欠驱动双足机器人行走步态建模与动态行走控制策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
机构设计与双足步行理论是双足机器人研究的两个主要内容。被动动力学理论是双足机器人研究的一个重要方向,其主要研究意义在于揭示双足行走机构本身的动力学特性,为双足机器人机构设计、行走步态分析与控制算法综合提供新的研究思路。
     本文研究了欠驱动双足机器人的机械结构设计、参数优化以及动态行走控制策略的设计等问题。根据欠驱动双足机器人的被动行走步态原理,设计了欠驱动双足机器人样机PADW-JLU II,实现了高效率双足欠驱动行走步态。提出了一种新的欠驱动机器人双脚机构,利用弹性元件实现了双脚落地碰撞过程中的机械能储存,减小了地面的反作用力,简化了行走过程中双脚的控制,实现了欠驱动双足机器人样机行走过程中的三维动态平衡。建立了带膝关节的平面四连杆欠驱动机器人被动行走步态的动力学模型,并进行了数值仿真,分析了行走步态中的能量转化过程,揭示了被动行走步态的内在机理,并分析了不同物理参数条件下机器人被动行走步态特性的变化规律。提出了基于时间维信息的极限环表示方法,使被动行走步态极限环能够更清晰地表示行走的动态过程。利用胞映射的方法实现了被动行走步态极限环吸引域的求解,并结合牛顿迭代思想提出了一种新的吸引域求解方法,提高了计算精度,减小了计算量。基于混合系统周期轨道的局部稳定性与全局稳定性定义,以被动行走步态极限环的局部与全局稳定性为指标,实现了欠驱动行走机器人的参数优化。利用极限环行走的概念,设计了欠驱动机器人的比例—微分控制算法,并通过迭代优化控制器的参数,实现了欠驱动机器人的动态行走控制。
     本论文研究得到了国家高技术研究发展计划(863计划)课题(2006AA04Z251)、国家自然科学基金项目(60974067)、吉林省科技发展计划项目(20070524)的资助。
Biped robot is one of the most important fields of humanoid robotics, having much significance in academic research and actual application. But the biped robot is a complex mechanical system with multi-degree of freedom, and the dynamics modeling, gait analysis and walking control strategy synthesis are difficult tasks. Biped machine with high stability and efficiency and the principle of biped walking are the two main topics of researches about biped robot. As for the biped robot prototype, there are many successful ones around the world, but there is still much to be complete to make biped robot be used in practical application. The key reason is that the basic theory of biped walking is still to be improved, to implement biped robot with high stability and low energy consumption. Passive dynamic walking is a new research field of biped robot, aiming to reveal the inherent properties of biped robotic dynamics and principle of stable, robust walking control. The research result can provide much instruction for the mechanical design, periodical gait analysis and calking control synthesis of biped robot.
     The research of passive dynamic walking was initiated in the last 1980’s by T. McGeer. The main topics of research about passive dynamic walking include mechanical design of biped under-actuated robot, walking gait modeling, stability analysis based on periodical orbit and walking control design. Usually used design of under-actuated biped robot has four legs. With specially designed feet with lateral degree of freedom and enable the 3D biped passive dynamic walking along a slope. A passive dynamic walker without actuations can only walk down a slope, but if mounted with some actuations on joints, the robot can walk on level ground. In the mechanical design of under-actuated biped robot, a revolution boom is always used to maintain the lateral balance in walking, and this is also the most usually used method in the design of under-actuated biped.
     A. Goswami proposed a passive biped model called compass-like biped and gave a summarization of the research about the passive dynamic walking, include gait modeling, analysis, stability properties and dynamic control. The energy based control, learning control are also used in the control of under-actuated biped robot. The virtual constraint control is successfully used in the control of under-actuated walking.
     The research topic of this thesis is the mechanical design, parameter optimization, and dynamic control strategy design. The main contents, research results and innovative points are presented as follows.
     Under-actuated biped robot is two legged robot designed under the principle of passive dynamic walking, and has much differences with the full-actuated biped robot in degree of freedom setting, joint actuation and control method. After an exhaustive review of under-actuated biped over the world, the under-actuated biped prototype PADW-JLU II is implemented using the principle of passive dynamic walking to implement high efficient dynamic walking gait. A new design method of adaptive foot with elastic springs is proposed. The new proposed foot structure has a double layer structure and spring between two layers, to make the foot have a lateral rocking degree of freedom. Four spring-rolling wheels are mounted on front and rear side of lower plate, and an extension spring link the top layer plate to the lower leg, making a virtual point foot in the walking of the robot. The new proposed foot design can store the mechanical energy lost in foot collision and reduce the reaction force of the ground. The main aim of the new foot design is to help the robot to maintain the 3D dynamic stability in biped walking.
     The gait model of under-actuated biped robot is a complex hybrid nonlinear system. The passive gait model of the biped robot is build and the six point of stable walking limit cycle is computed by Newton-Raphson iterative algorithm. Numerical simulation is used to compute the passive gait solution and also the dynamics and energy variation in the gait cycle. The limit cycle on the phase plane does not include time information, then a limit cycle with time dimension information is proposed, making the limit cycle more intuition when display the dynamics of periodic walking gait.
