金属碳共晶及包晶高温固定点研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科学技术的发展,人们对高温温度测量的准确性提出了更高的要求。作为温度量值源头的国际温标,目前在铜凝固点以上的高温区缺乏参考固定点,导致高温测量的不确定度随温度升高迅速增大。建立基于金属和碳共晶和包晶相变的高温固定点是解决这一问题的有效途径。论文从高温固定点的建立、国际温标赋值、影响赋值的关键因素以及国际温标一致性比对等方面,围绕应用高温固定点技术改善高温区国际温标开展研究。
     建立了高温固定点的灌注和复现系统,改进了核心设备高温炉,延伸上限使用温度至2800℃,满足了WC-C包晶超高温固定点的灌注和复现需求。通过改进坩埚结构和灌注方法,研制了耐用稳定、具备优良计量特性的Co-C (名义温度1324℃)、 Pt-C (1738℃)、Re-C (2474℃)、WC-C(2747℃)系列高温固定点。
     开展了对高温固定点的ITS-90赋值研究。针对温标复现的主要不确定度贡献项之一,光电高温计的非线性,建立了基于光通量倍增法和LED光源的新测量系统,实现了光电高温计在更高温度下的非线性测量。
     研究了高温固定点相变温度赋值模型及关键影响因素。建立了基于凝固实验的外推至0速率的平衡相变温度理论模型,选择Pt-C进行了实验验证,理论与实验吻合良好。本模型将被国际温度计量委员会采用,用于高温固定点的热力学温度赋值。理论上研究了杂质对共晶相变温度的作用机理,建立了修正杂质效应的理论模型和修正方法。实验研究了Co-C高温固定点复现中的高温炉温度梯度效应。
     基于英国国家物理实验室(NPL)的ITS-90温标,实验研究了中国、英国、西班牙三国提供的Co-C(1324℃), Pt-C(1738℃),Re-C(2474℃)高温固定点的复现性;并利用固定点比对了三国高温温标一致性。结果表明:三种高温固定点的复现性良好,均优于0.1度。三国温标的差异在Co-C和Pt-C均小于0.1℃,在Re-C小于0.4℃。良好的一致性说明高温固定点技术将成为未来高温区关键比对的可靠技术。
With the evolution of science and technology, accurate measurement ofhigh temperature is vital and imminently required. However, the uncertaintyin high temperature measurement increases rapidly with increasingtemperature, since the currently implemented international temperature scale(ITS-90), relying upon radiation thermometry above the silver point (962C)is in lack of reference fixed points above the copper point (1084C). Thediscovery of high-temperature fixed points (HTFPs) based upon metal-carboneutectics and peritectics will drastically change the situation. In this paper wewill f℃us on research of improving the temperature scale above the copperpoint by using these HTFPs.The construction of HTFPs, the ITS-90temperature assignment to them, key factors influencing the implementationof HTFPs, international comparisons of the ITS-90, as locally realized, bymeans of HTFPs will be studied in turn in this thesis, in Chapters2to6,respectively.
     Experimental systems-crucibles, ingots and furnaces-were developed tofill and subsequently realize HTFPs, i.e. providing the conditions toreproducibly realize melting and freezing curves. A high temperature furnacewas modified for use up to2800℃to satisfy the demand of filling andrealizing the WC-C peritectic fixed point. Several sets of Co-C (nominaltemperature1324℃), Pt-C (1738℃), Re-C (2474℃), WC-C(2747℃) fixedpoints of different structure were filled by different filling methods, and theyall showeds robust, stable and accurate metrological characteristics.
     The T90assignments to HTFPs were studied. Non-linearity of radiationthermometers, one of the main components in the uncertainty budgetass℃iated with the realization of ITS-90by radiation thermometry-above thesilver point-was studied, using the superposition method and involving LEDswith high radiance output.
     In any temperature scale, to get a unique point for reference, the phase transition temperature to be referred to, is that of the system inthermodynamic equilibrium, in its pure state. How to extrapolate to thisunique point, in the case of the selected HTFPs, and the key influence factorsto be taken into account, are important subjects discussed in this thesis. Pt-Cwas chosen and experimentally studied through freezing rate experiments tovalidate the procedures and models involved. The model will be adopted byCCT-WG5to assign thermodynamic temperature to HTFPs. The effect ofimpurities on the eutectic phase transition temperature was studiedtheoretically, and the method to correct for the impurity effect is reported here.Finally, the furnace-gradient effect on the realization of the Co-C point wasexperimentally studied as reported in this thesis.
     The reproducibility of the Co-C, Pt-C, and Re-C HTFPs–in terms ofmelting characteristics filled by NIM, China,NPL, UK and CEM, Spain,were studied at NPL with NPL’s ITS-90as a reference, with as result that forall the three kinds of HTFPs the reproducibility was better than0.1℃. Aprototype comparison of the ITS-90, as realised by NIM, NPLand CEM, usingCo-C, Pt-C, and Re-C as transfer standards is reported. From thesemeasurements a comparison reference value (CRV) was derived. At the Co-Cand Pt-C points the deviation from the CRV was <0.1℃for all threeinstitutes, at the Re-C point the deviation was <0.4℃. Given the consistentperformance of the HTFPs they should be seriously considered as scalecomparison artefacts of choice when comparing l℃al realisations of theITS-90and of l℃al measurements of thermodynamic temperature.
引文
[1] Ratcliffe JA. The45th Kelvin Lecture-the Physics of the Ionosphere. Proceedings of theInstitution of Electrical Engineers-London,1954,101:339-346.
