高速铣削稳定性及加工精度研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高速铣削加工技术是先进制造技术中最重要的基础技术之一,已成为21世纪先进制造技术的重要组成部分,被广泛应用于航空航天、汽车、模具、能源、轨道交通等众多领域。高速铣削实现高速、高效和高精度加工的关键限制因素之一,是铣削过程中的振动。本文以航空铝合金7050-T7451为研究对象,围绕高速立铣刀铣削过程中存在的多种振动形式,借助理论分析和试验研究等手段,以提高切削效率、保障加工精度为主要研究目标,对高速铣削过程中振动的产生机理、影响因素以及与加工精度的关系进行系统、深入地研究。
     考虑每齿进给量、主轴-刀柄-刀具偏心、再生效应、刀具-工件静态变形和后刀面与已加工表面间的“耕犁力”或“刃口力”等因素的影响,建立整体硬质合金立铣刀高速铣削系统四自由度(4-DOF)动力学模型;将螺旋齿立铣刀的切削过程分为三部分,研究螺旋角对刀具-工件动态切削区的影响,并从动力学角度解释,当轴向切削深度等于齿距时,螺旋齿铣刀系统稳定性极限中不出现倍周期分叉的原因;利用有限元法,建立薄壁件铣削系统的时变参数周期延迟微分方程;考虑进给量和刀具振动对延迟时间的共同影响,建立2-DOF状态再生延迟动力学模型,根据Frechet微分理论,对该模型进行周期状态延迟微分方程的线性化研究。
     通过变每齿进给量试验,针对航空铝合金7050-T7451,获得切削力模型中的切削力系数,同时运用试验模态分析方法,获得七种整体超细晶粒硬质合金立铣刀系统的模态参数;并探讨铣削过程中存在的振动频率及分叉形式;研究切削参数对系统稳定性的影响规律,建立铣削系统的三维稳定性极限曲面;探讨1-DOF、2-DOF和4-DOF铣削系统稳定性极限之间的关系;另外,在精确估计变速铣削系统延迟时间的基础上,从变速的影响机理出发,研究转速的调制幅度和调制频率对系统稳定性极限的影响规律,建立变速铣削系统的三维稳定性极限曲面,并对调制幅度和调制频率进行优化选择。
     研究刀具主要结构参数对铣削系统稳定性的影响规律,建立考虑刀具悬伸长度的三维稳定性极限曲面;探讨不等齿距铣刀系统的稳定性问题,并研究此种铣刀对铣削颤振的抑制作用机理;建立薄壁件铣削系统的三维稳定性极限曲面,探讨薄壁件铣削稳定性极限与刀具加工位置的关系;另外,提出并建立基于铣削均匀性和稳定性结合的高速立铣刀结构参数设计理论。
     根据共振区理论和前后连续两刀齿切削过程的相位差的三种临界状态,给出六种主轴转速,并将高速铣削稳定区划分为四部分;依据Floquet理论的单值矩阵的特征乘子与单位圆的关系,推导高速铣削系统的稳定性判据,给出高速铣削系统稳定性极限图的绘制方法;利用共振区与稳定区在稳定性极限图中的位置关系,提出一种适合试验现场的简单、快速获得系统稳定性较好的极限值的方法;以最大稳定性的材料切除率为优化目标,以加工过程稳定且非共振为约束条件,以系统的结构参数和切削参数为优化变量,提出一种同时考虑自激振动和强迫振动的动态优化方法,此优化方法适合粗加工或半精加工等对加工精度要求不太高的高效加工过程;基于平均切削力理论模型,提出一种获得最优径向切削深度的研究方法;利用最优控制理论,建立一种新的稳定区一最优稳定区,将传统稳定区进行细分;结合最优径向切削深度理论和最优稳定区理论,提出一种获得最优切削参数的研究方法,所获得的最优切削参数适合精密加工、超精密加工等加工精度要求较高、加工过程要求稳定且抗外界干扰能力较强的加工过程。
     在切削稳定区内,从系统响应的角度,研究动态表面位置误差的产生机理;运用谐平衡法,计算获得强迫振动在工件已加工表面产生的动态表面位置误差,并研究各种系统参数(主轴转速、径向切削深度、刀具齿数、刀具螺旋角和刀具悬伸长度等)对动态表面位置误差的影响规律;另外,通过铣削试验,对比研究稳定非共振切削、稳定且共振切削和不稳定切削三种工况对薄壁件铣削加工前后和时效前后的变形量的影响规律;最后,研究振动对航空整体框类零件加工变形的影响规律,并探讨不等齿距铣刀对航空整体结构件加工变形的改善作用。
     本课题得到国家自然科学基金重点项目“大型航空整体结构件加工变形机理及精度保障技术(50435020)”的支持。
High-speed milling (HSM), which is one of the advanced manufacturing technologies, has been become the important part of modern manufacture technology in 21 century and used in many different fields, e.g. aeronautics and astronautics, automobile, die and mould, energy, and rail transit. While the material removal rate (MRR), reflecting the machining efficiency, is often limited by the occurrence of an instability phenomenon called chatter in HSM processes. In order to increase the chatter-free MRR and surface accuracy, the numerical analysis and experimental researches are carried out through underlying and systematacial investigation of the occurring sources of the different types of vibrations, influencing factors, and machining accuracy in HSM processes.
     An integrated four degree-of-freedom (DOF) dynamic model for HSM processes with solid carbide endmill is developed, including feed per tooth, tool eccentricity, regenerative effect, static deflection of tool-workpiece, and plouging effect. Dividing the cutting process into three cutting processes, the influence of the helix angle on dynamic cutting zone is considered. Unstable flip islands arise in the stability lobe diagram due to the helical flutes of the tool. The analysis of the directional cutting force factor gives a clear explanation for the existence of the unstable islands. The periodic delay differential equation with variable parameters for thin-walled workpiece milling process is proposed. Considering the feed motion and tool vibration, a 2-DOF dynamic model of regenerative chatter with state dependent time delay is developed in HSM processes. Based on the Frechet derivative theory, the linearization of periodic state-dependent delay different equation is investigated. For a system with practical milling paramters, it is shown that the incorporation of the state-dependent delay into the model does not essentially affect the linear stability properties of the system.