     The stable walking gait of under-actuated biped is a cyclic orbit and its stability property can be described by Lyapunov stability definition of single state point. The notion of orbital stability is usually used to evaluate the stability of periodic gait cycle. The cyclic orbit and its stability of under-actuated biped robot are defined. Then the local stability of limit cycle based on linearized Poincare map is described and the numerical simulation of Floquet multipliers is presented. The global stability property of limit cycle can be evaluated by its basin of attraction. The basin of attraction is a neighborhood of limit cycle from which the gait trajectory beginning can eventually convergent to the limit cycle, or a cycle trajectory near the limit cycle. The usually used cell mapping method is employed to compute the attraction region of passive walking limit cycles. But the cell mapping method needs a large amount of computation and the accuracy can’t be improved much. The cell mapping method is improved by Newton iterative algorithm. The newly proposed method decide the attraction only by computing its boundary using Newton-Raphson iterative algorithm, so much less computation is needed and the accuracy is much higher compared to those of cell mapping method. Using the local and global stability definition of cyclic orbit, the physical parameters of compass-like biped and kneed-biped robot are optimized taking the stability margin as an objective function, to find the best combination of physical parameters and the variation of gait descriptors when the physical parameters vary.
     The variation of characteristic parameters when slope angle and physical parameters vary is studied by numerical simulations. The period bifurcation and chaotic gait are simulated when the slope angle is large enough. The optimization of slope angle and physical parameters is implemented by local and global stability of passive gait limit cycles. When the local stability is used in the optimization, the maximum Floquet multiplier is used as the norm of local stability for limit cycles. The global stability of limit cycle can be evaluated by the size of attraction region. Because the computation of attraction region is too complicated, the maximum radius of attraction region is proposed as the norm of global stability. The optimization results can be used as an instruction in the mechanical design of under-actuated biped robot. It is also shown that there are some difference between the global stability and local stability of limit cycles under the same physical parameters.
     The control strategy based on passive dynamic walking principle is one of the most important aims in research of under-actuated biped robot. The notion of limit cycle walking is defined as the walking gait that forms a stable cyclic orbit. The orbital stability and high efficiency is the main properties of this kind of walking gait. The limit cycle based walking gait control is aiming to use the dynamic stability properties of passive dynamic walking limit cycles. The dynamic control strategies of kneed-passive dynamic walkers are studied, such as the energy base control and the slope invariant control. At last, a dynamic control based on learning control is developed using the principle of limit cycle walking. The passive dynamic walking gait is regarded as the reference trajectory and PD control is used to make the state of robot converge to the reference limit cycle. The PD parameters are learned and optimized by the dynamic response. Simulation experiments show the validity of the proposed method. The robot can start from still and eventually converge to the reference limit cycle.
引文
[1] C. J. Walsh, D. Paluska, K. Pasch, W. Grand, A. Valiente, H. Herr. Development of a lightweight, underactuated exoskeleton for load-carrying augmentation [C]. Proceedings of IEEE International Conference on Robotics and Automation, 2006: 3485-3491.
    [2] A. M. Dollar, H. Herr. Lower Extremity Exoskeletons and Active Orthoses: Challenges and State-of-the-Art [J]. IEEE Transactions on Robotics, 2008, 24(1): 144-158.
    [3] J. Chestnutt, M.Lau, G. Cheung, J.Kuffner, J.Hodgins, T. Kanade. Footstep planning for the Honda ASIMO humanoid[C]. Proceedings of the IEEE International Conference on Robotics and Automation, Piscataway, USA: IEEE, 2005: 629-634.
    [4] http://www.honda.com.cn/technology/asimo/a_first.html
    [5] K. Kaneko, F. Kanehiro, S.Kajita, H.Hirukawa, T.Kawasaki, M.Hirata, K.Akachi, T.Isozumi. Humanoid Robot HRP-2[C]. Proceedings of the 2004 IEEE International Conference on Robotics & Automation, 2004: 1083-1090.
    [6] K. Kaneko, K. Harada, F. Kanehiro, G. Miyamori, K. Akachi. Humanoid Robot HRP-3 [C]. 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, France, 2008: 2471-2478.
    [7] http://www.is.aist.go.jp/humanoid/
    [8] I. W. Park, J.Y. Kim, S. W. Park, J.H.Oh. Development of Humanoid Robot Platform KHR-2 (KAIST Humanoid Robot-2)[J]. International journal of humanoid robotics. 2005, 2(4): 519-536.
    [9] J. Y. Kim, I. W. Park, J. LEE, M. S. Kim, B. K. Cho, and J. H. Oh. System design and dynamic walking of humanoid robot KHR-2[C]. IEEE Int. Conference on Robotics and Automation, 2005: 1443-1448.
    [10] I. W. Park, J. Y. Kim, J. Lee, and J. H. Oh. Mechanical design of humanoid robot platform KHR-3 (KAIST Humanoid Robot–3: HUBO)[C]. Proceeding of. IEEE-RAS International Conference on Humanoid Robots, 2005: 321-326.