    [2] Balazs NL. On the Lack of Equivalence of the Clausius and Kelvin Principles. AmericanJournal of Physics,1954,22:495-495.
    [3] Hamtil CN. Equivalence of the Clausius and Kelvin Postulates. American Journal ofPhysics,1954,22:93-94.
    [4] Awano M. Precisionization of Gas Thermometry. Journal of the Physical Society ofJapan,1961,16:2560-&.
    [5] Izrailov KS. Gas Thermometry at High Temperatures. MeasurementTechniques-Ussr,1966:416-&.
    [6] Kirenkov II, Izrailov KS, Diykov UV. New Method of Gas Thermometry.Metrologia,1974,10:41-46.
    [7] Guildner LA. Accuracy of Realizing Thermodynamic Temperatures by Gas Thermometry.Ptb-Mitteilungen,1980,90:41-47.
    [8] Kemp RC. Constant-Volume Valve Suitable for Use in Gas Thermometry. Review ofScientific Instruments,1985,56:1294-1295.
    [9] Pitre L, Moldover MR, Tew WL. Acoustic thermometry: new results from273K to77Kand progress towards4K. Metrologia,2006,43:142-162.
    [10] Fellmuth B, Fischer J, Gaiser C, Jusko O, Priruenrom T, Sabuga W, Zandt T.Determination of the Boltzmann constant by dielectric-constant gas thermometry.Metrologia,2011,48:382-390.
    [11] Tamura O, Takasu S, Nakano T, Sakurai H. Constant-Volume Gas Thermometry withDifferent Helium-3Gas Densities at NMIJ/AIST. International Journal ofThermophysics,2011,32:1366-1377.
    [12] Zandt T, Fellmuth B, Gaiser C, Kuhn A, Merlone A, Moro F, Thiele-Krivoi B. Capabilitiesfor Dielectric-Constant Gas Thermometry in a Special Large-Volume Liquid-BathThermostat. International Journal of Thermophysics,2011,32:1355-1365.
    [13] Apfel JH. Acoustic Thermometry. Review of Scientific Instruments,1962,33:428-&.
    [14] Colclough AR. Low-Frequency Acoustic Thermometry in the Range4.2-20-K withImplications for the Value of the Gas-Constant. Proceedings of the Royal Society ofLondon Series a-Mathematical Physical and Engineering Sciences,1979,365:349-370.
    [15] Moldover MR, Trusler JPM. Accurate Acoustic Thermometry.1. The Triple Point ofGallium. Metrologia,1988,25:165-187.
    [16] Spiesberger JL, Hurlburt HE, Johnson M, Keller M, Meyers S, O'Brien J. Acousticthermometry data compared with two ocean models: the importance of Rossby waves andENSO in modifying the ocean interior. Dynamics of Atmospheres andOceans,1998,26:209-240.
    [17] Ewing MB, Trusler JPM. Primary acoustic thermometry between T=90K and T=300K.Journal of Chemical Thermodynamics,2000,32:1229-1255.
    [18] Pitre L, Hermier Y, Verge A, Benhalima F, Bonnier G. Acoustic thermometry using thevelocity of the second sound of He-3in superfluid He-4below0,7Kelvin. Tempmeko2001:8th International Symposium on Temperature and Thermal Measurement in Industryand Science, Vol1&2, Proceedings,2002:135-140.
    [19] Skarsoulis EK, Send U, Piperakis G, Testor P. Acoustic thermometry of the westernMediterranean basin. Journal of the Acoustical Society of America,2004,116:790-798.
    [20] Ripple DC, Strouse GF, Moldover MR. Acoustic thermometry results from271to552k.International Journal of Thermophysics,2007,28:1789-1799.
    [21] de Podesta M, Sutton G, Underwood R, Legg S, Steinitz A. Practical AcousticThermometry with Acoustic Waveguides. International Journal ofThermophysics,2010,31:1554-1566.
    [22] Ripple DC, Davis R, Fellmuth B, Fischer J, Machin G, Quinn T, Steur P, Tamura O, WhiteDR. The Roles of the Mise en Pratique for the Definition of the Kelvin. InternationalJournal of Thermophysics,2010,31:1795-1808.
    [23] Neuer G, Fischer J, Edler F, Thomas R. Comparison of temperature measurement by noisethermometry and radiation thermometry. Measurement,2001,30:211-221.
    [24] Tew WL, Labenski JR, Nam SW, Benz SP, Dresselhaus PD, Burroughs CJ. Johnson noisethermometry near the zinc freezing point using resistance-based scaling. InternationalJournal of Thermophysics,2007,28:629-645.
    [25] White DR, Benz SP. Constraints on a synthetic-noise source for Johnson noisethermometry. Metrologia,2008,45:93-101.
    [26] Zhang JT, Xue SQ. Investigation of the imperfection effect of correlation on Johnson noisethermometry. Metrologia,2008,45:436-441.
    [27] Qu JF, Benz SP, Pollarolo A, Rogalla H. Reduced Nonlinearities in the Nist Johnson NoiseThermometry System.2010Conference on Precision Electromagnetic MeasurementsCpem,2010:74-75.
    [28] Tew WL, Benz SP, Dresselhaus PD, Coakley KJ, Rogalla H, White DR, Labenski JR.Progress in Noise Thermometry at505K and693K Using Quantized Voltage Noise RatioSpectra. International Journal of Thermophysics,2010,31:1719-1738.