     Cutting force coefficients and tool or workpiece modal parameters are found by using experiments with variable feed rates and experimental modal analysis (EMA), respectively. The vibration frequencies and bifurcations during milling processes are described. The influences of cutting parameters on stability limits are investigated in detail. The three dimensional stability limit map for different spindle speeds, different axial depths of cut, and different radial depths of cut are obtained. Two types of instability are predicted corresponding to quasiperiodic (Hopf) and periodic (flip) chatter. The stability lobes of 1 -DOF, 2-DOF, and 4-DOF milling processes are shown. It is shown that the stability behaviour depends strongly on the flexibility of system. In this dissertation, a better delay approximation has been used in the modeling of variable spindle speed (VSS) milling processes, and the benefits of VSS milling operations are discussed by comparing the stability charts of VSS milling operations with those obtained for constant spindle speed milling operations. The three dimensional stability limit map for different frequencies and amplitudes of the cosine speed variation at the speed 12000rpm is shown. From the graph, it is possible to select variable parameters that are adequate for the cutting conditions required.
     The influences of different tool structural parametes on stability limits are investigated respectively. The tool frequency response function (FRF), which is required as input to existing stability lobe calculations, is determined analytically using receptance coupling substructure analysis and Euler-Bernoulli beams with step changes in cross section. The development of three-dimensional stability limit map is described, that combine the traditional dependence of allowable depth of cut on spindle speed with inherent dependence on tool overhang length, due to the corresponding changes of dynamics with overhang in the system. The stability of nonuniform pitch milling tools is predicted. Nonuniform pitch milling tool is a powerful technique to reduce the vibration level in milling when the system is unstable, while the influence of nonuniform pitch milling tools only plays an important part in period doubling lobes. Using FEM and EMA, the FRF of thin-walled workpiece depending on tool positions is obtained, and the three dimensional stability limit map of thin-walled workpiece milling process are obtained. An integrated theory of structural parameters design of solid Carbide endmill for HSM is established, which combines the milling uniformity with milling stability.
     Stability citeria for HSM processes is derived by the characteristic multipliers of the transition matrix which obtained by the Floquet theory, and a method for identifying stability limit lobes is also introduced. A novel method which may simply obtain stability limits lobes of milling processes is presented. The method is based on two theories: the first is that the stability boundary has a typical 'lobed' structure, with maxima stability located at spindle speeds corresponding to the integer fractions of the eigen-frequencies of the most flexible modes of the machine-tool-workpiece system; the second is theory of semi-bandwidth for resonant region. An updated method for dynamic optimation is proposed to determine the cutting parameters and structural parameters for increasing the chtter-free MRR and suface finish through considering the self-excited vibration and forced vibration in HSM processes. The objective function of the method is chatter-free MRR, constrains are chatter stability and surface finish, and optimizing variable are cutting parameters and structural parameters. The proposed method can be used in machining processes with lower surface finish, e.g. rough machining, semifinishing. Directional cutting force factors and stability limit charts are conducted for the down- and up-milling cases of various immersion rates. An in-depth investigation of the optimal stable immersion rates for down-milling in the vicinity of where the average cutting force changes sign is presented. Stability charts and performance contour in the parametric space for HSM processes are obtained. A new stable region-optimal stable region is definited in the tranditional conditional stable region, which is divided into three parts: unconditional stable region, optimal stable region, and new conditional stable region. The optimal cutting parameters are obtained, which are suitable for precision finishing or ultraprecision machining operations.
     Stable cutting conditions have been selected and the influence of forced vibrations on part geometric accuracy (Dynamic surface location error-DSLE) is investigated. The underlying theory, based on the situation of forced vibrations, is outlined. The DSLE is predicted by using the harmonic balance analyses during stable milling operations. Comparisons between the influences of system parameters (spindle speed, radial depth of cut, tooth number, helix angle, and tool overhang length) on the DSLE are included. Under the cases of stable and noresonant milling, stable and resonant milling, and unstable milling, cutting distortion, and time-dependent distortion are investigated by HSM experiments with thin-walled workpiece. Influences of vibration on machining distortion are explained in HSM monolithic component with uniform and nonuniform pitch milling tools.
引文
1.艾兴.高速切削加工技术[M].北京:国防工业出版社,2003.
    2.J.Tlusty.High-speed milling[J].Annals of the CIRP,1993,42(2):733-738.
    3.G.Byrne,D.Dornfeld,and B.Denkena.Advancing cutting technology[J].Annals of the CIRP,2003,52(2):483-507.
    4.张伯霖.高速切削技术及应用[M].北京:机械工业出版社,2002.
    5.J.P.Davim.Machining-Fundamentals and recent advances[M].Springer-Verlag London Limited,2008.
    6.M.Held.On the computational geometry of pocket machining[M].Spdnger-Verlag Berlin Heidelberg,1991.
    7.万熠.高速铣削航空铝合金刀具失效机理及刀具寿命研究[D].济南:山东大学博士学位论文,2006.
    8.艾興.高速切削加工技術的现状和发展[C].两岸机电暨产学合作学术研讨会论文集,2005:1-11.
    9.S.A.Tobias.机床振动学[M].北京:机械工业出版社,1977.
    10.杨肃,唐恒龄,廖伯瑜.机床动力学[M].北京:机械工业出版社,1983.
    11.师汉民.金属切削理论及其应用新探[M].武汉:华中科技大学出版社,2002.
    12.李加种.金属切削动力学[M].杭州:浙江大学出版社,1993.12.
    13.丁文静.自激振动[M].北京:清华大学出版社,2009.
    14.W.J.Endres,R.E.Devor,and S.G.Kapoor.A dual-mechanism approach to the prediction of machining forces,Part 1,Model development[J].Journal of Engineering for Industry,! 995,117:526-533.
    15.H.Paris,D.Brissaud,and A.Gouskov.A more realistic cutting force model at uncut chip thickness dose to zero[J].Annals of the CIRP,2007,56(i):415-418.