    [11]洪炳镕,阮玉峰,高庆吉,朱莹,刘海涛,赵伟. HIT-Ⅱ型全自主足球机器人硬件系统的设计与实现[J].哈尔滨工业大学学报, 2003, 35(9): 1025–1028.
    [12]谢涛,徐建峰,李霞.神经网络及误差补偿在HIT-Ⅲ双足机器人步态规划中的应用[J].中国机械工程, 2003, 14(2): 131-133.
    [13]王立权,俞志伟,双足机器人HEUBR_1样机研制与实验研究[J]. .机器人, 2009, 31(5): 453-459.
    [14]马宏绪,张彭.两足步行机器人动态步行的步态控制与实时时位控制方法[J].机器人, 1998, 20(1): 1-8.
    [15] Z. Peng, Q. Huang, X. Zhao, T. Xiao, K. Li. Online trajectory generation based on of-line trajectory for biped humanoid[C]. Proceedings of the IEEE International Conference on Robotics and Biomimetics, 2004:752-756.
    [16] Q. Huang,Y. Nakamura. Sensory reflex control for humanoid walking [J]. IEEE Transactions on Robotics, 2005, 21(5): 977-984.
    [17] H. Arai, Q. Huang, S. Kajita, K. Kaneko, N. Koyachi, K. Tanie, and K. Yokoi. Planning Walking Patterns for a Biped Robot[J]. IEEE Transactions on Robotics and Automation, 2001, 17(3): 280-289.
    [18]赵晓军,黄强,彭朝琴,张利格,李科杰.基于人体运动的仿人型机器人动作的运动学匹配[J].机器人, 2005, 27(4): 358-361,379.
    [19]付成龙,刘莉,陈恳.清华大学THB I P系列仿人机器人研究进展[C]. 2005全国先进制造装备与机器人技术高峰论坛,2005: 229-235.
    [20]欧阳兴,陈恳,赵明国,杨东超,汪劲松.仿人机器人支撑转换期振动分析[J].清华大学学报(自然科学版), 2004, 44(5): 641-644.
    [21]伊强,陈恳,刘莉,付成龙.小型仿人机器人THBIP-II的研制与开发[J].机器人, 2009, 31(6): 586-593.
    [22] H. Dong, M.G. Zhao, J. Zhang, N.Y. Zhang. Hardware design and gait generation of humanoid soccer robot Stepper-3D [J]. RAS Special Issue of Robotics and Autonomous Systems on Humanoid Soccer Robots, 2009, 57(8): 828-838.
    [23]胡凌云,孙增圻.双足机器人步态控制研究方法综述[J].计算机研究与发展, 2005, 42(5): 728-733.
    [24] M. Vukobratovic, B. Borovac. Zero-Moment Point - Thirty Five Years of its Life[J]. International Journal of Humanoid Robotics, 2004, 1(1): 157-173.
    [25] A. Goswami. Foot rotation indicator (FRI) point: A new gait planning tool to evaluate postural stability of biped robots[C]. IEEE International Conference on Robotics and Automation, Detroit, 1999: 47-52.
    [26] A. Goswami. Postural stability of biped robots and the foot rotation indicator (FRI) point[J]. International Journal of Robotics Research, 1999, 18(6): 523-533.
    [27] Y. Sakagami, R. Watanabe, C. Aoyama, S. Matsunaga, N. Higaki, K. Fujimura. The intelligent ASIMO: System overview and integration[C]. Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 2002: 2478-2483.
    [28]梶田秀司著,管贻生译.仿人机器人[M].清华大学出版社, 2007.
    [29] A. D. Kuo. The six determinants of gait and The inverted pendulum analogy: A dynamic walking perspective [J]. Human Movement Science, 2007, 26(4): 617-656.
    [30] S. Kajita, K. Tani. Study of dynamic biped locomotion on rugged terrain: Derivation and application of the linear inverted pendulum mode[C]. IEEE International Conference on Robotics and Automation, Sacramento, California, 1991, 2: 1405-1411.
    [31] S. Kajita, T. Yamaura, A. Kobayashi. Dynamic walking control of a biped robot along a potential energy conserving orbit [J]. IEEE Trans. on Robotics and Automation 1992, 8(4): 431-438.
    [32] K. Ohnishi, T. Suzuki. Trajectory Planning of Biped Robot with Two Kinds of Inverted Pendulums[C]. Proceedings of 12th International Power Electronics and Motion Control Conference, Portoroz, 2006: 396-401.
    [33] S. Kajita, F. Kanehiro, K. Kaneko, K. Yokoi, and H. Hirukawa, The 3D Linear inverted pendulum mode: A simple modeling for a biped walking pattern generation[C]. Proc. 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2001, 1: 239-246.
    [34] S. Kajita, F. Kanehiro, K. Kaneko, K. Yokoi, and H. Hirukawa. The 3D Linear inverted pendulum mode: A simple modeling for a biped walking pattern generation[C]. Proc. 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2001, 1: 239-246.
