几类种群脉冲动力系统的动力学分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
连续动力系统、离散动力系统和脉冲动力系统是三大主要的动力系统.经过近三十年的研究,脉冲微分方程的理论已经得到深入的发展,但是这些理论在实际问题中很难应用.由于脉冲动力系统的解在两脉冲时刻间具有连续性,而在脉冲时刻处却具有间断性,因而脉冲动力系统的动力学比连续动力系统的动力学更加丰富和复杂.脉冲现象广泛存在于各种应用领域,在种群动力学中有很好的应用前景.因此,研究具脉冲效应的种群动力系统的动力学性质具有很好理论意义和实用价值.
     本文综合数学上的连续动力系统、离散动力系统和脉冲动力系统的相关理论,系统地分析了所提出种群模型的各种动力学性质,并借助Maple数学软件,对系统进行了模拟.
     第一章,介绍了本文的研究目的及意义、国内外的脉冲微分动力系统动力学性质的研究现状以及本文的主要工作.
     第二章,介绍脉冲微分动力系统的基本理论及一些相关的定义.
     第三章,基于害虫综合管理策略,利用脉冲比较定理、Floquent理论及微小扰动法,研究了两类具有功能反应和一个固定脉冲时刻的食饵–捕食系统.对于具有Ivlev功能反应的两食饵–一捕食者脉冲动力系统,得到了系统食饵灭绝和持续生存的充分条件,数值模拟验证了结论的正确性,最后讨论了该害虫综合管理策略的有效性.对于具有Holling II功能反应的一食饵–两捕食者系统,给出了投放临界值p2?,得到了系统灭绝和持续生存的充分条件.数值模拟表明,随着投放量p?2的增加,系统出现倍周期分支、对称破裂分支、混沌、半周期分支、吸引子突变等复杂的动力学性质,最后讨论了该综合害虫管理策略的有效性.
     第四章,基于害虫综合管理策略研究了三类脉冲发生在两个固定时刻、具有复杂非线性且非单调功能反应的食饵–捕食系统,前两类是具有Holling IV功能反应和脉冲效应的两食饵一捕食者系统和两食饵–两捕食者脉冲系统,给出了投放临界值,证明了系统两食饵灭绝和持续生存的充分条件,而且给出了一食饵种群灭绝其余种群持续生存的两个充分条件.数值模拟表明,随着投放量的增加,系统出现复杂的动力学性质.第三类是具有Beddington–DeAngelis功能反应的一食饵–多捕食者脉冲系统的动力学性质,证明了系统食饵灭绝和系统持续生存的充分条件,给出了相应的数值模拟.
     最后,对全文进行了总结,指出了研究中还没有解决的问题,并对以后要研究的工作进行了展望.
Continuous dynamical system, discrete dynamical system and impulsive dynam-ical system are three main kinds of dynamical systems. Fairly rich results have beenmade for the theories of impulsive dynamical system for almost thirty years. However,these theories are hard to be applied in actual problems. The solutions of impulsivesystems are continuous between two impulses and discontinuous at the impulses, whichmakes the dynamics of impulsive systems richer and more complicated than that ofthe corresponding continuous systems. There are impulsive phenomena in all kinds ofapplied fields, especially in population dynamics. Consequently, studying populationdynamics of dynamical systems involving impulse effects is very interesting in boththeory and practice.
     In this paper, we use a combined approach of continuous dynamics, discrete dy-namics and impulsive dynamics to investigate various dynamical behavior of the popu-lation systems we consider. The impulsive dynamical systems are simulated by math-ematical software Maple.
     In Chapter 1, the goal, significance and recent development of the dynamics re-search in impulsive differential dynamical system, as well as the content of this disser-tation are introduced.
     In Chapter 2, the basic theory of impulsive differential dynamical system anddefinitions are presented.
     In Chapter 3, considering the strategy of integrated pest management (IPM), twoclasses of prey–predator systems with functional response, impulsive effect at one fixedtime are studied by using impulsive comparison theorem, Floquent theory and smallamplitude perturbation skill. In two–prey one–predator impulsive dynamical systemwith the Ivlev functional response and impulsive effect, the suffcient conditions for thesystem to be extinct of prey and permanence are given. Numerical simulations showthat the conclusion is correct. Finally, it is concluded that the strategy of integratedpest management is more effective than the classical one. In one–prey two–predatorsystem with the Holling II functional response and impulsive effect, the critical value p2ffof impulsive immigration and suffcient conditions for the system to be extinct and per-manence are given by using impulsive comparison theorem, Floquent theory and smallamplitude perturbation skill. Numerical simulations show that with the increasing ofimmigration p2 the system has more complex dynamics including periodic doubling bi-furcation, symmetry–breaking bifurcation, chaos, periodic halving bifurcation, crises,etc. Finally, it is discussed that the strategy of integrated pest management is moreeffective than the classical one.