    16.O.Kienzle,H.Victor.Spezifische schnittkrafte bei der metallbearbeitung[J].Werkstofftechnik und Machinenbau,1957,47(5):224-225.
    17.Y.Altintas,E.Budak.Analytical prediction of stability lobes in milling[J].Annals of the CIRP,1995,44(1):357-362.
    18.Y.Altintas,P.Lee.A general mechanics and dynamics model for helical end mills[J].Annals of the CIRP,1996,45(1):59-64.
    19.Y.Altintas,S.Engin.Generalized modeling of mechanics and dynamics of milling cutters[J].Annals of the CIRP,2001,50(1):25-30.
    20.S.Engin,Y.Altintas.Mechanics and dynamics of general milling cutters,part Ⅰ:helical end mills;part Ⅱ:inserted cutters[J].International Journal of Machine Tools and Manufacture,2001,41:2195-2231.
    21.B.Balachandran,X.Zhao.A mechanics based model for study for study of dynamics of milling operations[J].Meecanica,2000,35:89-109.
    22.T.Insperger,G.Stepan.Stability of the milling process[J].Periodica Polytechnica- Mechanical Engineering,2000,44:47-57.
    23.G.Stepan.Modelling nonlinear regenerative effects in metal cutting[J].Proceedings of the Royal Society A,Mathematical,Physical and Engineering Sciences,2001,359:739-757.
    24.R.P.H.Faassen,N.van de Wouw,J.A.J.Oosterling,et al.Prediction of regenerative chatter by modeling and analysis of high-speed milling[J].International Journal of Machine Tools and Manufacture,2003,43:1437-1446.
    25.X.H.Long,B.Balachandran,B.P.Mann.Dynamics of milling processes with variable time delays[J].Nonlinear Dynamics,2007,47:49-63.
    26.R.P.H.Faassen,N.van de Wouw,H.Nijmeijer,et al.An improved tool path model including periodic delay for chatter prediction in milling[J].Journal of Computational and Nonlinear Dynamics,2007,2(2):167-179.
    27.X.W.Liu,K.Cheng,D.Webb,et al.Improved dynamic cutting force model in peripheral milling, part I: theoretical model and simulation [J]. The International Journal of Advanced Manufacturing Technology, 2002, 20: 631-638.
    28. R. Sridhar, R.E. Hohn, and GW. Long. A stability algorithm for the general milling process [J]. Journal of Engineering for industry, 1968, 90: 330-334.
    29. Balachandran. Nonlinear dynamics of milling processes [J]. Proceedings of the Royal Society A, Mathematical, Physical and Engineering Sciences, 2001, 359: 793-819.
    30. M.X. Zhao, B. Balachandran. Dynamics and stability of milling process [J]. International Journal of Solids and Structures, 2001,38: 2233-2248.
    31. X.H. Long, B. Balachandran. Stability analysis for milling process [J]. Nonlinear Dynamics, 2007, 49: 349-359.
    32. T. Insperger, D.A.W. Barton, and G. Stepan. Criticality of Hopf bifurcation in state-dependent delay model of turning processes [J]. International Journal of Non-Linear Mechanics, 2008, 43: 140-149.
    33. J.K. Hale. Theory of functional differential equations [M]. Springer-Verlag, New York, 1977.
    34. J. Tlusty, W. Zaton, and F. Ismail. Stability lobes in milling [J]. Annals of the CIRP, 1983, 32(1): 309-313.
    35. S. Smith, J. Tlusty. Update on high-speed milling dynamics [J]. Journal of Engineering for Industry, 1990, 112: 142-149.
    36. I. Minis, R. Yanushevsky, and A. Tembo. Analysis of linear and nonlinear chatter in milling [J]. Annals of the CIRP, 1990, 39(1): 459-462.
    37. Y. Altintas, M. Weck. Chatter stability of metal cutting and grinding [J]. Annals of the CIRP, 2004, 53(2): 619-642.
    38. E. Budak. Analytical models for high performance milling, part I: cutting forces, structural deformations and tolerance integrity; part II: process dynamics and stability [J]. International Journal of Machine Tools and Manufacture, 2006,46: 1478-1499.
    39. F.M. Asl, A.G. Ulsoy. Analysis of a system of linear delay differential equations [J]. Journal of Dynamic Systems, Measurement, and Control, 2003, 125: 215-223.
    40. S. Yi, P.W. Nelson, A.G. Ulsoy. Delay differential equations via the matrix Lambert W function and bifurcation analysis: application to machine tool chatter [J]. Mathematical Biosciences and Engineering, 2007,4(2): 355-368.
    41. S.D. Merdol, Y. Altintas. Multi frequency solution of chatter stability for low immersion milling [J]. Journal of Manufacturing Science and Engineering, 2004, 126:459-466.
    42. W.T. Corpus, W.J. Endres. Added stability lobes in machining processes that exhibit periodic time variation, part 1: an analytical solution; part 2: experimental validation [J]. Journal of Manufacturing Science and Engineering, 2004, 126: 467-480.
    43. M.L. Campomanes, Y. Altintas. An improved time domain simulation for dynamic milling at small radial immersions [J]. Journal of Manufacturing Science and Engineering, 2003, 125: 416-422.
    44. N. Olgac, R. Sipahi. A unique methodology for chatter stability mapping in simultaneous machining [J]. Journal of Manufacturing Science and Engineering, 2005, 127: 791-800.
    45. G. Quintana, J. Ciurana, and D. Teixidor. A new experimental methodology for identification of stability lobes diagram in milling process [J]. International Journal of Machine Tools and Manufacture, 2008, 48: 1637-1645.
    46. Jean-V.L. Lan, A. Marty, and Jean-F. Debongnie. Providing stability maps for milling operations [J]. International Journal of Machine Tools and Manufacture, 2007,47: 1493-1496.
    47. N.D. Sims, P.V. Bayly, and K.A. Young. Piezoelectric sensors and actuators for milling tool stability lobes [J]. Journal of Sound and Vibration, 2005, 281: 743-762.