    [35] S. Feng, Z. Q. Sun. Biped Robot Walking Using Three-Mass linear inverted pendulum model [M]. Lecture notes in computer science, intelligent robotics and applications, Springer Berlin, Heidelberg, 2008, 5314: 371-380.
    [36] S.Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Yokoi, H. Hirukawa. Biped Walking Pattern Generation by a Simple Three-Dimensional Inverted Pendulum Model[J]. Advanced Robotics, 2003, 17(2), 131–147.
    [37] S. Hong, Y. Oh, Y.H. Chang, B.J. You. An omni-directional walking pattern generation method for humanoid robots with quadratic polynomial[sC]. Proceedings of the 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), San Diego, USA, 2007: 4207- 4213.
    [38] W. T. Miller. Real-time neural network control of a biped walking robot[J]. IEEE Control Systems, 1994, 14(1):41-48.
    [39]麻亮,纪军红,强文义,傅佩琛.基于力矩传感器的双足机器人在线模糊步态调整器设计[J].控制与决策, 2000, 15(6): 734-736.
    [40] M. Shrivastava, A. Dutta, A. Saxena. Trajectory generation using GA for an 8 DOF biped robot with deformation at the sole of the foot[J]. Journal of Intelligent and Robotic Systems, 2007, 49(1): 67–84.
    [41] H. Almir,W. Krister,W. Mattis. Central pattern generators for gait generation in bipedal robots [J]. Humanoid Robots: New Developments, I-Tech Education and Publishing, Vienna, Austria, 2007, 17: 285-304.
    [42] G. Endo, J. Nakanishi, J. Morimoto, G. Cheng. Experimental Studies of a Neural Oscillator for Biped Locomotion with QRIO[C]. IEEE International Conference on Robotics and Automation 2005, 1: 596-602.
    [43] G.Endo, J.Morimoto, T.Matsubara, J.Nakanishi, G.Cheng. Learning CPG-based biped locomotion with a policy gradient method: application to a humanoid robot[J]. International Journal of Robotics Research, 2008, 27(2), 213-228.
    [44] C.A.A. Calderon, R. E. Mohan, C. J. Zhou: Rhythmic Locomotion Control of Humanoid Robot[C]. MICAI, 2008: 626-635.
    [45] L. Righetti, A. J. Ijspeert. Programmable central pattern generators: an application to biped locomotion control[C]. Proeeedings of the IEEE International Confereneeon Roboties and Automation, Orlando, Florida, 2006:1585-1590.
    [46] J. Or, A. Takanishi. A biologically inspired CPG-ZMP control system for the real-time balance of a single-legged belly dancing robot [C]. Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), 2004, 1: 931-936.
    [47] T. McGeer. Passive dynamic walking [J]. The International Journal of Robotics Research, 1990, 9(2): 62-82.
    [48] J. R. Usherwood, K. L. Szymanek, and M. A. Daley. Compass gait mechanics account for top walking speeds in ducks and humans [J]. Journal of Experimental Biology, 2008, 211(23): 3744-3749.
    [49] A. Goswami, B. Thuilot, B. Espiau. A study of the passive gait of a compass-like biped robot: symmetry and chaos [J]. International Journal of Robotics Research, 1998, 17(12): 1282–1301.
    [50] M. Wisse. Essentials of dynamic walking: analysis and design of two-legged robots [M]. Ph.D. thesis, Delft University, 2005.
    [51] M. Wisse, R. Q. van der Linde. Delft pneumatic bipeds [M]. Springer Tracts in. Advanced Robotics, Vol. 34, 2007.
    [52] M. Wisse, J. van Frankenhuyzen. Design and Construction of MIKE; a 2D autonomous biped based on passive dynamic walking [M], Adaptive Motion of Animals and Machines, 2006, Springer-Verlag.
    [53] http://ruina.tam.cornell.edu/research/topics/locomotion_and_robotics/ranger/ ranger2008.php
    [54] T. Takuma, K. Hosoda, and M. Asada. Walking stabilization of biped walker with pneumatic actuators against terrain changes[C]. Proceeding of IEEE/RSJ International Conference on Intelligent Robots and Systems, Edmonton, AB, Canada, 2005: 4095–4100.
    [55]毛勇.半被动双足机器人的设计与再励学习控制[D].清华大学, 2007.
    [56] M. Wisse, A. L. Schwab. R. Q. VD. Linde. A 3D passive dynamic biped with yaw and roll compensation [J]. Robotica, 2001, 19(3): 275–284.
    [57] M. Wisse, D.G.E. Hobbelen, R.J.J. Rotteveel, S.O. Anderson, G. J. Zeglin. Ankle Springs Instead of Arc-shaped Feet for Passive Dynamic Walkers[C]. Proceedings of Humanoids 2006: 110-116.
    [58] E. Veltman, Foot shapes and ankle actuation for a walking robot, MSc thesis[M], 2006, Universiteit Twente.
    [59] K. Narioka, S. Tsugawa, K. Hosoda. 3D Limit Cycle Walking of Musculoskeletal Humanoid Robot with Flat Feet[C]. The 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2009: 4676-4681.
