脉冲微分方程在种群生态学中的一些应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
种群动力学中的许多现象和人为的干扰因素都可以用脉冲来描述.本文以脉冲微分方程为基础,建立和研究了在固定时刻喷洒杀虫剂和释放天敌的害虫治理模型、脉冲收获与放养模型、染污环境下周期排放毒素的捕食者–食饵模型.结合连续动力系统,脉冲动力系统的相关理论系统地分析了所提出的各个模型,并用数值模拟的方法研究了模型的复杂动力学行为.全文共由六章构成.
     第一章,对捕食-食饵生物系统定性分析问题以及脉冲动力系统在生物数学方面的应用等问题的历史背景和研究现状进行了综述,对本文所做工作作了简单的介绍,并给出本文所要涉及内容的预备知识.
     第二章,对一类具HollingⅢ类功能反应模型的平衡点、极限环的存在性以及唯一性进行研究.通过计算推理与理论证明,分析了中心焦点的阶数以及稳定性.给出了极限环不存在、极限环存在和唯一性的各种条件.
     第三章,基于IBM策略,建立了两类具类功能反应和一个固定时刻脉冲,捕食者间存在相互干扰的动力系统,并利用脉冲微分方程的Floquet理论、比较定理及微小扰动法对这两个系统进行研究。对于具有HollingⅡ类功能反应的系统,得到了系统灭绝和持续生存的充分条件,并给出了临界投放值pmax,通过数值模拟验证了结论的正确性。对于具有HollingⅣ类功能反应的系统,也得到了系统灭绝和持续生存的充分条件,通过数值模拟,发现该系统具有丰富的动力学性质,随着投放量p的增加,系统出现拟周期振荡、倍周期分支、混沌、半周期分支,对称破裂分支等复杂的动力学性质,最后通过对比,说明了害虫综合治理的有效性.
     第四章,我们建立了一类在两个不同的固定时刻分别收获与放养的具有HollingⅡ类功能反应和相互干扰的捕食者–食饵脉冲动力系统,并由脉冲微分方程的Floquet理论和比较定理,得到了系统灭绝和持续生存的充分条件.
     第五章,研究了一个在污染环境中的捕食者–食饵模型,该模型考虑外界污染源在固定时刻排放毒素,利用函数积分均值的研究方法,得出了两种群永久生存与灭绝的阈值.
     第六章,就全文进行了总结,并就研究中还没有彻底解决的问题进行了说明.
It is well-known that many real world phenomena and human activities do exhibitimpulsive effects.In this thesis , based on impulsive differential equations, we establishand investigate some kinds of pest management models with periodic releasing naturalenemies and spraying pesticides at fixed time, impulsive harvesting and stocking atfixed time and a prey-predator model in a polluted environment with periodic pulsetoxicant input. Mathematically, by use of a combined approach of discrete dynamics,continuous dynamics and impulsive dynamics we study the various dynamical behaviorof the given systems. With the help of mathematical software, we investigate all kindsof bifurcations and complexity of the system we consider.
     In Chapter 1, the historical background of the prey-predator functional responsesystem and bifurcations of limit cycles is introduced and the main works of this paperare concluded as well,and some preliminaries are given.
     In Chapter 2, An qualitative analysis to a prey-predator with constant prey har-vesting under HollingⅢfunctional response system is given. Firstly, the existence forequilibrium points and their propertities are discussed. Secondly, some conditions forthe nonexistence of limit cycle are given. Finally, some conditions for the existince anduniqueness of limit cycle are derive.
     In Chapter 3, Considering biological control and chemical control strategy, twoclasses of predator-prey models with functional response and mutual interference, im-pulsive effect at one fixed time are proposed. In the prey-predator model with HollingⅡfunctional response and impulsive effect, suffcient conditions for the system to beextinct and permanence are obtained by using the Floquet theory of impulsive equa-tion and comparison theorem, the critical value pmax of impulsive is given. Numericalsimulations show that the conclusion is correct.In the system with HollingⅣfunctionalresponse and impulsive effect, suffcient conditions for the system to be extinct and per-manence are obtained too. And numerical simulations show that the system has richdynamical behaviors, such as doubling bifurcation, periodic halving bifurcation, chaos,symmetry-breaking bifurcation, crises and so on. Finally we draw a conclusion thatthe strategy of integrated pest management is more effective than spraying pesticide.
     In Chapter 4, a HollingⅡfunctional response predator-prey system with impulsiveimpulsive harvesting and stocking is proposed. Conditions for the system to be extinctare given and permanence conditions are established via the method of comparisoninvolving multiple Lyapunov functions. Further inffuences of the impulsive harvestingand stocking on the system are studied, and numerical simulations show that the systemhas rich dynamical behaviors.