    48. Z.Q. Li, Q. Liu. Solution and analysis of chatter stability for end milling in the time-domain [J]. Chinese Journal of Aeronautics, 2008,21:169-178.
    49. G. Totis. RCPM-a new method for robust chatter prediction in milling [J]. International Journal of Machine Tools and Manufacture, 2008, 49, 2009: 273-284.
    50. G. Quintana, J. Ciurana, I. Ferrer, et al. Sound mapping for stability lobes diagram identification in milling process [J]. International Journal of Machine Tools and Manufacture, 2008, 49, 2009: 203-211.
    51. P.V. Bayly, J.E. Halley, B.P. Mann, et al. Stability of interrupted cutting by temporal finite element analysis [J]. Journal of Manufacturing Science and Engineering, 2003, 125: 220-225.
    52. B.P. Mann, K.A. Young. An empirical approach for delayed oscillator stability and parametric identification [J]. Proceedings of the Royal Society A, Mathematical, Physical and Engineering Sciences, 2006,462: 2145-2160.
    53. N.K. Garg, B.P. Mann, N.H. Kim, et al. Stability of a time-delayed system with parametric excitation [J]. Journal of Dynamic Systems, Measurement, and Control, 2007, 129: 125-135.
    54. O. Elbeyli, J.Q. Sun. On the semi-discretization method for feedback control design of linear systems with time delay [J]. Journal of Sound and Vibration, 2004, 273: 429-440.
    55. T. Insperger, T.L. Schmitz, T.J. Burns, et al. Comparison of analytical and numerical simulations for variable spindle speed turning [C]. International Mechanical Engineering Congress, 2003-41809 (CD-ROM).
    56. H.T. Ma, E.A. Butcher, and E. Bueler. Chebyshev expansion of linear and piecewise linear dyanmic systems with time delay and periodic coefficients under control excitations [J]. Journal of Dynamic Systems, Measurement, and Control, 2003,125: 236-243.
    57. E.A. Butcher. Chebyshev collocation for linear, periodic ordinary and delay differential equations: a posteriori estimates [J]. Journal of Numerical Analysis, 2007,45(6): 2510-2536.
    58. V. Deshmukh, E.A. Butcher, and E. Bueler. Dimensional reduction of nonlinear delay differential equations with periodic coefficients using Chebyshev spectral collocation [J]. Nonlinear Dynamics, 2008, 52: 137-149.
    59. M.A. Davies, J.R. Pratt, B.S. Dutterer, et al. Stability prediction for low radial immersion milling [J]. Journal of Manufacturing Science and Engineering, 2002,124: 217-225.
    60. R. Szalai, G. Stepan. Lobes and lenses in the stability chart of interrupted turning [J]. Journal of Computational and Nonlinear Dynamics, 2007, 2(2): 167-179.
    61. G. Stepan, R. Szalai, B.P. Mann, et al. Nonlinear dynamics of high-speed milling-analyses, numerics, and experiments [J]. Journal of Vibration and Acoustics, 2005,127: 197-203.
    62. G. Stepan, T. Insperger, and R. Szalai. Delay, parametric excitation, and the nonlinear dynamics of cutting processes [J]. International Journal of Bifurcation and Chaos, 2005,15(9): 2783-2798.
    63. R. Szalai, G. Stepan. Period doubling bifurcation and center manifold reduction in a time-periodic and time-delayed model of machining [J]. Journal of Nonlinear Science, 2006, 13: 265-288.
    64. Z. Dombovari, R. Eddie Wilson, and G. Stepan. Estimates of the bistable region in metal cutting [J]. Proceedings of the Royal Society A, Mathematical, Physical and Engineering Sciences, 2008, 464:3255-3271.
    65. P. Wahi, A. Chatterjee. Regenerative tool chatter near a codimension 2 Hopf point using multiple scales [J]. Nonlinear Dynamics, 2005, 40: 323-338.
    66. M.S. Fofana, P.B. Ryba. Parametric stability of non-linear time delay equations [J]. International Journal of Non-Linear Mechanics, 2004, 39: 79-91.
    67. J. Warminski, G. Litak, M.P. Cartmell, et al. Approximate analytical solutions for primary chatter in the non-linear metal cutting model [J]. Journal of Sound and Vibration, 2003, 259(4): 917-933.
    68. F. Kong, J.Y. Yu. Study of fuzzy stochastic limited cutting width on chatter [J]. The International Journal of Advanced Manufacturing Technology, 2007, 33: 677-683.
    69. C.K. Chang, H.S. Lu. The optimal cutting-parameter selection of heavy cutting process in side milling for SUS304 stainless steel [J]. The International Journal of Advanced Manufacturing Technology, 2007, 34: 440-447.
    70. J.A. Stori, P.K. Wright. Parameter space decomposition for selection of the axial and radial depth of cut in endmilling [J]. Journal of Manufacturing Science and Engineering, 2001, 123: 654-664.
    71. E. Budak, A. Tekeli. Maximizing chatter free material removal rate in milling through optimal selection of axial and radial depth of cut pairs [J]. Annals of the CIRP, 2005, 54(1): 353-356.
    72. E.A. Butcher, O. Bobrenkov, E. Bueler, et al. Analysis of milling stability by the Chebyshev collocation method: algorithm and optimal stable immersion levels [J]. Journal of Computational and Nonlinear Dynamics, in press.
    73. V. Gagnol, B.C. Bouzgarrou, P. Ray, et al. Stability-based spindle design optimization [J]. Journal of Manufacturing Science and Engineering, 2007,129: 407-415.
    74. J.S. Chen, Y. W. Hwang. Centrifugal force induced dynamics of a motorized high-speed spindle [J]. The International Journal of Advanced Manufacturing Technology, 2006,30:10-19.
    75. C.W. Lin, J.F. Tu, and Joe Kamman. An integrated thermo-mechanical-dynamical model to characterize motorized machine tool spindles during very high speed rotation [J]. International Journal of Machine Tools and Manufacture, 2003, 43: 1035-1050.