    [60] T. Narukawa, K. Yokoyama, M. Takahashi, K. Yoshida. A simple 3D straight-legged passive walker with flat feet and ankle springs[C]. 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2008: 2952-2957.
    [61] S. H. Collins, Andy Ruina. A Bipedal Walking Robot with Efficient and Human-Like Gait[C]. Proceedings of the 2005 IEEE International Conference on Robotics and Automation, 2005, 1983-1988.
    [62] S. H. Collins, A. Ruina, R. Tedrake, M. Wisse. Efficient bipedal robots based on passive-dynamic walkers [J]. Science Magazine, 2005, 307: 1082-1085.
    [63] S.H. Collins, A. Ruina, R. Tedrake, M. Wisse. Supporting online material for efficient bipedal robots based on passive-dynamic walkers. www.sciencemag.org/cgi/content/full/307/5712/ 1082/ DC1
    [64] http://www.3me.tudelft.nl/live/pagina.jsp?id=01f7247a-ae48-4328-a17f-631c0e8c38af &lang=en
    [65] http://www.3me.tudelft.nl/live/pagina.jsp?id=01f7247a-ae48-4328-a17f-631c 0e8c38af&lang=en
    [66] J. Pratt. Exploiting inherent robustness and natural dynamics in the control of bipedal walking robots [M]. Ph.D. Thesis, Computer Science Department, Massachusetts Institute of Technology, Cambridge, Massachusetts, 2000.
    [67] J. Morimoto, G. Cheng, C. G. Atkeson, G. Zeglin. A simple reinforcement learning algorithm for biped walking[C]. IEEE International Conference on Robotics and Automation, 2004:3030-3035.
    [68] J. Morimoto, G. Cheng, C. G. Atkeson, G. Zeglin. A Simple Reinforcement Learning Algorithm For Biped Walking[C]. IEEE International Conference on Robotics and Automation, 2004: 3030-3035.
    [69] S. Anderson, M. Wisse, C. Atkeson, J. K. Hodgins, G. Zeglin, B. Moyer. Powered bipeds based on passive dynamic principles[C]. 5th IEEE-RAS International Conference on Humanoid Robots, 2005: 110-116.
    [70] T.Geng, B.Porr, F.W?rg?tter. Fast Biped walking with a sensor-driven neuronal controller and real-time online learning[J]. The International Journal of Robotics Research (IJRR), 2006, 25(3): 243-259.
    [71] P.Manoonpong, T.Geng, T.Kulvicius, B.Porr, F.W?rg?tter. Adaptive, fast walking in a biped robot under neuronal control and learning [J]. Public Library of Science Computational Biology (PLoS Comput Biol), 2007,3(7): e134.
    [72] P.Manoonpong, F.Pasemann, F.W?rg?tter. Reactive neural control for photo taxis and obstacle avoidance behavior of walking machines[J]. International Journal of Mechanical Systems Science and Engineering, 2007, 1(3): 172-177.
    [73] T.Geng, B.Porr, F.W?rg?tter. A Reflexive Neural Network for Dynamic Biped Walking Control, Neural Computation[J]. MIT press 2006, 18(5): 1156-1196.
    [74] C. Chevallereau, G. Abba, Y. Aoustin, F. Plestan, E.R. Westervelt, C. Canudas-De-Wit, J.W. Grizzle. RABBIT: a testbed for advanced control theory [J]. IEEE Control Systems Magazine, 2003, 23(5): 57-79.
    [75] J.W. Grizzle, J. Hurst, B. Morris, H.W. Park, K. Sreenath. MABEL, A new robotic bipedal walker and runner[C]. American Control Conference, St. Louis, MO, June 2009.
    [76]付成龙,陈恳,王健美,黄元林.动态步行双足机器人THR-I的设计与实现[J].机器人, 2008, 30(2): 123-129.
    [77] M. Garcia. Stability, scaling, and chaos in passive-dynamic gait models [D]. Ph.D. Thesis, 1998, Cornell University, Ithaca, NY USA.
    [78] R. Tedrake, T. W. Z. Ming-fai Fong, H. S. Seung. Actuating a Simple 3D Passive Dynamic Walker[C]. Proc. of the 2004 IEEE Int. Conf. on Robotics and Automation, 2004: 4656–466.
    [79] M. Wisse, D. G. E. Hobbelen, R. J. J. Rotteveel, S. O. Anderson, G. J. Zeglin. Ankle springs instead of arc-shaped feet for passive dynamic walkers[C]. 2006 IEEE International conference on Humanoid Robots, Genua, Italy, 2006: 110–116
    [80] J. Adolfsson, H. Dankowicz, A.B. Nordmark. 3D passive walkers: finding periodic gaits in the presence of discontinuities [J]. Nonlinear Dynamics, 2001, 24 (2): 205–229.
    [81] M. Wisse, A. L. Schwab, F. C. T. van der Helm. Passive dynamic walking model with upper body [J]. Robotica, 2004, 22(6): 681-688.
    [82] M. Wisse. Three additions to passive dynamic walking: actuation, an upper body, and 3D stability [J]. International Journal of Humanoid Robotics, 2005, 2(4): 459-478.