     In Chapter 4, considering the strategy of integrated pest management , threeclasses of prey–predator systems with complex and non–monotonic functional response,impulsive effect at different fixed times are established by using impulsive compar-ison theorem, Floquent theory and small amplitude perturbation skill. Firstly andSecondly, we consider two impulsive systems of two–prey one–predator and two–preytwo–predator with Holling IV functional response. The critical value of impulsiveimmigration is given. Two suffcient conditions for the two prey to be extinct andpermanence of system are proved. Moreover, the two suffcient conditions for the ex-tinction of one of two prey and permanence of other populations are given. Numericalsimulation shows that with the increasing of immigration the system has more com-plex dynamics. Thirdly, we consider one–prey multi–predator impulsive system withBeddington–DeAngelis functional response. The two suffcient conditions for the preyto be extinct and permanence of system are proved. Moreover, the numerical simula-tion is given.
     Lastly, we make a summarization of the whole paper and point out the prob-lems that are still unsolved in the research are showed. Moreover, the future study isprospected.
引文
[1]张芷芬,丁同仁等.微分方程定性理论[M].北京:科学出版社, 1997.
    [2]罗定军.动力系统的定性与分支理论[M].北京:科学出版社, 2001.
    [3]马知恩,周义仓.常微分方程定性与稳定性方法[M].北京:科学出版社, 2001.
    [4] Kuznetsov Y.A. Elements of applied bifurcation theory[M]. New York: Springer-Verlag,1995.
    [5] Bainovnad. D. D., Dishliev. A. B.. Conditions of the absence of the phenomenon beatingfor systems of imPulse die?rential equations[J]. Bull. Inst. Math. Aead. Siniea, 1985,13: 237-256.
    [6] V. Lakshmikantham, D. D. Bainov and P.S. Simeonov. Theory of impulsive di?erentialequations[M]. World Scientific, Singapore, 1989.
    [7] Simeonov P.S.. Existence, uniqueness and continue ability of the solutions of systemswith impulse e?ect[J]. Godishnik VUZ Appl. Math. 1986, 22: 69-75.
    [8] Simeonov P.S.. Continuous dependence of the solutions of systems with impulse ef-fect[J]. Godishnik VUz Appl. Math. 1956, 22: 57-67.
    [9] Simeonovand P.S., Bainov D.D.. Di?erential ability of solutions of systems with Impulsee?ect with respect to initial data and Parameter[J]. Institute of Mathematics, AcademiaSiniea, 1987, 15: 251-269.
    [10] Bainov D.D., Lulev G.. Application of Lyapunov’s direct method to the Investigationof global stability of solutions of systems with impulsive e?ect[J]. Appl. Anal. 1988, 26:255-270.
    [11] Yan J.R. Oscillation of nonlinear delay impulsive di?erential equations and inequali-ties[J]. J. Math. Anal.Appl. 2002, 265: 332-342.
    [12] Erbe L.H., Liu X.Z.. Existence of periodic solutions of impulsive di?erential systems[J].J. Appl. MIath. Stoehastic Anal, 1991, 4: 137-146.
    [13] Cooke C.H., Kroll J.. The existence of periodic solutions to certain impulsive di?erentialequations[J]. Computers and Mathematics with Applications, 2002, 44: 667-676.
    [14] Liu X. N., Chen L.S.. Global dynamics of the periodic logistic system with Periodicimpulsive perturbations[J]. J. Math. Anal. Appl, 2004, 289: 279-291.
    [15] Bainov D., Simeonov P.. Impulsive di?erential equations: periodic solutions and appli-cations[M]. New York: Longman scientific and technical press, 1993.
    [16] Lakmeche A., Arino O.. Nolinear mathematical model of pulsed therapy of heteroge-neous tumors[J]. Nonl. Anal, 2001, 2: 455-465.
    [17] Liu X.Z., Rohlf K.. Impulsive control of a Lotka-Volterra system[J]. Journal of Math-ematical control Information, 1998, 15: 269-284.
    [18] Angelova J., Dishliev A.. Optimization problems for one-impulsive models from popu-lation dynamics[J]. Nonl. Anal., 2000, 39: 483-497.