    76. H.Q. Li, Y.C. Shin. Analysis of bearing configuration effects on high speed spindles using an integrated dynamic thermo-mechanical spindle model [J]. International Journal of Machine Tools and Manufacture, 2004, 44: 347-364.
    77. J.F. Tian, S.G. Hutton. Chatter instability in milling systems with flexible rotating spindles-a new theoretical approach [J]. Journal of Manufacturing Science and Engineering, 2001, 123: 1-9.
    78. M.R. Movahhedy, P. Mosaddegh. Prediction of chatter in high speed milling including gyroscopic effects [J]. International Journal of Machine Tools and Manufacture, 2006, 46: 996-1001.
    79. V. Gagnol, B.C. Bouzgarrou, P. Ray, et al. Model-based chatter stability prediction for high-speed spindles [J]. International Journal of Machine Tools and Manufacture, 2007, 47: 1176-1186.
    80. C.J. Li, A.G. Ulsoy, and W.J. Endres. The effect of flexible-tool rotation on regenerative instability in machining [J]. Journal of Manufacturing Science and Engineering, 2003, 125: 39-47.
    81. B.P. Mann, N.K. Garg, K.A. Young, et al. Milling Bifurcations from Structural Asymmetry and Nonlinear Regeneration [J]. Nonlinear Dynamics, 2005, 42: 319-337.
    82. H. Schulz, T. Wurz. Balancing requirements for fast rotating tools and spindle systems [J]. Annals of the CIRP, 1998,47(1): 321-324.
    83. I. Mane, V. Gagnol, B.C. Bouzgarrou, et al. Stability-based spindle speed control during flexible workpiece high-speed milling [J]. International Journal of Machine Tools and Manufacture, 2008,48: 184-194.
    84. E. Abele, U. Fiedler. Creating stability lobe diagrams during milling [J]. Annals of the CIRP, 2004,53(l):309-312.
    85. S.S. Park, Y.M. Qin. Robust regenerative chatter stability in machine tools [J]. The International Journal of Advanced Manufacturing Technology, doi 10.1007/s0017-006-0778-x.
    86. J. Gradisek, E. Govekar, and I. Grabec. A chaotic cutting process and determining optimal cutting parameter values using neural networks [J]. International Journal of Machine Tools and Manufacture, 1996, 36(10): 1161-1172.
    87. S.T. Chiang, D.I. Liu, A.C. Lee, et al. Adaptive control optimization in end milling using neural networks [J]. International Journal of Machine Tools and Manufacture, 1995, 35(5): 637-660.
    88. N.K. Jaim, V.K. Jain, and K. Deb. Optimization of process parameters of mechanical type advanced machining processes using genetic algorithms [J]. International Journal of Machine Tools and Manufacture, 2007, 47: 900-919.
    89. P. Palanisamy, I. Rajendran, and S. Shanmugasundaram. Optimization of machining parameters using genetic algorithm and experimental validation for end-milling operations [J]. The International Journal of Advanced Manufacturing Technology, 2007, 32: 644-655.
    90. A. Hascalik, U. Caydas. Optimization of turning parameters for surface roughness and tool life based on the Taguchi method [J]. The International Journal of Advanced Manufacturing Technology, 2008, 38: 896-903.
    91. M. Weck, N. Hennes, and M. Krell. Spindle and toolsystems with high damping [J]. Annals of the CIRP, 1999,48(1): 297-302.
    92. H. Takeyama, N. Lijima, N. Nishiwaki, et al. Improvement of dynamic rigidity of tool holder by applying high-damping material [J]. Annals of the CIRP, 1984, 33(1): 249-252.
    93. C.S. Anderson, S.E. Semercigil, and O.F. Turan. A passive adaptor to enhance chatter stability for end mills [J]. International Journal of Machine Tools and Manufacture, 2007, 47: 1777-1785.
    94. G.N. Meshcheriakov, L.P. Tuscharova, N.G. Meshcheriakov, et al. Machine-tool vibration stability depending on adjustment of dominant stiffness axes [J]. Annals of the CIRP, 1984, 33(1): 271-272.
    95. M. Rahman. Effect of clamping conditions on chatter stability and machining accuracy [J]. Annals of the CIRP, 1985, 34(1): 339-342.
    96. S. Smith, T.P. Jacobs, and J. Halley. The effect of drawbar force on metal removal rate in milling [J]. Annals of the CIRP, 1999,48(1): 293-296.
    97. S.G. Liu, L. Zheng, Z.H. Zhang, et al. Optimal fixture design in peripheral milling of thin-walled workpiece [J]. The International Journal of Advanced Manufacturing Technology, 2006, 28: 653-658.
    98. S.G. Liu, L. Zheng, Z.H. Zhang, et al. Optimization of the number and positions of fixture locators in the peripheral milling of a low-rigidity workpiece [J]. The International Journal of Advanced Manufacturing Technology, 2007, 33:668-676.
    99. T.L. Schmitz, M.A. Davies, K. Medicus, et al. Improving high-speed machining material removal rates by rapid dynamic analysis [J]. Annals of the CIRP, 2001, 50(1): 263-268.
    100. A. Erturk, E. Budak, and H.N. Ozguven. Selection of design and operational parameters in spindle-holder-tool assemblies for maximum chatter stability by using a new analytical model [J]. International Journal of Machine Tools and Manufacture, 2007, 47: 1401-1409.
    101. B. Karpuschewski, S. Batt. Improvement of dynamic properties in milling by integrated stepped cutting [J]. Annals of the CIRP, 2007, 56(1): 85-88.
    102. L. Tang, R.G. Landers, and S.N. Balakrishnan. Parallel turning process parameter optimization based on a novel heuristic approach [J]. Journal of Manufacturing Science and Engineering, 2008,130:031002-1-12.
    103. S. Smith, W.R. Winfough, and H.J. Borchers. Power and stability limits in milling [J]. Annals of the CIRP, 2000, 49(1): 309-312.
    104. F. Ismail, E.G. Kubica. Active suppression of chatter in peripheral milling, part 1. a statistical indicator to evaluate the spindle speed modulation method [J]. The International Journal of Advanced Manufacturing Technology, 1995, 10:299-310.