    [83] M. Wisse, A.L. Schwab, Skateboards, bicycles, and three-dimensional biped walking machines: velocity-dependent stability by means of lean-to-yaw coupling[J]. International Journal of Robotics Research, 2005, 24(6): 417-429.
    [84] M. Wisse, A. L. Schwab, R. Q. van der Linde, F. C. T. van der Helm. How to keep from falling forward: elementary swing leg action for passive dynamic walkers[J].IEEE Transactions on Robotics, 2005, 21(3): 393-401.
    [85] A. Goswami. Limit cycles in a passive compass gait biped and passivity-mimicking control laws [J]. Journal of Autonomous Robots, 1997, 4 (3): 273-286.
    [86] M. W. Spong, J. K. Holm, D. Lee. Passivity-based control of bipedal locomotion [J]. IEEE Robotics & Automation Magazine, 2007, 14(2): 30-40.
    [87] M. W. Spong, Francesco Bullo. Controlled symmetries and passive walking [J]. IEEE Transactions on Automatic Control, 2005, 50(7): 1025-1031.
    [88] F. Asano, Z.W. Luo, M. Yamakita. Biped Gait Generation and Control Based on A Unified Property of Passive Dynamic Walking [J]. IEEE Transactions on Robotics, 2005, 21(4): 754-762.
    [89] M. Yamakita, F. Asano. Virtual gravity and coupling control for robotic gait synthesis [J]. IEEE Transactions on Systems, Man, and Cybernetics- Part A: Systems and Humans, 2001, 31(6), 737-745.
    [90] A. D. Ames, Robert D. Gregg. Mark W. Spong. A Geometric Approach to Three-Dimensional Hipped Bipedal Robotic Walking[C]. Proceedings of the 46th IEEE Conference on Decision and Control, New Orleans, LA, USA, 2007:5123-5130.
    [91] R. Gregg, M. Spong. Reduction-based Control with Application to Three-Dimensional Bipedal Walking Robots[C]. Proceedings of the 2008 American Control Conference, Westin Seattle Hotel, Seattle, Washington, USA, 2008:880-887.
    [92] Carlos Canudas-de-Wit. On the concept of virtual constraints as a tool for walking robot control and balancing [J]. Annual reviews in control, 2004, 28(2): 157-166.
    [93] J. W. Grizzle, C. Chevallereau, C. L. Shih. HZD-based control of a five-Link underactuated 3D bipedal robot[C]. IEEE Conf. on Decision and Control, 2008.
    [94] E. R. Westervelt, J.W. Grizzle, D.E Koditschek. Hybrid zero dynamics of planar biped walkers [J]. IEEE Transactions on Automatic Control, 2003, 48(1): 42- 56.
    [95] C. Chevallereau, J.W. Grizzle and Ching-Long Shih. Asymptotically Stable Walking of a Five-Link Underactuated 3D Bipedal Robot. IEEE Transactions on Robotics, 2009, 25(1): 37-50.
    [96] C. Chevallereau, E. R. Westervelt, J. W. Grizzle. Asymptotic stabilization of a five-link, four-actuator, planar bipedal runner[C]. Proceedings of the 43rd IEEE Conference on Decision and Control, 2004, 1:303-310.
    [97] T. Geng, B. Porr and F. W?rg?tter. Fast biped walking with a sensor-driven neuronal controller and real-time online learning [J]. The International Journal of Robotics Research, 2006, 25(3): 243–259.
    [98] K. Hitomi, T. Shibata, Y. Nakamura, S. Ishii. Reinforcement learning for quasi-passive dynamic walking of an unstable biped robot [J]. Robotics and Autonomous Systems, 2006, 54(12): 982-988.
    [99] R. Tedrake, T.W. Zhang, H.S. Seung. Stochastic policy gradient reinforcement learning on a simple 3D biped [C]. Proceedings of the IEEE International Conference on Intelligent Robots and Systems (IROS), 2004: 2849-2854.
    [100] J. Morimoto, J. Nakanishi, G. Endo, G. Cheng, C. G. Atkeson, G. Zeglin. Poincare-Map-based Reinforcement Learning for Biped Walking[C]. IEEE International Conference on Robotics and Automation, 2005, 2: 2381-2386.
    [101] Chenglong Fu, Ken Chen. Section-Map Stability criterion for biped robots Part I: Theory[C]. Proceedings of the 2007 IEEE International Conference on Mechatronics and Automation, 2007:1529-1534.
    [102] Chenglong Fu, Ken Chen. Section-Map Stability criterion for biped robots Part II: Applications and experiments[C]. Proceedings of the 2007 IEEE International Conference on Mechatronics and Automation, 2007:1535-1540.
    [103]付成龙,黄元林,王健美,陈恳.半被动双足机器人的准开环控制[J].机器人, 2009, 31(2): 110-117.
    [104]毛勇,王家廞,贾培发,柳宁,杨泽红,宋亦旭.半被动双足机器人的机械参数优化设计[C]. 2007年中国智能自动化会议,2007.
