos synchronization in the Belousov-Zhabotinsky chemical system.Chaos,Solitons and Fractals.2003(17):699-707
    [84]Li Y N,Chen L,Cai Z S,Zhao X Z.Experimental study of chaos synchronization in the Belousov-Zhabotinsky chemical system.Chaos,Solitons and Fractals.2004(22):767-771
    [85]丁香乾,杨晓黎,杨华.非线性CSTR过程预测控制器设计.控制工程.2009(2):145-147
    [86]王兴元,王勇.基丁主动控制的三维自治混沌系统的异结构反同步.动力学与控制学报.2007(1):13-17
    [87]Li C D,Liao X E Lag synchronization of Rossler system and Chua circuit via a scalar signal.Physics Letters A.2004(4-5):301-308

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700