     In Chapter 5, A predator-prey model with toxicant emitted from external sourcesimpulsively in a polluted environment is proposed, and the threshold of persistence inmean and extinction for each species are obtained by use the method of integral meanvalue.
     In the last chapter, the whole paper is summarized and the problems which arestill unsolved in the research are showed.
引文
[1] C.S.Holling.The functional response of predator to prey density and its role in mimicryand population regulation[J]. Mem.Ent.Sec.Can.1965,45:1-60
    [2] J.F.Andrews.A mathematical model for the continuous culture of micro-oganisms ul-tilizinginhibitory substrates[J]. Biot.Bioe.,1968,10:707-723.
    [3]陈兰荪,梁肇军.食饵种群具有常数收获率的二维Volterra模型的定性分析[J].生物数学学报,1986,1(1):22-28.
    [4]戴国仁.食饵种群具有常数收获率的Kolmogorov系统[J].四川大学学报,1989,26(3):252-259.
    [5]刘南根.具HollingI型功能性反应的食饵–捕食系统的极限环[J].数学年刊, 1988,9(A)(4):421–427.
    [6]戴国仁,徐长醒.食饵种群具有常数收获率和具有Holling I类功能反应的捕食系统[J].生物数学学报,1991,6(3):155-162.
    [7]刘兴臻.一类具有Holling II类功能性反应且具周期系数的三维顺环捕食系统的研究[J].生物数学学报,1999,14(2):178-184.
    [8]张树文,谭德君.具有Holling II类功能反应且周期系数的三种群混合模型的研究[J].生物数学学报,2000,15(3):353-357.
    [9]范猛,王克.一类具有Holling II型功能反应的食饵-捕食系统全局周期解的存在性[J].数学物理学报.2001,21A(4):492-497.
    [10]杨翠红,梁肇军.具有Holling III型功能反应的两种群捕食-被捕食系统的极限环和中心的存在性[J].数学杂志,2001,21(2):145-150.
    [11]张晓颖,柏灵,范猛等.具有Holling III类功能反应的捕食者系统差分方程周期解的存在性[J].应用数学,2002,15(3):22-31.
    [12]刘志军.具有HollingIII类功能性反应的非自治食饵-捕食者扩散系统的渐近性质[J].湖北民族学院学报(自然科学版),2001,19(1):40-43.
    [13]张平光,赵申琪.具有III类Holling功能性反应的捕食-食饵系统的极限环[J].高校应用数学学报A辑(中文版),2003,18(4):417-422.
    [14]陈兰荪.数学生态模型与研究方法[M].科学出版社,1988.
    [15]马知恩.种群生态学的数学建模与研究[M].安徽教育出版社,1996.
    [16]刘宣亮.具有常数收获率和第II类功能反应的捕食系统可以至少存在两个极限环[J].生物数学学报,1994,9(5):192-199.
    [17]朴仲铉,薛春艳.食饵种群具有收获(存放)率的II类功能反应模型的定性分析[J].生物数学学报,1997,12(2):140-144.
    [18]刘宣亮,戴国仁.一个食饵种群具有常数收获率和具有III类功能反应的捕食系统的定性分析[J].生物数学学报,1997,12(3):213-222.
    [19]沈伯骞,司成斌.捕食者群具有常数收获率并具有III类功能反应的食饵-捕食系统[J].工程数学学报,2000,17(1):32-38.
    [20]李建华.两种群都具有常数收获率(或存放率)的Volterra系统的极限环的存在性与唯一性问题[J].生物数学学报,1995,10(4):210-217.
    [21]聂益民.一类食饵种群具有收获率的HollingⅡ类功能反应生态系统的定性分析[J].陕西师范大学学报,2001,29 (1):2-5.
    [22] Yang Cui-hong, Liang Zhao-jun. Existence of limit cycle and center in two speciespredator prey system with holling III function response [ J ]. J of M ath ( PRC ) ,2001, 21 (2):145–150.
    [23]李医民,刘娟.两种群都有收获率的HollingⅡ类模型的定性分析[J].江苏大学学报,2006,27(5):463–466.
    [24]徐瑞.具有时滞和基于比率的三种群捕食系统的持续性与全局渐近稳定性[J].系统科学与数学.2001,21(2):204–212.
    [25] R Xu,M.A.J.Chaplain. Persistence and global stability in a delayed Predator-preysystem with Michaelis-Menten type functional response.Appl.Math.Comp.2002,130(2-3):441–455.
    [26]谭德君.基于比率的三种群捕食系统的持续生存.生物数学学报,2003,18(1):50–56.
    [27] J.Sugie,K.Miyamoto. Absence of limit cycles of a predator-prey system with a Sigmoidfunctional response[J].Appl.Math.Lett.1996,9(4):85–90.