    [29] Pollarolo A, Urano C, Dresselhaus PD, Qu JF, Rogalla H, Benz SP. Development of aFour-Channel Johnson Noise Thermometry System. Ieee Transactions on Instrumentationand Measurement,2011,60:2655-2659.
    [30] Khlevnoy B, Khromchenko V, Samoylov M, Sapritsky V, Harrison N, Sperfeld P, Fischer J.Determination of the temperatures of metal-carbon eutectic fixed-points by differentdetectors from VNIIOFI, NPL, and PTB. Tempmeko2001:8th International Symposiumon Temperature and Thermal Measurement in Industry and Science, Vol1&2,Proceedings,2002:845-850.
    [31] Fischer J, Jung HJ, Friedrich R. A New Determination of the Freezing Temperature ofGold Relative to That of Silver by Radiation Thermometry. Temperature: ItsMeasurement and Control in Science and Industry, Vol6, Pts1and2,1992,6:53-57.
    [32] Fischer J. Radiation thermometry for the determination of high temperature fixed points ofthe ITS-90. Metrology-at the Threshold of the Century Are We Ready?,1999:627-635.
    [33] Pavese F. Introduction to the International Temperature Scale of1990in Its CryogenicRange. Cryogenics,1990,30:415-423.
    [34] Prestonthomas H. The International Temperature Scale of1990(Its-90).Metrologia,1990,27:3-10.
    [35] Quinn TJ. The International Temperature Scale of1990(Its-90). PhysicaScripta,1990,41:730-732.
    [36] Rusby RL. The International Temperature Scale of1990at Low-Temperatures. PhysicaB,1990,165:35-36.
    [37] Prestonthomas H, Quinn TJ. The International Temperature Scale of1990.1. Temperature:Its Measurement and Control in Science and Industry, Vol6, Pts1and2,1992,6:63-67.
    [38] Prestonthomas H, Quinn TJ. The International Temperature Scale of1990.2. Temperature:Its Measurement and Control in Science and Industry, Vol6, Pts1and2,1992,6:69-74.
    [39] Woolliams ER, Machin G, Lowe DH, Winkler R. Metal (carbide)–carbon eutectics forthermometry and radiometry: a review of the first seven years. Metrologia,2006,43:R11.
    [40] Yamada Y, Khlevnoy B, Wang YF, Wang TJ, Anhalt K. Application of metal(carbide)-carbon eutectic fixed points in radiometry. Metrologia,2006,43:S140-S144.
    [41] Yamada Y, Wang Y, Sasajima N. Metal carbide-carbon peritectic systems ashigh-temperature fixed points in thermometry. Metrologia,2006,43:L23-L27.
    [42] Machin G, Bloembergen P, Anhalt K, Hartmann J, Sadli M, Saunders P, Woolliams E,Yamada Y, Yoon H. Practical Implementation of the Mise en Pratique for the Definition ofthe Kelvin Above the Silver Point. International Journal ofThermophysics,2010,31:1779-1788.
    [43] Morice R, Megharfi M, Favreau JO, Morel E, Didialaoui I, Filtz JR. Realization ofmetal–carbon fixed points for calibration of contact thermometers at high temperatures.2004. p.847-852.
    [44] Edler F, Baratto AC. A cobalt-carbon eutectic fixed point for the calibration of contactthermometers at temperatures above1100degrees C. Metrologia,2005,42:201-207.
    [45] Kim YG, Yang I. Using metal-carbon eutectic fixed points for high temperature contactthermometry at KRISS.2006SICE-ICASE International Joint Conference, Vols1-13,2006:4802-4805.
    [46] Pearce JV, Lowe DH, Head DI, Machin G. Optimizing contact thermometryhigh-temperature fixed-point cells (>1,100degrees C) using finite-element analysis.International Journal of Thermophysics,2008,29:250-260.
    [47] Kim YG, Gam KS, Yang I. Realization of Fe-C Eutectic Point Using an Alumina Crucible.International Journal of Thermophysics,2010,31:1498-1505.
    [48] Todd ADW, Gotoh M, Woods DJ, Hill KD. Cobalt-Carbon Eutectic Fixed Point forContact Thermometry. International Journal of Thermophysics,2011,32:453-462.
    [49] Ongrai O, Pearce JV, Machin G, Sweeney SJ. A miniature high-temperature fixed point forself-validation of type C thermocouples. Measurement Science&Technology,2011,22.
    [50] Ongrai O, Pearce JV, Machin G, Sweeney SJ. Miniature Co-C eutectic fixed-point cells forself-validating thermocouples. Measurement Science&Technology,2011,22.
    [51] Quinn RK, Knauer RC. Low-Temperature Faraday Susceptibility Apparatus. Review ofScientific Instruments,1972,43:1543-&.
    [52] Yamada Y, Sakate H, Sakuma F, Ono A. Radiometric observation of melting and freezingplateaus for a series of metal-carbon eutectic points in the, range1330degrees C to1950degrees C. Metrologia,1999,36:207-209.
    [53] Yamada Y, Duan Y, Ballico M, Park SN, Sakuma F, Ono A. Measurement of Rh-C, Pt-Cand Ru-C eutectic points by four national metrology institutes.Metrologia,2001,38:203-211.
    [54] Yamada Y, Sakate H, Sakuma F, Ono A. High-temperature fixed points in the range1150degrees C to2500degrees C using metal-carbon eutectics. Metrologia,2001,38:213-219.
