高亮度光阴极注入器关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于自由电子激光(FEL)或能量回收直线加速器(ERL)的高平均功率太赫兹光源和X射线源都要求注入器能提供低发射度、高亮度的电子束。光阴极注入器是获得高亮度电子束的主要途径之一。中国工程物理研究院(CAEP)在成功完成紧凑型THz-FEL光源研究的基础上,开始开展高平均功率THz-FEL光源和基于ERL的高平均功率THz光源的研究。为了获得未来基于ERL的THz光源所需的高亮度、低发射度的电子束,需要同时减小光阴极注入器中的发射度和提高阴极电流流强。
     基于中国工程物理研究院正在开展的THz-FEL光源的研究,本论文主要研究了能提供高亮度束流的光阴极注入器中的几个关键技术问题,涉及三个方面:射频电子枪中的发射度研究, CAEP高压直流连续波电子枪中的发射度增长及发射度补偿研究,以及能提供高平均流强的新型的金刚石薄膜放大阴极的研究。
     为了获得高亮度的电子束,首先需要对光阴极注入器中的发射度作系统而深入的研究。本论文详细介绍了注入器中引起发射度增长的各种机制,并理论上推导了三阶射频场对电子束横纵向半径和发射度的影响,发现它的主要影响是减小了束团纵向能散。
     空间电荷力产生的发射度是注入器中发射度增长的主要因素,特别是在高压直流连续波光阴极注入器中。为了获得高亮度的电子束,需要对它进行补偿。本论文详细分析了高压直流连续波光阴极注入器中线性空间电荷力的特点及它对电子束横向发射度的影响,并从理论上解析的研究了螺线管发射度补偿的原理及特点。最后利用Parmela程序对中国工程物理研究院高压直流连续波光阴极注入器的发射度补偿作了模拟计算。结果表明,束团电荷量为80pC电子束在350kV高压直流电子枪出口处的横向归一化发射度为5.14mm·mrad,经过螺线管补偿后,它的最小横向发射度变为1.27mm、mrad。电子束的发射度得到了很好的补偿。
     获得高亮度电子束的另一个方面是得到能提供高平均电流流强的阴极。本论文详细介绍了一种能满足能量回收直线加速器要求,能提供高平均电流的新型阴极--金刚石薄膜放大阴极,具体分析了它的机制、物理性质和产生的电子束性质等内容。同时,本论文编写了一个二维的蒙特卡罗程序,对倍增的二次电子在金刚石薄膜中的输运特性做了初步模拟。研究表明二次电子的迁移率对温度和外加电场的大小很敏感;在杂质浓度比较低时(<1017/cm-3)受杂质浓度的影响不大。模拟得到的二次电子的饱和速度为1.88×107cm/s,无外加电场时的迁移率为3731.55cm2/Vs。同时,模拟了一个二维的二次电子束团在金刚石薄膜中的整体输运特性,发现在本论文所考虑的束团电子云密度时,空间电荷力的影响可以忽略不计。
     金刚石薄膜材料的性质是金刚石薄膜放大阴极实验成败的关键因素。本论文开展了金刚石薄膜放大阴极初步实验研究,测量了在输运模式下,金刚石薄膜中的二次电子倍增系数。实验测得的倍增系数在2~3倍左右,倍增系数较小。我们希望在后续的研究中通过使用纯度更高的电子级金刚石薄膜,并且通过改善实验条件,得到更高的倍增系数,以达到金刚石薄膜放大阴极的需要。
The THz and X-ray light sources. based on FEL or ERL. all requires low emit-tance and high brightness electron beam, which can be provided only by photo-injector. Based on the successful compact Thz-FEL light source, China academy of Engineering physics(CAEP) has been trying to build a high average power THz-FEL and a THz-ERL light sources. To minimize the emittance in electron gun and to get high average current by cathode are very important for ERL.
     The topic of this thesis is the high-brightness photo-injector, which includes three parts:analyzing the emittance growth effected by higher order mode in RF gun, study-ing and compensating the emittance in CAEP DC-gun, and introducing and studying a diamond amplified cathode.
     First of all in order to obtain high-brightness electron beam, the emittance in photo-injector must be studied systematically and deeply. This thesis introduces the main emittance growth mechanisms in injector. And the3th RF effect on beam trans-verse and longitudinal RMS radius and emittance is studied in theory. It is found that only the beam energy disperse is changed.