    [28] J.R.Beddington. Mutual interference between parasites or predators and its effect onsearching effciency[J].Anim.Ecol., 1975(44):331–340.
    [29] D.L.DeAngelis,R.A.Goldstein,R.V.O.Neill. A model for trophic interaction[J].Ecol.1975(56):881-892 .
    [30] Goobber F ,Willanowsik K D. Liapunov approach to multiple Hopf bifurcation[J]. Jour-nal of Mathematical Analysis and Applications ,1979(71):333–350.
    [31] R.S.Cantrell,C.Cosner. On the dynamic of predator-prey models with the Beddington-DeAngelis functional response[J]. Math.Anal.Appl.2001(257):206–222.
    [32] Z.Liu,R.Yuan. Stability and bifurcation in a delayed predator-prey system withBeddington-DeAngelis functional response[J]. Math.Anal.Appl., 2004(296):521–537.
    [33] T.W.Huang. Global analysis of the predator-prey system with Beddington-DeAngelisfunctional response[J].Math.Anal.Appl.2003,281:395–401.
    [34]张芷芬等.微分方程定性理论[M].北京:科学出版社,1985.
    [35] Bainov D D,Simeonov P S. Impulsive effect:stability,theory and applications, Ellis Hor-wood Series in Mathematics and its Applications[M]. Chichester,Ellis Horwood, 1989.
    [36] Bainov.D.D., Simeonov P S. Impulsive differential equations: periodic solutions andapplications[M]. New York,Longman Scientific and Teachnical, 1993.
    [37] Lakshmikantham V,Bainov D D,Simeonov P S. Thoery of impulsive differential equa-tions[M]. Singapore, Word Scientific,1989.
    [38] A.M.Samoilenko,N.A.Perestyuk. Impulsive differential equations[M].Singapore:WorldScientific, 1995.
    [39] M.C.Roberts,R.R.Kao. The dynamics of an infectious disease in a population with birthpulses[J]. Math.Bios., 1998(149):23-26.
    [40] Tang,S.Y & Chen,L.S. Density-dependent bith rate, birth pulses and their populationdynamic consepuences[J]. J.Math.Biol. 2002(44):185-199.
    [41] Tang,S.Y & Chen,L.S. Quasiperiodic solutions and chaos in a periodically forcedpredator-prey model with age structure for predator[J]. International Journal of Bi-furcation and Chaos. 2003(13):973-980.
    [42] A.Lakmeche,O.Arino. Bifurcation of non trivial periodic solutions of impulsivedifferential equa- tions arising chemotherapeutic treatment.Dynamics of continu-ous[J].Disc.Impu.Syst., 2000(7):265-280.
    [43] A.Lakmeche,O.Arino. Nonliear mathematical model of pulsed-therapy of heterogeneoustumors[J]. Nonl.Anal., 2001(2):455-465.
    [44] J.C.Panetta. A mathematical model of periodically pulsed chemotherapy:tumor recur-rence and metastasis in a competition environment[J]. Bull.Math.Biol., 1996(58):425-447.
    [45] B.Shulgin,L.Stone,Z.Agur. Pulse vaccination strategy in the SIR epidemic model[J].Bull.Math. Biol., 1998 60:1-26.
    [46] D’Onofrio, A. Pulse vaccination strategy in the SIR epidemic model: global asymp-totic stable eradication in presence of vaccine failures[J]. Mathl. Comput. Modelling.2002(36):473-489.
    [47] D’Onofrio, A.Stability properties of pulse vaccination strategy in SEIR epidemicmodel[J]. Bio.Sci. 2002(179):57-72.
    [48] E.Funasaki,M.Kot. Invasion and chaos in a periodically pulsed mass-action chemo-stat[J].Theo. Popu.Biol., 1993,44:203-324
    [49] Bing Liu, Lansun Chen, Yujuan Zhang. The effects of impulsive toxicant imput on apopulation in a polluted environment[J].Journal of Biolotical System. 2003(3):265-274.
    [50] X.Liu,K.Rohlf. Impulsive control of a Lotka-Volterra system[J]. Math. Cont.& Info.1998, 15:269-284
    [51] B.Liu,Y.Zhi,L.S.Chen. The dynamics of a predator-prey model with Ivlev’s functionalresponse concerning integrated pest management[J]. Acta Mathematical ApplicataeSinica, 2004(20):133-146.
    [52] B.Liu, Y.J.Zhang, L.S.Chen. Dynamic complexities of a Holling I predator-prey modelconcerning periodic biological and chemical control[J]. Chaos, Solitons & Fractals.2004(22):123-134.
    [53] G.Ballinger,X.Liu. Permanence of population growth models with impulsive ef-fects.Math.Comp.