    [55] Yamada Y, Sakate H, Sakuma F, Ono A. High-temperature fixed points in the range1150C to2500C using metal-carbon eutectics. Metrologia,2001,38:213.
    [56] Sasajima N, Yamada Y, Sakuma F. Metal-carbon and metal carbide-carbon eutectic fixedpoints as high-temperature standards. Sice2002: Proceedings of the41st Sice AnnualConference, Vols1-5,2002:2073-2076.
    [57] Sasajima N, Yamada Y, Zailani BM, Fan K, Ono A. Melting and freezing behavior ofmetal-carbon eutectic fixed-point blackbodies. Tempmeko2001:8th InternationalSymposium on Temperature and Thermal Measurement in Industry and Science, Vol1&2,Proceedings,2002:501-506.
    [58] Yamada Y, Bloembergen P, Sasajima N, Torizuka S, Yoshida N, Yamamoto N. On theeffect of impurities on the melting curve of the Metal-Carbon eutectic systems. Sice2002:Proceedings of the41st Sice Annual Conference, Vols1-5,2002:2441-2443.
    [59] Yamada Y, Sasajima N, Sakuma F, Ono A. Realizing fixed points above the copper pointup to2500degrees C using metal-carbon eutectics. Tempmeko2001:8th InternationalSymposium on Temperature and Thermal Measurement in Industry and Science, Vol1&2,Proceedings,2002:19-26.
    [60] Bloembergen P, Yamada Y, Sasajima N, Torizuka S, Yoshida N, Yamamoto N. On theeffect of impurities on the melting curve of the eutectic system Fe-C. Temperature: ItsMeasurement and Control in Science and Industry, Vol7, Pts1and2,2003,684:261-266.
    [61] Bloembergen P, Yamada Y, Yamamoto N, Hartmann J. Realizing the high-temperature partof a future ITS with the aid of eutectic metal-carbon fixed points. Temperature: ItsMeasurement and Control in Science and Industry, Vol7, Pts1and2,2003,684:291-296.
    [62] Sasajima N, Yamada Y, Bloembergen P. Effect of gaseous impurities on the melting curveof iron-carbon eutectic fixed points. Sice2003Annual Conference, Vols1-3,2003:2191-2194.
    [63] Yamada Y, Sasajima N, Gomi H, Sugai T. High-temperature furnace systems for realizingmetal-carbon eutectic fixed points. Temperature: Its Measurement and Control in Scienceand Industry, Vol7, Pts1and2,2003,684:985-990.
    [64] Yamada Y, Bloembergen P. High-temperature metal-carbon eutectic fixed-point cells withimproved robustness. SICE2004Annual Conference, Vols1-3,2004:1027-1030.
    [65] Bloembergen P, Yamada Y. SIE and OME as tools to estimate the uncertainty in thecorrection for the effect of impurities applied to metal-carbon eutectic systems.Metrologia,2006,43:371-382.
    [66] Sasajima N, Yoon HW, Gibson CE, Khromchenko V, Sakuma F, Yamada Y. The NISTeutectic project: Construction of Co-C, Pt-C and Re-C fixed-point cells and theircomparison with the NMIJ. Metrologia,2006,43:S109-S114.
    [67] Sasajima N, Sakharov M, Khlevnoy B, Yamada Y, Samoylov M, Ogarev S, Bloembergen P,Sapritsky V. A comparison of Re-C and TiC-C eutectic fixed-point cells among VNIIOFI,NMIJ and BIPM. AIST Bulletin of Metrology,2007,5:257-266.
    [68] Sasajima N, Yamada Y. Investigation of WC-C peritectic high-temperature fixed point.Proceedings of Sice Annual Conference, Vols1-8,2007:1378-1381.
    [69] Yamada Y, Wang Y, Sasajima N. Experimental investigation of Cr3C2-C peritectic fixedpoint. Proceedings of Sice Annual Conference, Vols1-8,2007:1374-1377.
    [70] Yamada Y, Wang Y, Zheng W, Sasajima N. A study of the metal carbide-carbon peritecticphase transition for the Cr-C system. International Journal ofThermophysics,2007,28:2028-2040.
    [71] Bloembergen P, Khlevnoy BB, Largo PJ, Yamada Y. Spectral and total effective emissivityof a high-temperature fixed-point radiator considered in relation to the temperature dropacross its back wall. International Journal of Thermophysics,2008,29:370-385.
    [72] Sasajima N, Yamada Y. Investigation of TiC-C eutectic and WC-C peritectichigh-temperature fixed points. International Journal of Thermophysics,2008,29:944-957.
    [73] Sasajima N, Yamada Y, Wang Y, Bloembergen P, Wang T, Le Coze J. The dependence ofthe iron-carbon eutectic transition temperature on thermal history and its implications forthermometry. Journal of Alloys and Compounds,2008,452:61-66.
    [74] Sasajima N, Yamada Y. Performance evaluation of WC-C peritectic high-temperaturefixed point. IEEE,2009. p.3307-3310.
    [75] Bloembergen P, Yamada Y. Measurement of Thermodynamic Temperature Above theSilver Point on the Basis of the Scheme n=2. International Journal ofThermophysics,2011,32:45-67.
    [76] Lowe D, Machin G. Development of metal-carbon eutectic blackbody cavities to2500degrees C at NPL. Tempmeko2001:8th International Symposium on Temperature andThermal Measurement in Industry and Science, Vol1&2, Proceedings,2002:519-524.