    105. Y.S. Liao, Y.C. Young. A new on-line spindle speed regulation strategy for chatter control [J]. International Journal of Machine Tools and Manufacture, 1996, 36(5): 651-660.
    106. E. Soliman, F. Ismail. Chatter suppression by adaptive speed modulation [J]. International Journal of Machine Tools and Manufacture, 1997, 37(3): 355-369.
    107. E.A. Regib, J. Ni, and S.H. Lee. Programming spindle speed variation for machine tool chatter suppression [J]. International Journal of Machine Tools and Manufacture, 2003,43: 1229-1240.
    108. S. Jayaram, S.G. Kapoor, and R.E. DeVor. Analytical stability analysis of variable spindle speed machining [J]. Journal of Manufacturing Science and Engineering, 2000,122: 391-397.
    109. S. Sastry, S.G. Kapoor, and R.E. DeVor. Floquet theory based approach for stability analysis of the variable speed face-milling process [J]. Journal of Manufacturing Science and Engineering, 2002,124: 10-17.
    110. A. Yilmaz, E. Al-Regib, and J. Ni. Machine tool chatter suppression by multi-level random spindle speed variation [J]. Journal of Manufacturing Science and Engineering, 2002, 124: 208-216.
    111. N.S. Namachchivaya, R. Beddini. Spindle speed variation for the suppression of regenerative chatter [J]. Journal of Nonlinear Science, 2003,13: 265-288.
    112. M. Zatarain, I. Bediaga, J. Munoa, et al. Stability of milling processes with continuous spindle speed variation: Analysis in the frequency and time domains, and experimental correlation [J]. Annals of the CIRP, 2008, 57(1): 379-384.
    113. A. Demir, A. Hasanov, and N.S. Namachchivaya. Delay equations with fluctuating delay related to the regenerative chatter [J]. International Journal of Non-Linear Mechanics, 2006, 41: 464-474.
    114. S.K. Choudhury, J. Mathew. Investigations of the effect of non-uniform insert pitch on vibration during face milling [J]. International Journal of Machine Tools and Manufacture, 1995, 35(8): 1435-1444.
    115. K. Shirase, Y. Altintas. Cutting force and dimensional surface error generation in peripheral milling with variable pitch helical end mills [J]. International Journal of Machine Tools and Manufacture, 1996, 36(5): 567-584.
    116. Y. Altintas, S. Engin, and E. Budak. Analytical stability prediction and design of variable pitch cutters [J]. Journal of Manufacturing Science and Engineering, 1999,121: 173-178.
    117. E. Budak. An analytical design method for milling cutters with nonconstant pitch to increase statbility, part 1: theory, part 2: application [J]. Journal of Manufacturing Science and Engineering,2003,125:29-38.
    118.N.D.Sims,B.Mann,and S.Huyanan.Analytical prediction of chatter stability for variable pitch and variable helix milling tools[J].Journal of Sound and Vibration,2008,317:664-686.
    119.B.Y.Lee,Y.S.Tarng,and S.C.Ma.Modeling of the process damping force in charter vibration [J].International Journal of Machine Tools and Manufacture,1995,35(7):951-962.
    120.C.Y.Huang,J.J.J.Wang.Mechanistic modeling of process damping in peripheral milling[J].Journal of Manufacturing Science and Engineering,2007,129:12-20.
    121.Y.Altintas,M.Eynian,and H.Onozuka.Identification of dynamic cutting force coefficients and chatter stability with process damping[J].Annals of the CIRP,2008,57(1):371-374.
    122.M.Wang,R.Fei.Chatter suppression based on nonlinear vibration characteristic of electrorheological fluids[J].International Journal of Machine Tools and Manufacture,1999,39:1925-1934.
    123.M.Wang,R.Fei.Improvement of machining stability using a tunable-stiffness boring bar containing an electrorheological fluid[J].Smart Materials and Structures,1999:511-514.
    124.J.L.Dohner,J.P.Lauffer,T.D.Hinnerichs,et al.Mitigation of chatter instabilities in milling by active structural control[J].Journal of Sound and Vibration,2004,269:197-211.
    125.J.R.Pratt,A.H.Nyafeh.Chatter control and stability analysis of a cantilever boring bar under regenerative cutting conditions[J].Philosophical Transactions of the Royal Society of London,Part A,2001,359:759-792.
    126.B.H.Lu,Z.H.Lin,X.T.Hwang,et al.On-line identification of dynamic behaviour of machine tool structure during stable cutting[J].Annals of the CIRP,1983,32(1):315-318.
    127.刘晓胜,吴乐南,马玉林,蔡鹤皋.基于电流信号的铣削颤振识别技术研究[J].机械工程学报,2000,36(4):26-29.
    128.刘安民,彭程,刘吉兆等.高速铣削时颤振的诊断和稳定加工区域的预报[J].机械工程学报,2007,43(1):164-169.
    129.E.Soliman,F.Ismail.Chatter detection by monitoring spindle drive current[J].The International Journal of Advanced Manufacturing Technology,1997,13:27-34.
    130.X.Q.Li,Y.S.Wong,and A.Y.C.Nee.Tool wear and chatter detection using the coherence function of two crossed accelerations[J].International Journal of Machine Tools and Manufacture,1997,37(6):425-435.
    131.J.Gradisek,E.Govekar,and I.Grabec.Using coarse-grained entropy rate to detect chatter in cutting[J].Journal of Sound and Vibration,1998,214(5):941-952.
    132.D.Y.Song,N.Otani,T.Aoki,et al.A new approach to cutting state monitoring in end-mill machining[J].International Journal of Machine Tools and Manufacture,2005,45:909-921.
    133.E.Kuljanic,M.Sortino,and G.Totis.Multisensor approaches for chatter detection in milling[J].Journal of Sound and Vibration,2008,312:672-693.
    134.E.Kuljanic,G.Totis and M.Sortino.Development of an intelligent multisensory chatter detection system in milling[J].Mechanical System and Signal Processing,2009,23(5):1704-1718.