    [19] Jiang G.R., Lu Q.S., Linping Peng L. P.. Impulsive ecological control of stage-structuredpest management system[J]. Mathematical Biosciences and Engineering, 2005, 2: 329-344.
    [20] Ballinger G., Liu X.Z.. Permanence of population growth models of with impulsivee?ects[J]. Math. Comput. Modelling, 1997, 26: 59-72.
    [21] D’Onofrio A.. Stability properties of pulse vaccination strategy in SEIR epidemicmodel[J]. Math. Biosci, 2002, 179: 57-72.
    [22] Zhou Y., Liu H.. Stability of periodic solutions for an SIS model with pulse vaccina-tion[J]. Mathematical and Computer Modelling, 2003,38: 299-308.
    [23] M.G. Roberts, R.R. Kao. The dynamics of an infectious disease in a population withbirth pulses[J]. Math. Biosci, 1998, 149: 23-36.
    [24] S.Y. Tang, L.S. Chen. Density-dependent birth rate, birth pulses and their populationdynamic consequences[J]. J. Math. Biol., 2002, 44: 185-199.
    [25] DeBach P.. Biological control of insect pests and weeds [M]. New York: Reinhold, 1964.
    [26] Grasman J., Van Herwaarden O.A., et al. A two-component model of host-parasitoidinteractions: determinations of the size of inundative releases of parasitoid in biologicalpest control [J]. Math Biosci Appl, 2001, 169(2): 7-16.
    [27] Van Lentern J.C.. Integrated pest management in protected crops[M]. London: Chap-man Hall, 1995.
    [28] Liu B., Zhang Y., Chen L.. The dynamical behaviors of a Lotka-Volterra predator-prey model concerning integrated pest management[J]. Nonlinear Analysis: Real WorldApplications, 2005, 6: 227-243.
    [29]傅希林,闫宝强等.脉冲微分系统引论[M].北京:科学出版社, 2005.
    [30] V. Lakshmikantham, D. Baninov, P. Simeonov. Theory of impulsive di?erential equa-tions[M]. Wold Scientific, Singapore, 1989.
    [31] Pedigo,L.P., Higley,L.G.. A new perspective of the economic injury level conceptand environmental quality[J]. American Entomologist, 1992, 38: 12-20.
    [32] Pedigo,L.p. Entomology and pest Management[M]. Second Edition. Prentice-HallPub,. Englewood Cli?s, NJ. 1996.
    [33] Barclay H.J.. Modles for pest control using predator release,habitat management andpesticide release in combination[J]. J. Appl. Ecol, 1976, 19: 337-348
    [34] Stern,V.M. Economic Thresholds[J]. Annual review of Entomology, 1973, 259-280.
    [35] Hung Y.F., Yen T.C., Chen J.L.. Obervation of period-adding in an optogalvanic cir-cuit[J]. Phys. Let.,1995, A199: 70-74.
    [36]刘兵,陈兰荪,张玉娟.基于IPM策略的捕食与被捕食系统的动力学性质[J].工程数学学报, 2005, 22(1): 9-14.
    [37]张树文,陈兰荪.具有脉冲效应和综合害虫控制的捕食系统[J].系统科学与数学,2005, 25(3): 264-275..
    [38] Tang S.Y., Xiao Y.N., Chen. L.S. , Robert A. Cheke. Integrated pest managementmodels and their dynamical behavior[J]. Bulletin of Mathematical biology, 2005, 67:115-135.
    [39] Amine. Z., Ortega. R.. A periodic prey-predator system[J]. Journal of MathematicalAnalysis and Applications, 1994, 185: 477-489.
    [40]滕志东,陈兰荪.周期捕食被捕食系统正周期解存在的充要条件[J].数学物理学报, 1998, 18(4): 402-406.
    [41] Liu X. N, Chen L. S. Complex dynamics of Holling type II Lotka-Volterra predator-preysystem with impulsive perturbations on the predator[J]. Chaos, Solitions and Fractals,2003, 16(2): 311-320.
    [42] Liu B., Chen L.S.. Dynanmic complexities in Lotka-Volterra predator-prey system con-cerning impulsive control strategy[J]. Int. J. Bifur. Chaos, 2005, 15: 517-531.
    [43] C. Grebogi, E. Ott, J. A. York. Crises, sudden changes in chaotic attractors and chaotictransients[J]. Phaysica D, 1983, 7: 181-200.
    [44] Liu B., Teng Z., Chen L.S.. Analysis of a predator-prey model with Holling II functionalresponse concerning impulsive control strategy[J]. J Comput Appl Math., 2006, 193:347-62.