    [77] Machin G, Sergienko R. A comparative study of size of source effect (SSE) determinationtechniques. Tempmeko2001:8th International Symposium on Temperature and ThermalMeasurement in Industry and Science, Vol1&2, Proceedings,2002:155-160.
    [78] Machin G, Yamada Y, Lowe D, Sasajima N, Sakuma F, Kai F. A comparison ofmetal-carbon eutectic blackbody cavities of rhenium, iridium, platinum and palladiumbetween NPL and NMIJ. AIST Bulletin of Metrology,2002,1:613-618.
    [79] Lowe D, Machin G. Metal–carbon eutectic alloy high-temperature (to2500C) fixed-pointsas stable reference sources at the National Physical Laboratory.2003.
    [80] Lowe D, McEvoy HC, Machin G. Design and construction of a new primary standardpyrometer at NPL. Temperature: Its Measurement and Control in Science and Industry, Vol7, Pts1and2,2003,684:553-558.
    [81] Machin G, Beynon G, Edler F, Fourrez S, Hartmann J, Lowe D, Morice R, Sadli M,Villamanan M. HIMERT: A Pan-European project for the development of metal-carboneutectics as temperature standards. Temperature: Its Measurement and Control in Scienceand Industry, Vol7, Pts1and2,2003,684:285-290.
    [82] Lowe D, Machin G. High-temeperature fixed-points at the National Physical Laboratory.SICE2004Annual Conference, Vols1-3,2004:802-806.
    [83] Woolliams ER, Khlevnoy BB, Harrison NJ, Montgomery SR, Lowe D, Fox NP, OgarevSA, Khromchenko VB, Sapritsky VI. Measurements of the melting and freezing plateausof Re–C eutectic fixed-point blackbodies.2004. p.183-188.
    [84] Lowe D, Yamada Y. Reproducible metal-carbon eutectic fixed-points.Metrologia,2006,43:S135-S139.
    [85] Lowe D, McEvoy HC, Owen M. A Mid-IR pyrometer calibrated with high-temperaturefixed points for improved scale realization to2,500degrees C. International Journal ofThermophysics,2007,28:2059-2066.
    [86] Lowe D, Mingard K, Malik Z, Quested P. The dependence of the melting temperature ofcobalt-carbon eutectic on the morphology of its microstructure. International Journal ofThermophysics,2007,28:2019-2027.
    [87] Lowe D, Anhalt K, Hartmann J. Construction and validation of a platinum-carbon eutecticfixed point. Metrologia,2008,45:325-329.
    [88] Machin G, Wright L, Lowe D, Pearce J. Optimizing the implementation ofhigh-temperature fixed points through the use of thermal modeling. International Journalof Thermophysics,2008,29:261-270.
    [89] Machin G, Dong W, Martin MJ, Lowe D, Yuan Z, Wang T, Lu X. A Comparison of theITS-90Among NPL, NIM, and CEM, Above the Silver Point Using High-TemperatureFixed Points. International Journal of Thermophysics,2010,31:1466-1476.
    [90] Ongrai O, Pearce JV, Machin G, Sweeney SJ. Comparative Study of Pt/Pd and Pt-Rh/PtThermocouples. International Journal of Thermophysics,2010,31:1506-1516.
    [91] Machin G, Dong W, Martin MJ, Lowe D, Yuan Z, Wang T, Lu X. Estimation of the degreeof equivalence of the ITS-90above the silver point between NPL, NIM and CEM usinghigh temperature fixed points. Metrologia,2011,48:196-200.
    [92] Pearce JV, Montag V, Lowe D, Dong W. Melting Temperature of High-Temperature FixedPoints for Thermocouple Calibrations. International Journal ofThermophysics,2011,32:463-470.
    [93] Khlevnoy B, Sapritsky V, Samoylov M, Yamada Y. Ir-c and Re-C fixed-point blackbodies'spectral radiance reproducibility at650nm. Tempmeko2001:8th InternationalSymposium on Temperature and Thermal Measurement in Industry and Science, Vol1&2,Proceedings,2002:513-518.
    [94] Khlevnoy BB, Harrison NJ, Rogers LJ, Pollard DF, Fox NP, Sperfeld P, Fischer J,Friedrich R, Metzdorf J, Seidel J, Samoylov ML, Stolyarevskaya RI, Khromchenko VB,Ogarev SA, Sapritsky VI. Intercomparison of radiation temperature measurements overthe temperature range from1600K to3300K. Metrologia,2003,40:S39-S44.
    [95] Sapritsky VI, Khlevnoy BB, Khromchenko VB, Ogarev SA, Morozova SP, Lisiansky BE,Samoylov ML, Shapoval VI, Sudarev KA. Blackbody sources for the range100K to3500K for precision measurements in radiometry and radiation thermometry. Temperature: ItsMeasurement and Control in Science and Industry, Vol7, Pts1and2,2003,684:619-624.
    [96] Sapritsky VI, Khlevnoy BB, Khromchenko VB, Ogarev SA, Samoylov ML, Pikalev YA.High temperature fixed-point blackbodies based on metal-carbon eutectics for precisionmeasurements in radiometry, photometry and radiation thermometry. Temperature: ItsMeasurement and Control in Science and Industry, Vol7, Pts1and2,2003,684:273-277.
    [97] Sapritsky VI, Ogarev SA, Khlevnoy BB, Samoylov ML, Khromchenko VB. Developmentof metal-carbon high-temperature fixed-point blackbodies for precision photometry andradiometry. Metrologia,2003,40:S128-S131.