    135.E.Budak.Improving productivity and part quality in milling of titanium based impellers by chatter suppression and force control[J].Annals of the CIRP,2000,49(1):31-36.
    136.王先逵.机械加工工艺手册(第2版)第1卷工艺基础卷[M].北京:机械工业出版社,2006.
    137.T.L.Schmitz,J.C.Ziegert,J.S.Canning,et al.Case study:a comparison of error sources in high-speed milling[J].Precision Engineering,2008,32:126-133.
    138.T.L.Schmitz,J.Ziegert.Examination of surface location error due to phasing of cutter vibrations[J].Precision Engineering,1999,23:51-62.
    139.M.Arizmendi,J.Fernandez,A.Gil,et al.Effect of tool setting error on the topography of surfaces machined by peripheral milling[J].International Journal of Machine Tools and Manufacture,2009,49:36-52.
    140.P.Franco,M.Estrems,and F.Faura.A study of back cutting surface finish from tool errors and machine tool deviations during face milling[J].International Journal of Machine Tools and Manufacture,2008,48:112-123.
    141.P.Depince,J.Y.Hascoet.Active integration of tool deflection effects in end milling,part 1:prediction of milled surfaces,part 2:compensation of tool deflection[J].International Journal of Machine Tools and Manufacture,2006,46:937-956.
    142.V.S.Rao,P.V.M.Rao.Tool deflection compensation in peripheral milling of curved geometries [J].International Journal of Machine Tools and Manufacture,2006,46:2036-2043.
    143.阎兵,张大卫,徐安平,黄田,曾子平.球头刀铣削过程动力学模型[J].机械工程学报,2002,38(5):22-26.
    144.S.Ratchev,S.Liu,W.Huang,et al.Milling error prediction and compensation in machining of low-rigidity parts[J].International Journal of Machine Tools and Manufacture,2004,44:1629-1641.
    145.J.K.Rai,P.Xirouchakis.Finite element method based machining simulation environment for analyzing part errors induced during milling of thin-walled components[J].International Journal of Machine Tools and Manufacture,2008,48:629-643.
    146.E.B.Kivanc,E.Budak.Structural modeling of end mills for form error and stability analysis[J].International Journal of Machine Tools and Manufacture,2004,44:1151-1161.
    147.M.Wan,W.H.Zhang,G.H.Qin,et al.Strategies for error prediction and error control in peripheral milling of thin-walled workpiece[J].International Journal of Machine Tools and Manufacture,2008,48:1366-1374.
    148.B.P.Mann,K.A.Young,T.L.Schmitz,et al.Simultaneous stability and surface location error predictions in milling[J].Journal of Manufacturing Science and Engineering,2005,127:446-453.
    149.T.Insperger,J.Gradisek,M.Kalveram,et al.Machine tool chatter and surface location error in milling processes[J].Journal of Manufacturing Science and Engineering,2006,128(4):913-920.
    150.T.L.Schmitz,B.P.Mann.Closed-form solutions for surface location error in milling[J].International Journal of Machine Tools and Manufacture,2006,46:1369-1377.
    151.T.L.Schmitz,J.Couey,E.Marsh,et al.Runout effects in milling:surface finish,surface location error,and stability[J].International Journal of Machine Tools and Manufacture,2007,47:841-851.
    152.唐志涛.航空铝合金残余应力及切削加工变形研究[D].济南:山东大学博士学位论文,2008.4.
    153.J.Tlusty,S.Smith,J.Badrawy.Design of a high speed machinie for aluminum aircraft parts[J].Manufacturing Science and Technology,1997,2:253-259.
    154.J.Tlusty,S.Smith,and W.R.Winfough.Techniques for the use of long slender end mills in high-speed milling[J].Annals of the CIRP,1996,45(1):393-396.
    155.K.A.Young.Machining-induced residual stress and distortion of thin parts[D].USA:Washington University,2005.
    156.吴凯.飞机薄壁零件加工变形有限元分析与工艺控制技术[D].南京:南京航空航天大学博士后研究工作报告,2004.
    157.董辉跃.航空整体结构件加工过程的数值仿真[D].杭州:浙江大学博士学位论文,2004.
    158.Z.J.Wang,W.Y.Chen,Y.D.Zhang,et al.Study on the machining distortion of thin-walled part caused by redistribution of residual stress[J].Chinese Journal of Aeronautics,2005,18(2):175-179.
    159.刘培德.切削力学新篇[M].大连:大连理工大学出版社,1991.11.
    160.E.J.A.Armarego,N.P.Deshpande.Computerized end-milling force predictions with cutting models allowing for eccentricity and cutter deflections[J].Annals of the CIRP,1991,40(1):25-29.
    161.H.Q.Zheng,X.P.Li,Y.S.Wong,et al.Theoretical modeling and simulation of cutting forces in face milling with cutter runout[J].International Journal of Machine Tools and Manufacture,1999,39:2003-2018.
    162.U.Bravo,O.Altuzarra,L.N.Lopez de Lacalle,et al.Stability limits of milling considering the flexibility of the workpiece and the machine[J].International Journal of Machine Tools and Manufacture,2005,45:1669-1680.
    163.B.R.Patel,B.P.Mann,and K.A.Young.Uncharted islands of chatter instability in milling[J].International Journal of Machine Tools and Manufacture,2008,48:124-134.
    164.Q.H.Song,X.Ai,Y.Wan,et al.Stability charts for helix tool in high-speed milling processes [J].Transactions of Nanjing University of Aeronautics & Astronautics,2008,25(1):18-25.
    165.M.Zatarain,J.Munoa,G.Peigne,et al.Analysis of the influence of mill helix angle on chatter stability[J].Annals of the CIRP,2006,55(1):365-368.
    166.T.Insperger,J.Munoa,M.Zararain,et al.Unstable islands in the stability chart of milling processes due to the helix angle[C].CIRP-2nd International Conference on High Performance Cutting(HPC),Vancouver,Canada,2006,(CD-ROM).