    [105]毛勇,李实,王家,贾培发,杨泽红,丘振.基于再励学习的被动动态步行机器人[J].清华大学学报(自然科学版), 2008, 48(1):92-96.
    [106]柳宁,李俊峰,王天舒.双足模型步行中的倍周期步态和混沌步态现象[J].物理学报, 2009, 58(6) :3772-3779.
    [107] M. Wisse, Linde, R. Q. van der. Delft pneumatic bipeds [M]. Springer Tracts in. Advanced Robotics, Vol. 34, 2007.
    [108] M. Wisse, J. van Frankenhuyzen. Design and Construction of MIKE; a 2D autonomous biped based on passive dynamic walking [M]. Adaptive Motion of Animals and Machines, 2006, Springer-Verlag.
    [109] S. H. Collins, M. Wisse, A. Ruina. A three-dimensional passive-dynamic walking robot with two legs and knees [J]. International Journal of Robotics Research, 2001, 20(7):607-615.
    [110] M. Wisse. Essentials of Dynamic Walking: Analysis and Design of Two-Legged Robots [D]. Ph.D. Thesis, Delft University, 2005.
    [111] S. H. Collins, A. Ruina, R. Tedrake, M. Wisse. Efficient Bipedal Robots Based onPassive-Dynamic Walkers [J]. Science Magazine, 2005, 307:1082-1085.
    [112] D. G. E. Hobbelen, T. de Boer, M. Wisse System overview of bipedal robots Flame and TUlip: tailor-made for limit cycle walking[C]. IEEE/RSJ International Conference on Intelligent Robots and Systems, Nice, France, 2008: 2486-2491.
    [113] J. E. Pratt, B. T. Krupp. Series elastic actuators for legged robots[C]. Proceedings of the SPIE, 2004, 5422:135-144.
    [114] J.W. Hurst, J. Chestnutt,A. Rizzi. An Actuator with Physically Variable Stiffness for Highly Dynamic Legged Locomotion[C]. Proceedings of the 2004 International Conference on Robotics and Automation, 2004, 5: 4662 - 4667.
    [115] R. V. Ham, B. Vanderborght, M. V. Damme, B. Verrelst, D. Lefeber. MACCEPA: the Actuator with Adaptable Compliance for Dynamic Walking Bipeds [M]. Climbing and Walking Robots, 2006, Part 12:759-766.
    [116] S. H.Collins, A.Ruina. A Bipedal Walking Robot with Efficient and Human-Like Gait [C]. Proceedings of IEEE International Conference on Robotics and Automation, Barcelona, Spain, 2005, 2: 1983-1988.
    [117] F. Asano, Z.W. Luo. Pseudo virtual passive dynamic walking and effect of upper body as counterweight[C]. Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, 2008: 2934-2939.
    [118] T. Kinugasa, C. Chevallereau, Y. Aoustin. Effect of circular arc feet on a control law for a biped [J]. Robotica, 2009, 27(4): 621-632.
    [119] C. Chevallereau, D. Djoudi. Feet can improve the Stability Property of a Control Law for a Walking Robot[C]. Proceedings of International Conference on Robotics and Automation, 2006: 1206-1212.
    [120] M. T.Vanderpool, S. H. Collins, A. D. Kuo. Ankle fixation need not increase the energetic cost of human walking [J]. Gait & Posture, 2008, 28:427-433.
    [121] P. G.Adamczyk, S. H.Collins, A. D. Kuo. The advantages of a rolling foot in human walking [J]. Journal of Experimental Biology, 2006, 209:3953-3963.
    [122] M. Kwan, M.Hubbard. Optimal foot shape for a passive dynamic biped [J], Journal of Theoretical Biology, 2007, 248(2):331–339.
    [123] Y. Ikemata, A. Sano, K. Yasuhara, H. Fujimoto. Dynamic effects of arc feet on the leg motion of passive walker [J].Proceedings of the 2009 IEEE international conference on Robotics and Automation, 2009: 1733-1738.
    [124] H. Sasaki, M. Yamakita, F. Asano. Design of convex foot for efficient dynamic bipedal walking[C]. 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2008), Acropolis Convention Center, Nice, France, Sept, 22-26, 2008: 3433-3439.
    [125] S. Collins, M. Wisse and A. Ruina. A three-dimensional passive-dynamic walking robot with two legs and knees [J]. International Journal of Robotics Research, 2001, 20(7):607-615.
    [126] M. Wisse, D. G. E. Hobbelen, R. J. J. Rotteveel, S. O. Anderson, G. J. Zeglin. Ankle springs instead of arc-shaped feet for passive dynamic walkers[C]. 2006 6th IEEE-RAS International Conference on Humanoid Robots, Genua, Italy,2006: 110-116.
    [127] T. Narukawa, M. Takahashi, K. Yoshida. Design and stability analysis of a 3D rimless wheel with flat feet and ankle springs [J]. Journal of System Design and Dynamics, 2009, 3(3): 258-269.
    [128]赵红杰.欠驱动双足步行机器人侧向运动学机理与控制算法研究[D].吉林大学,2009.