    [98] Panfilov AS, Lisyansky BE, Morozova SP, Ogarev SA, Samoylov ML, Sakharov MK,Khlevnoy BB, Sapritsky VI, Privalsky VE. Precision radiometric calibration ofspace-borne instruments in the spectral region from UV through FIR based on the use offixed-point blackbodies. IGARSS2005: IEEE International Geoscience and RemoteSensing Symposium, Vols1-8, Proceedings,2005:4154-4157.
    [99] Sapritsky VI, Khlevnoy BB, Ogarev SA, Privalsky VE, Samoylov ML, Sakharov MK,Bourdakin AA, Panfilov AS. Variable and fixed-point blackbody sources developed atVNIIOFI for precision measurements in radiometry and thermometry within100K...3500K temperature range-art. no.629710. Infrared Spaceborne Remote SensingXIV,2006,6297:29710-29710.
    [100] Khlevnoy B, Sakharov M, Ogarev S, Sapritsky V, Yamada Y, Anhalt K. Investigation offurnace uniformity and its effect on high-temperature fixed-point performance.International Journal of Thermophysics,2008,29:271-284.
    [101] Khlevnoy BB, Grigoryeva IA, Ibragimov NA. New Method of Filling ofHigh-Temperature Fixed-Point Cells Based on Metal-Carbon Eutectics/Peritectics.International Journal of Thermophysics,2011,32:1763-1772.
    [102] Khlevnoy BB, Samoylov ML, Grigoryeva IA, Ibragimov NA, Shapoval VI, Puzanov AV,Ogarev SA. Development of High-Temperature Blackbodies and Furnaces for RadiationThermometry. International Journal of Thermophysics,2011,32:1686-1696.
    [103] Khlevnoy BB, Yamada Y, Grigoryeva IA, Samoylov ML. Comparison of Re-CFixed-Point Cells and Their T(90) Temperatures Between NMIJ and VNIIOFI.International Journal of Thermophysics,2011,32:1753-1762.
    [104] Sadli M, Machin G, Lowe D, Hartmann J, Morice R. Realisation and comparison ofmetal-carbon eutectic points for radiation thermometry applications and W-Rethermocouple calibration. Tempmeko2001:8th International Symposium on Temperatureand Thermal Measurement in Industry and Science, Vol1&2, Proceedings,2002:507-512.
    [105] Sadli M, Fanjeaux M, Bonnier G. Construction and implementation of a set ofmetal-carbon eutectic fixed points. Temperature: Its Measurement and Control in Scienceand Industry, Vol7, Pts1and2,2003,684:267-272.
    [106] Matveyev MS, Sadli M, Sild YA, Pokhodun AI, Bourson F. Experience of Constructionand Study of Pt-C Eutectic in VNIIM and Cooperation with LNE-INM. InternationalJournal of Thermophysics,2009,30:47-58.
    [107] Sadli M, Anhalt K, Bourson F, Schiller S, Hartmann J. Thermal Effects in theHTBB-3200pg Furnace on Metal-Carbon Eutectic Point Implementation. InternationalJournal of Thermophysics,2009,30:69-76.
    [108] Sadli M, Pehlivan O, Bourson F, Diril A, Ozcan K. Collaboration Between UME andLNE-INM on Co-C Eutectic Fixed-Point Construction and Characterization. InternationalJournal of Thermophysics,2009,30:36-46.
    [109] Bourson F, Sadli M, Rougie B, Briaudeau S. Study and Comparison of Newly DevelopedITS-90Silver-and Copper-Point Cells. International Journal ofThermophysics,2011,32:1602-1610.
    [110] Sadli M, Bloembergen P, Khlevnoy B, Wang T, Yamada Y, Machin G. An InternationalStudy of the Long-Term Stability of Metal-Carbon Eutectic Cells. International Journal ofThermophysics,2011,32:1786-1799.
    [111] Machin G, Yamada Y, Lowe D, Sasajima N, Anhalt K, Hartmann J, Goebel R, McEvoy HC,Bloembergen P. A comparison of high temperature fixed-points of Pt–C and Re–Cconstructed by BIPM, NMIJ and NPL.2004. p.1049–1056.
    [112] Park CW, Kim BH, Lee DH, Park SN. Realization of a nickel carbon eutectic fixed pointwith an optimized filling process monitored by the melting–freezing temperaturedifference measurement. Metrologia,2005,42:L5.
    [113] Kim YG, Yang I, Kwon SY, Gam KS. Features of Co/C and Ni/C eutectic transitions foruse in thermocouple thermometry. Metrologia,2006,43:67-70.
    [114] Hartmann J, Anhalt K, Sperfeld P, Hollandt J, Sakharov M, Khlevnoy B, Pikalev Y,Ogarev S, Sapritsky V. THERMODYNAMIC TEMPERATURE MEASUREMENTS OFTHE MELTING CURVES OF RE-C, TIC-C AND ZRC-C EUTECTIC IRRADIANCEMODE FIXED-POINT CELLS. Proc. TEMPMEKO2004(Dubrovnik),2004:189-194.
    [115] Anhalt K, Hartmann J, Lowe D, Machin G, Sadli M, Yamada Y, Bloembergen P. Acomparison of Co-C, Pd-C, Pt-C, Ru-C and Re-C eutectic fixed points independentlymanufactured by three different institutes. Proc. Newrad (Davos,Switzerland),2005:289-290.