    [54] B.Liu, Y.J.Zhang ,L.S.Chen, Dynamic complexities of a Holling I two-prey one-predatormodel conceming periodic biological and chemical control[J]Chaos,Solitons and fractals,2004, 22(1):123-134.
    [55] W.M.Wang, H.L.Wang. The dynamic complexity of a three-species Beddington-type food chain with impulsive control strategy[J].Chaos, Solitons and Fractals.2007(32):1772-1785.
    [56] Hassel. M.P, Metual interference between searching insect parasites[J]. Anim. Ecol,(1971),40:473-486.
    [57] Hallam, T.G., Clark, C.E.& Jordan G.S.,Effect s of toxicants on populations:a quali-tative approach II.First order kinetics [J]. J.Math.Biol., 1983(18):25-37.
    [58] Hallam, T.G., Clark, C.E.& Lassiter R.R.,Effect s of toxicants on populations: a quali-tative approach I. Equilibrium environment exposure [J].Ecol Model, 1983(18):291-304.
    [59] Hallam, T.G. & De Luna, J.L., Effect s of toxicant s on populations:a qualitativeapproach III. environmental and food chain pathways [J] . J.Theor.Biol., 1984(109):411-429.
    [60] T.G. Hallam, Z.E. Ma. persistence in population models with demographic[J]. Biol.,1986, 24(2):327-339.
    [61] Z.Ma,B.Song,T.G.Hallam.The Threshold of Survival for Systems in a Fluctuating En-vironment[J].Bull of Math.Biol., 1989, 51(3):311-323.
    [62] G.C. Gallopin. A Generalized Model of Resource-population System.I. General Prop-erties.Ⅱ. Stability analysis[J]. Oecologia. 2000,(7):382-413; 414-432.
    [63] Z.E.Ma,W.D.Wang, Asymptotic Behavtor of Predator-prey System With Time Depen-dent Coeffcients[J]. Appli.Anal. 1989, 34(3):79-91.
    [64] X.Liu, L.S.Chen, Complex dynamics of Holling type II Lotka–Volterra predator–preysystem with impulsive perturbations on the predator[J].Chaos.Solitons & Fractals2003(16): 311–320.
    [65] S.W.Zhang, L.Z.Dong, L.S.Chen, The study of predator–prey system with defensiveability of prey and impulsive perturbations on the predator[J].Chaos,Solitons & Fractals2005;23:631–643.
    [66] B.LIU, CHEN L S, ZHAN G Y J.The effect of impulsive toxicant input on a populationin a polluted environment [J].J Biol Syst, 2003,11(3):265-274.
    [67] X.F.Yang,Z.Jin, Yakui Xue.Weak average persistence and extinction of a preda-tor–prey system in a polluted environment with impulsive toxicant input [J].Chaos,Solitons & Fractals 2007,31: 726–735.
    [68]陆征一,周义仓.数学生物学进展[M].科学出版社,2006.
    [69]张锦炎,常微分方程几何理论及分支支问题[M].北京:北京大学出版社, 1987.
    [70] Rudiger,S.Practical bifurcation and stability analysis from equilitrium to chaos[J],Springer-Verlag, New York , 1994.
    [71] Feudel F.,Seehafer N.,Galanti B.& Rudiger S.,Symmetrybreaking bifurcations forthe magnetohydro dynamic equations with helical forcing[J], Physical Review E,1996(54):2589–2596.
    [72] Y.C.Lai, Symmetry-breaking bifurcation with on-off intermittency in chaotic dynamicalsystems[J], Physiscal Review E, 1996(53):4267–4270.
    [73] Magner A.G.et al., Symmetry breaking and bifurcations on the periodic orbit theory[J],Progress of Theoretical Physics, 1999(102):551–598.
    [74] Hassel.M.P.M, etual interference between searching insect parasites[J], AnimEcol,1971), 40:473–486.
    [75]陈均平,张洪德,具功能性反应的食饵–捕食者两种群模型的定性分析[J],应用数学和力学, 1986, 7(1):73–80.
    [76] M.Fan ,K.Wang, Optimal harvesting policy for population with periodic coeff-cients[J].Mathematical Biosciences. 1998,152(1):165–177.
    [77] J.Hui, D.M.Zhu[J], Dynamic complexities for prey-dependent consumption inte-grated pest management models with impulsive effects. Chaos, Solitons and Fractals2006(29):233–-51.
    [78]张玉娟,脉冲微分方程在种群生态管理数学模型研究中的应用[D],大连理工大学数学系博士学位论文. 2004.
    [79] X.Y.Song, L.S.Chen, Optimal harvesting and stability for a predator–prey systemmodel with age structure[J]. Acta Math Appl Sin., English Ser., 2002(18):423–30.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700