    167.M.A.Davies,B.Balachandran.Impact dynamics in milling of thin-walled structures[J].Nonlinear Dynamics.2000.22:375-392.
    168.汪通悦,何宁,李亮.薄壁零件铣削加工的振动模型[J].机械工程学报,2007,43(8):22-25.
    169.李德葆.实验模态分析及其应用[M].北京:科学出版社,2001.2.
    170.傅志方,华宏星.模态分析理论与应用[M].上海:上海交通大学出版社,2000.7.
    171.T.R.Chandrupatla,A.D.Belegundu.Introduction to finite elements in engineering[M].Prentice Hall Professional Technical Reference,1996.
    172.S.M.Kelly机械振动[M].北京:科学出版社,2002.
    173.T.Insperger,G.Stepan,F.Hartung,et al.State dependent regenerative delay in milling processes[C].ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference,2005-85282(CD-ROM).
    174.F.Hartung.Linearized stability in periodic functional differential equations with state-dependent delays[J].Journal of Computational and Applied Mathematics,2005,174(2):201-211.
    175.王祝堂,田荣璋.铝合金及其加工手册[M].长沙:中南大学出版社,2000.
    176.J.Gradisek,M.Kalveram,and K.Weinert.Mechanistic identification of specific force coefficients for a general end mill[J].International Journal of Machine Tools and Manufacture,2004,44:401-414.
    177.N.Tounsi,A.Otho.Identification of machine-tool-workpiece system dynamics[J].International Journal of Machine Tools and Manufacture,2000,40:1367-1384.
    178.A.S.Phani,J.Woodhouse.Viscous damping identification in linear vibration[J].Journal of Sound and Vibration,2007,303:475-500.
    179.J.Gradisek,M.Kalveram,T.Insperger,et al.On stability prediction for milling[J].International Journal of Machine Tools & Manufacture,2005,45:769-781.
    180.T.L.Schmitz,K.Medicus,and B.Dutterer.Explioring once-per-revolution audio signal variance as a chtter indicator[J].Machining Science and Technology,2002,6(2):207-225.
    181.J.H.Mathews,F.D.Fink.Numerical methods using MATLAB[M].Beijing:Publishing House of Electronics Industry,2005.
    182.张飞虎,周明.袁哲俊学术论文选集-贺袁哲俊教授八十华诞[M].哈尔滨:哈尔滨工业大学出版社,2006.
    183.T.Insperger,B.P.Mann,T.Surmann,et al.On the chatter frequencies of milling processes with runout[J].International Journal of Machine Tools and Manufacture,2008,48:1081-1089.
    184.T.Insperger,G.Stepan.Vibration frequencies in high-speed milling processes or a positive answer to Davies,Pratt,Dutterer and Burns[J].Journal of Manufacturing Science and Engineering,2004,126:481-487.
    185.W.X.Tang,Q.H.Song,S.Q.Yu,et al.Prediction of chatter stability in high-speed finishing end milling considering multi-mode dynamics[J].Journal of Materials Processing Technology,2008,209:2585-2591.
    186.T.L.Schmitz,M.A.Davies,and M.D.Kennedy.Tool point frequency response prediction for high-speed machining by RCSA[J].Journal of Manufacturing Science and Engineering,2001,123:700-707.
    187.T.L.Schmitz,K.Powell,D.Won,et al.Shrink fit tool holder connection stiffness/damping modeling for frequency response prediction in milling[J].International Journal of Machine Tools and Manufacture,2007,47:1368-1380.
    188.S.Filiz,C.H.Cheng,K.B.Powell,et al.An improved tool-holder model for RCSA tool-point frequency response prediction[J].Precision Engineering,2009,33:26-36.
    189.C.Devdendt,P.Guillaume.Identification of modal parameters from transmissibility measurements[J].Journal of Sound and Vibration,2008,314:343-356.
    190.A.S.Phani,J.Woodhouse.Experimental identification of viscous damping in linear vibration [J].Journal of Sound and Vibration,2009,319:832-849.
    191.M.A.Koplow,A.Bhattacharyya,and B.P.Mann.Closed form solutions for the dynamic response of Euler-Bernoulli beams with step changes in cross section[J].Journal of Sound and Vibration,2006,295:214-225.
    192.L.Kops,D.T.Vo.Determination of the equivalent diameter of an end mill based on its compliance[J].Annals of the CIRP,1990,39(1):93-96.
    193.M.A.Davies,B.Butterer,J.R.Pratt,et al.On the dynamics of high-speed milling with long,slender endmills[J].Annals of the CIRP,1998,47(1):55-60.
    194.S.Smith,W.R.Winfough,and J.Halley.The effect of tool length on stable metal removal rate in high speed milling[J].Annals of the CIRP,1998,47(1):307-310.
    195.S.J.Kim.Short and safe tool setting by safe space in NC machining[J].The International Journal of Advanced Manufacturing Technology,2007,33:1017-1023.
    196.邓建新,赵军.数控刀具材料选用手册[M].北京:机械工业出版社,2005.
    197.IRD Balancing.Balance quality requirements of rigid rotors:the practical application of ISO 1940/1.www.irdbalancing.com/irdbalancing/techpapers/TechPaper-IBalQuality.Regmts.pdf,2001.
    198.关延栋,王炽鸿.金属切削原理[M].上海:上海中外书局,1955.
    199.Y.Altintas.数控技术与制造自动化[M].北京:化学工业出版社,2002.
    200.G.S.Duncan,M.Tummond,T.Schmitz.An investigation of the dynamic absorber effect in high-speed machining[J].International Journal of Machine Tools and Manufacture,2005,45:497-507.
    201.唐委校.高速切削稳定性及其动态优化研究[D].济南:山东大学博士学位论文,2005.4.
    202.G.S.Duncan,M.H.Kurdi,T.L.Schmitz.Uncertainty propagation for selection analytical milling stability limit analysis[J].Transactions of NAMRI/SME,2006,34:17-24.
    203.付秀丽.高速切削航空铝合金变形理论及加工表面形成特征研究[D].济南:山东大学博士学位论文,2007.4.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700