    [116] Anhalt K, Hartmann J, Lowe D, Machin G, Sadli M, Yamada Y. Thermodynamictemperature determinations of Co-C, Pd-C, Pt-C and Ru-C eutectic fixed-point cells.Metrologia,2006,43:S78-S83.
    [117] Anhalt K, Hartmann J, Lowe D, Machin G, Sadli M, Yamada Y. Thermodynamictemperature determinations of Co–C, Pd–C, Pt–C and Ru–C eutectic fixed-point cells.Metrologia,2006,43:S78.
    [118] Anhalt K, Wang Y, Yamada Y, Hartmann J. Large-and small-aperture fixed-point cells ofCu, Pt-C, and Re-c. International Journal of Thermophysics,2008,29:969-983.
    [119] Anhalt K, Lindner D, Kruger U, Schmidt F, Hartmann J. Camera-based investigation ofhigh-temperature fixed points for radiometric application. Metrologia,2009,46:S260-S265.
    [120] Battuello M, Girard F, Florio M. Extrapolation of radiation thermometry scales fordetermining the transition temperature of metal-carbon points. Experiments with the Co-C.Metrologia,2009,46:26-32.
    [121] Gotoh M. Testing of Pt/Pd thermocouples and the NiC eutectic point. Tempmeko2001:8th International Symposium on Temperature and Thermal Measurement in Industry andScience, Vol1&2, Proceedings,2002:67-72.
    [122] Wang T, Lowe D, Machin G. Manufacturing of MC Eutectics and Reproducibility of Pt-CEutectic Fixed Points using a Thermogauge Furnace. International Journal ofThermophysics,2009,30:59-68.
    [123] Wang T, Bai C, Dong W, Yuan Z, Bloembergen P, Liu F. Results of Long-Term StabilityTests Performed for the Eutectics Co-C and Pt-C. International Journal ofThermophysics,2011,32:1719-1731.
    [124] Yuan Z, Lu X, Wang J, Bai C, Dong W, Hao X, Wang T. Realization of ITS-90Above theSilver Point at the NIM. International Journal of Thermophysics,2011,32:1611-1621.
    [125] Yuan Z, Wang T, Lu X, Dong W, Bai C, Hao X, Duan Y. T (90) Measurement of Co-C,Pt-C, and Re-C High-Temperature Fixed Points at the NIM. International Journal ofThermophysics,2011,32:1744-1752.
    [126] Girard F, Battuello M, Florio M. Investigation of the behavior of the Co-C eutectic fixedpoint. International Journal of Thermophysics,2007,28:2009-2018.
    [127] Battuello M, Girard F, Florio M. Metal-carbon eutectics to extend the use of thefixed-point technique in precision IR thermometry. International Journal ofThermophysics,2008,29:926-934.
    [128] Battuello M, Florio M, Girard F. Use of Different Furnaces to Study Repeatability andReproducibility of Three Pd-C Cells. International Journal ofThermophysics,2010,31:1858-1868.
    [129] Battuello M, Florio M, Machin G. Investigations at INRIM on a Pd-C cell manufacturedby NPL. Metrologia,2011,48:241-245.
    [130] Battuello M, Florio M, Sadli M, Bourson F. Investigations on Two Co-C Fixed-Point CellsPrepared at INRIM and LNE-Cnam. International Journal ofThermophysics,2011,32:1732-1743.
    [131] Todd ADW, Gotoh M, Woods DJ, Hill KD. Palladium-Carbon Eutectic Fixed Point forThermocouple Calibration. International Journal of Thermophysics,2011,32:441-452.
    [132] Woolliams ER, Dury MR, Burnitt TA, Alexander PER, Winkler R, Hartree WS, SalimSGR, Machin G. Primary Radiometry for the Mise-en-Pratique for the Definition of theKelvin: The Hybrid Method. International Journal of Thermophysics,2011,32:1-11.
    [133]傅恒志.先进材料定向凝固:科学出版社,2008.
    [134] Machin G, Bloembergen P, Hartmann J, Sadli M, Yamada Y. A concerted internationalproject to establish high-temperature fixed points for primary thermometry. InternationalJournal of Thermophysics,2007,28:1976-1982.
    [135] Morice R, Edler F, Pearce J, Machin G, Fischer J, Filtz JR. High-temperature fixed-pointfacilities for improved thermocouple calibration-Euromet Project857. InternationalJournal of Thermophysics,2008,29:231-240.
    [136] Pearce JV, Ogura H, Izuchi M, Machin G. Evaluation of the Pd-C eutectic fixed point andthe Pt/Pd thermocouple. Metrologia,2009,46:473-479.
    [137] Machin G, Castro P, Levick A, Villamanan MA. Temperature effects of imperfectly formedmetal-ingots in high temperature fixed point crucibles. Measurement,2011,44:738-742.
    [138] Zheng W, Yamada Y, Wang Y. Experimental investigation of the Cr(3)C(2)-C peritecticfixed point. International Journal of Thermophysics,2008,29:935-943.
    [139] Yamamoto N, Yamada Y. Improvement in temperature scale realization above the copperpoint. Sice2002: Proceedings of the41st Sice Annual Conference, Vols1-5,2002:42-45.
    [140] Fischer J, Battuello M, Sadli M, Ballico M, Park SN, Saunders P, Yuan ZD, Johnson BC,van der Ham E, Sakuma F, Machin G, Fox N, Li W, Ugur S, Matveyev M. Uncertaintybudgets for realization of ITS-90by radiation thermometry. Temperature: Its Measurementand Control in Science and Industry, Vol7, Pts1and2,2003,684:631-638.