    [45] Liu X., Chen L.S.. Complex dynamics of Holling type II Lotka-Volterra predator-preysystem with impulsive perturbations on the predator[J]. Chaos, Solitons and Fractals,2003, 16: 311-20.
    [46] Zhang S.W., Wang F.Y., Chen L.S.. A food chain model with impulsive perturbationsand Holling IV functional response[J]. Chaos, Solitions and Fractals, 2005, 26: 885-886.
    [47] Wang F.Y., Zhang S.W., Chen L. S.. Bifurcation and complexity of Monod-typepredator-prey system in a pulsed chemostat[J]. Chaos, Solitons and Fractals, 2006,27: 447-58.
    [48] Li Z.J., Wang W.M., Wang H.L.. The dynamics of a Beddington-type system withimpulsive control strategy[J]. Chaos, Solitons and Fractals, 2006, 29:1229–1239.
    [49] Liu S, Beretta E. A stage-structure predator–prey model of Beddington–Deangelistype[J]. SIAM J Appl Math, 2006, 66: 1101-1129.
    [50] Zhang S.W., Tan T.J., Chen L.S.. Dynamic complexities of a food chain model withimpulsive perturbations and Beddington-DeAngelis functional response[J]. Chaos, Soli-tons and Fractals, 2006, 27: 768-777.
    [51] Gakkhar S, Singh B. Dynamics of modified Leslie-Gower-type prey-predator modelwith seasonally varying parameters, strategy[J]. Chaos, Solitons and Fractals, 2006,27: 1239-1255.
    [52] Liu L.J., Tan R.H.. Impulsive harvesting and stocking in a Monod-Haldane functionalresponse predator-prey system[J]. Chaos, Solitons and Fractals, 2007, 34: 454-464.
    [53] Wang F., Hao C., Chen L.. Bifurcation and chaos in a Tessiet type food chain chemostatwith pulsed input and washout[J]. Chaos, Solitons and Fractals, 2007, 32(4):1547-1561.
    [54] Watt KEF. A mathematical model for the e?ect of densities of attacked and attackingspecies on the number attacked[J]. Canad Entomol, 1959, 91: 129-144.
    [55] Wang X.Q., Wang W.M., Lin X.L.. Dynamics of a periodic Watt-type predator-preysystem with impulsive e?ect[J]. Chaos, Solitons and Fractals, 2007, doi: 10. 1061/J.Chaos. 2007. 06. 031.
    [56] Ivlev V.S.. Experimental ecology of the feeding of fishes[M]. New Haven, CT: YaleUniversity Press, 1961.
    [57] Sugie J. Two-Parameter bifurcation in a predator-prey system of Ivlev type[J]. J MathAnal Appl, 1998, 217: 349-371.
    [58] Xiang Z.Y., Song X.Y.. The dynamical behaviors of a food chain model with impulsivee?ect and Ivlev functional response[J]. Chaos, Solitons and Fractals, 2007, doi: 10.1061/J. Chaos. 2007. 06. 124.
    [59] Wang H.L., Wang W.M.. The dynamical complexity of a Ivlev-type prey-predatorsystem with impulsive e?ect[J]. Chaos, Solitons and Fractals, 2008, 38(4): 1168-1176.
    [60] Holling,C.S.. The functional response of predators to prey density and its role in-mimicry and population regulation[J]. Mem. Ent. Canada, 1965, 45: 1-60.
    [61] Liu B., Zhang Y.J., Chen L.S.. Dynamic complexities of a Hoiling I predator-preymodel concering periodic biological and chemical control[J]. Chaos, Solitons Fractals,2004, 22: 123-134.
    [62] S.Y Tang, L. S. Chen. Chaos in functional response bost-parasitoid ecosystem mod-els[J]. Chaos, Solitions and Fractals, 2002, 13: 875-884.
    [63] Sunita Gakkhar, Raid Kamel Naji. Chaos in three species ratio dependent food chain[J].Chaos, Solitions and Fractals, 2002, 14: 771-778.
    [64] A. Klebano?, A. Hastings. Chaos in three species food chains[J]. J. Math. Biol, 1994,32: 427-451.
    [65] J. Vandermeer, L. Stone, B.Blasius. Categeories of chaos and fractal basin boundariesin forced predator-prey models[J]. Chaos, Solitons and Fractals, 2001, 12: 265-276.
    [66] Gakkhar S., Naji R.K.. Seasonally perturbed prey-predator system with predator-dependent functional response[J]. Chaos, Solitons and Fractals, 2003, 8: 1075-1083.