    [129]宿建乐.欠驱动双足步行机器人控制系统设计与实验研究[D].吉林大学,2009.
    [130] M. Garcia. Stability, scaling, and chaos in passive dynamic gait models [D]. Ph.D. Thesis, CornellUniversity, 1999.
    [131]刘振泽.欠驱动步行机器人运动学机理与控制策略研究[D].吉林大学, 2007.
    [132] R. Tedrake. Actuating a simple 3d passive dynamic walker[C]. Proceedings of the IEEE International Conference on Robotics and Automation, 2004: 4656-4661.
    [133] A. D. Ames, R. D. Gregg, E. D.B. Wendel, S. Sastry. On the geometric reduction of controlled three-dimensional bipedal robotic walkers [J]. Lecture Notes in Control and Information Sciences, Lagrangian and Hamiltonian Methods for Nonlinear Control, 2007,36(6):183-196.
    [134] E. R. Westervelt, J. W. Grizzle, C. Chevallereau, J. H. Choi, B. Morris. Feedback control of dynamic bipedal robot locomotion [M]. CRC Press, 2007.
    [135] Y. Hurmuzlu. Dynamics of Bipedal Gait: Part I - Objective Functions and the Contact Event of a Planar Five-Link Biped[J]. Journal of Applied Mechanics,1993, 60 (2):331-336.
    [136] Vanessa F. Hsu Chen. Passive dynamic walking with knees: A point foot model [D]. Master Theses, Massachusetts institute of Technology, 2007.
    [137] Y. Hurmuzlu, T. H. Chang. Rigid body collisions of a special class of planar kinematic chains[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1992, 22(5):964-971.
    [138] Y. Hurmuzlu, D. B. Marghitu. Rigid body collisions of planar kinematicchains with multiple contact points [J]. International Journal of Robotics Research, 1994, 13(1): 82-92.
    [139] J.W. Grizzle, G. Abba, F. Plestan. Asymptotically stable walking for biped robots: analysis via systems with impulse effects [J]. IEEE Transactions on Automatic Control, 2001, 46(1): 51-64.
    [140]柳宁,李俊峰,王天舒.简单被动行走模型仿真及不动点的吸引盆计算[J].力学与实践, 2008,30(1):18-22.
    [141]柳宁,李俊峰,王天舒.用胞胞映射计算被动行走模型不动点的吸引盆[J].工程力学, 2008, 25(10):218-223.
    [142] F. Ali, M. Menzinger.On the local stability of limit cycles[J].Chaos,1999, 9(2):348-356.
    [143]柳宁.双足被动行走器动力学仿真与实验研究[D].清华大学,2009.
    [144] M.Wisse, A.L. Schwab. First steps in passive dynamic walking[C]. Proceedings of the 7th International Conference on climbing and walking robots, Madrid, Spain, 2004: 745-756.
    [145] D.G.E.Hobbelen, M. Wisse. Limit cycle walking [M]. Humanoid Robots, Human-like Machines. I-Tech Education and Publishing, Chapter 14. 2007.
    [146] D.G.E. Hobbelen, M. Wisse. Swing-leg retraction for limit cycle walkers improves disturbance rejection[J]. IEEE transactions on robotics, 2008, 24(2):377-389.
    [147] A.L. Schwab, M. Wisse, Basin of attraction of the simplest walking model[C]. Proceedings of the ASME Design Engineering Technical Conferences, Pennsylvania, 2001, paper number DETC2001/VIB-21363.
    [148]凌复华.关于吸引盆的分维边界及其影响[J].科学通报,1987, 21:1672-1674.
    [149] Liu Ning, Li Junfeng, Wang Tianshu. The effects of parameter variation on the gaits of passive walking models: Simulations and experiments [J]. Robotica, 2009, 27(4): 511-528.
    [150] Ning Liu, Junfeng Li, Tianshu Wang. The effects of parameter variation on the basins of attraction of passive walking models[C]. Proceedings of the 2007 IEEE International Conference on Mechatronics and Automation, Harbin, China, 2007:1908-1913.
    [151] J. Hass, J. M. Herrmann, T. Geisel. Optimal mass distribution for passivity-based bipedal robots [J].The International Journal of Robotics Research, 2006, 25(11): 1087-1098.
    [152] J.B. Dingwell, H.G. Kang. Differences between local and orbital dynamic stability during human walking[J]. ASME Journal of Biomechanical Engineering, 2007, 129(4): 586-593.
    [153] F. Asano. Effects of swing-leg retraction and mass distribution on energy-loss coefficient in limitcycle walking[C]. Proceedings of the 2009 IEEE/RSJ international conference on intelligent robots and systems, St. Louis, MO, USA, 2009:3214-3219.
    [154]苏学敏,赵明国,张楫,董浩.被动行走周期性步态不动点搜索的新算法[J].清华大学学报(自然科学版),2009 , 49(8): 1109-1112.
    [155]郭欣.双足被动机器人行走模式的设计构想[D].北京邮电大学,2009.
    [156] A. D. Kuo. Stabilization of lateral motion in passive dynamic walking[J]. International journal of robotics research, 1999, 18(9): 917-930.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700