    [141] Winkler R, Woolliams ER, Hartree WS, Salim SGR, Fox NP, Mountford JR, White M,Montgomery SR. Calibration of an absolute radiation thermometer for accuratedetermination of fixed-point temperatures. International Journal ofThermophysics,2007,28:2087-2097.
    [142] Fischer J, Fu L. Photodiode nonlinearity measurement with an intensity stabilized laser asa radiation source. Applied Optics,1993,32:4187-4190.
    [143] Coslovi L, Righini F. Fast determination of the nonlinearity of photodetectors. AppliedOptics,1980,19:3200-3203.
    [144] Jung HJ. Spectral nonlinearity characteristics of low noise silicon detectors and theirapplication to accurate measurements of radiant flux ratios. Metrologia,1979,15:173.
    [145] Shin DJ, Lee DH, Park CW, Park SN. A novel linearity tester for optical detectors usinghigh-brightness light emitting diodes. Metrologia,2005,42:154.
    [146] Mielenz KD, Eckerle KL. Spectrophotometer linearity testing using the double-aperturemethod. Applied Optics,1972,11:2294-2303.
    [147] Saunders P, Fischer J, Sadli M, Battuello M, Park CW, Yuan Z, Yoon H, Li W, van derHam E, Sakuma F, Ishii J, Ballico M, Machin G, Fox N, Hollandt J, Matveyev M,Bloembergen P, Ugur S. Uncertainty budgets for calibration of radiation thermometersbelow the silver point. International Journal of Thermophysics,2008,29:1066-1083.
    [148] Bloembergen P, Yamada Y, Sasajima N, Wang Y, Wang T. The effect of the eutecticstructure and the residual effect of impurities on the uncertainty in the eutectictemperatures of Fe-C and Co-C. Metrologia,2007,44:279-293.
    [149] Rudtsch S, Gusarova T, Aulich A, Fahr M, Fischer J, Kipphardt H, Matschat R, Panne U.Procedure for the Impurity-Related Correction at the Indium Fixed-Point. InternationalJournal of Thermophysics,2011,32:293-302.
    [150] Fahr M, Rudtsch S. Oxides in metal fixed points of the ITS-90.Metrologia,2009,46:423-438.
    [151] Widiatmo JV, Harada K, Yamazawa K, Arai M. Impurity effect in silver-point realization.International Journal of Thermophysics,2008,29:158-170.
    [152] Rudtsch S, Fahr M, Fischer J, Gusarova T, Kipphardt H, Matschat R. High-purity fixedpoints of the ITS-90with traceable analysis of impurity contents. International Journal ofThermophysics,2008,29:139-150.
    [153] Fahr M, Rudtsch S. A new method for the quantification and correction of thermal effectson the realization of fixed points. International Journal ofThermophysics,2008,29:126-138.
    [154] Ancsin J. Impurity dependence of the Sn-point and the properties of the Sn-Fe 'eutectic'.Metrologia,2008,45:16-20.
    [155] Ancsin J. Impurity dependence of the Zn point. Metrologia,2007,44:303-307.
    [156] Widiatmo JV, Harada K, Yamazawa K, Arai M. Estimation of impurity effect in aluminiumfixed-point cells based on thermal analysis. Metrologia,2006,43:561-572.
    [157] Ancsin J. Impurity dependence of the aluminium point. Metrologia,2003,40:36-41.
    [158] Salim SGR, Woolliams ER, Dury M, Lowe DH, Pearce JV, Machin G, Fox NP, Sun T,Grattan KTV. Furnace uniformity effects on Re-C fixed-point melting plateaux.Metrologia,2009,46:33-42.
    [159] Ricolfi T, Battuello M, Bosma R, van der Ham EWM, Fischer J, Hartmann J. Comparisonof local realizations of the ITS-90between920degrees C and1590degrees C at950nmusing vacuum tungsten-strip lamps as transfer standards. Tempmeko2001:8thInternational Symposium on Temperature and Thermal Measurement in Industry andScience, Vol1&2, Proceedings,2002:839-844.
    [160] Sakuma F. Linking the final results of APMP-T-K5-1997to the KCRV of the CCT-K5.Metrologia,2010,47.
    [161] Manninen P, Orrevetel inen P. On spectral and thermal behaviors of AlGaInPlight-emitting diodes under pulse-width modulation. Applied PhysicsLetters,2007,91:181121.
    [162] Chen NC, Wang YN, Tseng CY, Yang YK. Determination of junction temperature inAlGaInP GaAs light emitting diodes by self-excited photoluminescence signal. AppliedPhysics Letters,2006,89:101114.
    [163] Lowe D, Battuello M, Machin G, Girard F. A comparison of size of source effectmeasurements of radiation thermometers between IMGC and NPL. Temperature: ItsMeasurement and Control in Science and Industry, Vol7, Pts1and2,2003,684:625-630.
    [164] Battuello M, Girard F, Ricolfi T, Sadli M, Ridoux P, Enouf O, Perez J, Chimenti V,Weckstrom T, Struss O, Filipe E, Machado N, van der Ham E, Machin G, McEvoy H,Gutschwager B, Fischer J, Schmidt V, Clausen S, Ivarsson J, Ugur S, Diril A. TheEuropean project TRIRAT: Arrangements for and results of the comparison of localtemperature scales with transfer infrared thermometers between150degrees C and962degrees C. Temperature: Its Measurement and Control in Science and Industry, Vol7, Pts1and2,2003,684:903-908.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700