    [67] Tang S.Y., Chen L.S.. Quasiperiodic solutions and chaos in a periodically forced preda-tor model with age structure for predator[J]. International Journal of Bifurcation andChaos, 2003, 13: 973-980
    [68] Lu Z., Chi X., Chen L.. Impulsive control strategies in biological control of pesticide[J].J. Theory Popul Biol, 2003, 64: 39-47.
    [69] Sun J., Qiao F., Wu Q.. Impulsive control of a financial model[J]. J Phys Lett A, 2005,335(28): 2-8.
    [70] Wang F., Zeng G.. Chaos in a Lotka-Volterra predator-prey system with periodicallyimpulsive ratio-harvesting the prey and timedelays[J]. Chaos, Solitons and Fractals,2007, 32: 1499-1512.
    [71] R.M. May. Biological populations with nonoverlapping generations: stable points, sta-ble cycles and chaos[J]. Science, 1974, 186: 645-657.
    [72] R. M. May, G. F. Oster. Bifurcations and dynamic complexity in simple ecologicalmodels[J]. Amer. Natur.,1976, 110: 573-599.
    [73] P. Collet, J.P. Eechkmann. Iterated maps of the interval as dynamical systems[M].Boston: Birkhauser, 1980.
    [74] A. Venkatesan, S. Parthasarathy, M. Lakshmanan. Occurrence of multiple periodic-doubling bifurcation route to chaos in periodically pulsed chaotic dynamical systems[J].Chaos, Solitions and Fractals, 2003, 18: 891-898.
    [75] M.G. May, H. Caswell. Density-dependent vital rates and their population dynamicconsequences[J]. J. Math. Biol., 2001, 41: 102-121.
    [76]朱晶,石丽云,马毅,戴亚东.基于脉冲扰动作用下的一个捕食者-食饵模型的动力学性质[J].生物数学学报, 2006, 21(4): 509-514.
    [77] Liu B., Zhang Y.J., Chen L.S.. Dyanmic complexities of a Holling I predator-prey modelconcering periodic biological and chemical control[J]. Chaos, Solitions and Fractals,2004, 22: 123-134.
    [78] Tener J.S.. Muskoxen[M], Queen’s printer, Ottawa, 1965.
    [79] Andrews J.F.. A mathematical model for the continuous culture of microorganismsutilizing inhibitory substrates[J]. Biotechnol Bioeng 1968, 10: 707-23.
    [80] Sugie J., Howell J.A.. Kinetics of phenol oxidation by washed cell[J]. Biotechnol Bioeng,1980; 23: 2039-2049.
    [81] Zhang S.W., Chen L.S.. The study of predator-prey with defensive ability of prey andimpulsive perturbations on the predator[J]. Chaos Solitions Fractals, 2005, 23: 631-643.
    [82] Pang G. P., Chen L. S.. Analysis of a Holling IV one-predator two-prey system withimpulsive e?ect [J]. Journal of Nanjing Normal University, 2007, 33(2): 1-5.
    [83] Xiang Z.Y., Song X.Y.. Extinction and permanence of a two-prey two-predator systemwith impulsive on the predator[J]. Chaos, Solitons and Fractals, 2006, 29: 1121-1136.
    [84] Xiang Z.Y., Song X.Y., Zhang F.Q.. Bifurcation and complex dynamics of a two-prey two-predator system concering periodic biological and chemical control[J]. Chaos,Solitons and Fractals, 2008, 37: 424-437.
    [85] Beddington J R. Mutual interference between parasites or predators and its e?ect onsearching e?ciency[J]. Anim. Ecol.,1975, 44: 331-340.
    [86] Zhang S. W., Chen L. S.. A study of predator-prey models with the Beddington-DeAnglis functional response and impulsive e?ect[J]. Chaos, Solitons and Fractals,2006, 27:237-248.
    [87] Pei Y. Z., Chen L. S., Zhang Q. R., et al.. Extinction and permanence of one-preymulti-predators of Holling type II function response system with impulsive biologicalcontrol[J]. Journal of Theoretical Biology, 2005, 235: 495-503.
    [88] iang G.J., Lu Q.S.. Impulsive state feedback control of a predator-prey model[J]. Jour-nal of Computational and Applied Mathematics, 2007, 200: 193-207.
    [89] Jiang G.R., Lu Q.S., Qian L.N.. Complex dynamics of a Holling type II prey-p redatorsystem with state feedback control[J]. Chaos, Solitons and Fractals, 2007, 31: 448-461.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700