     Emittance growth induced by space charge effect is very important, especially for CW DC-gun photo-injector. In order to obtain high-brightness electron beam, it needs to be compensated. In this thesis, the linear space charge force and its effect on electron transverse emittance is studied, principle and properties of emittance compensation by solenoid are analyzed. The China Academy of Engineering Physics DC-gun photo-injector with a solenoid is also simulated by code Parmela. Simulated results indicate that the normalized transverse emittance of80pC bunch at the350keV DC-gun exist is5.14mm·mrad. And after compensated by a solenoid, it becomes1.27mm·mrad. The emittance of beam is well compensated.
     To obtain high-brightness electron beam, the cathode which could be able to pro-vide high average current is also important. The diamond-amplifier cathode offers an-other and more widely applicable way to form high average-current, high brightness, and low thermal emittance electron beams. In this thesis, The mechanism, physical properties and the electron beam qualities of diamond-amplifier cathode are present-ed. Also, in this thesis, we have implemented a2D Monte Carlo model to simulate secondary electron transport in diamond. We have found that the drift velocity is sen-sitive to diamond temperature and electric field applied, but not sensitive to the low impurity density(<1017/cm-3). With the simulation, it is get that saturation velocity of secondary electron is1.88×107cm/s, and mobility without applied field is3731.55cm2/Vs. Also, we have studied properties of a secondary electron bunch transported in diamond, and found the effect of space charge under our considered electron cloud density is small.
     The nature of the diamond thin film materials is the critical factor in diamond am-plifier cathode experiment. The thesis not only studies the diamond amplifier cathode theoretically, but also measurements the secondary electron gain in transmission-mode which is the first stage of experiment. The result of gain is2-3in our primary ex-periment which is not good enough for diamond amplifier cathode. With better quality diamond and better experiment conditions, we expect that the electron transmission through diamond will be appropriate for diamond amplifier cathode.
引文
[1]惠钟锡,杨震华,自由电子激光[M].国防工业出版社.
    [2]Madey J M J. J. Appl. Phys,1971 42:1906
    [3]Elias L R, et al. Phys. Rev. Lett,1976,36:710
    [4]Deacon D A G, et al. Phys. Rev. Lett,1977,38:892
    [5]Kim K J and Zhirong Huang. Introduction to the Physics of Free Electron Laser-s[Aj.2003, USPAS Lecture Note.
    [6]Tigner M. A Possible Apparatus for Electron-Clashing Experiments[J]. Nuovo Cimento,1965,37:1228-1231
    [7]Smith T I, et al. Development of the SCA/FEL for Use in Biomedical and Mate-rials Science Research[J]. NIM A,1987,259:1-7
    [8]Flanz J B and Sargent C P. IEEE Trans, on Nuclear Science,1985, NS-32:5
    [9]Kim K J and Huang Z. Present Status of X-ray FELs[A]. Proceedings of the ICFA Beam Dynamics Workshop on the Physics of and Science with the X-ray Free-Electron Laser (AIP Conference Proceedings 581, New York,2001).
    [10]Emma P. First lasing of the LCLS X-ray FEL at 1.5 A[A]. Proceeding of PAC09.
    [11]Shintake T. First lasing of S ACL A [A]. Proceeding of FEL11.
    [12]Schwarz A S. The eruopean X-ray free electron laser projiect at Desy[A]. Pro-ceedings of FEL04,85-89
    [13]Smith S L. A REVIEW OF ERL PROTOTYPE EXPERIENCE AND LIGHT SOURCE DESIGN CHALLENGES [A]. Proceedings of EPAC 2006,39-43
    [14]Benson S, et al. First lasing of the Jefferon Lab IR Demo FEL[J]. Nucl. Inst. Meth. A 1999,429:27-32
    [15]Neil G R, Behre C, et al. The JLab high power ERL light source[J]. Nucl. Inst. Meth. A 2006,557:9-15
    [16]Vinokurov N A, et al. Status of the Novosibirsk Terahertz FEL[J]. Nucl. Inst. Meth. A 2007,575,54:57
    [17]Sawamura M, et al. Status and Development for the JAERI ERL-FEL for High- Power and Long-Pulse operation[A]. Proc. of EPAC 2004, pp.1723-1725
    [18]Minehara E J. Development and operation of the JAERI superconduction energy recovery linacs[J]. Nucl. Inst. Metb. A 2006.557:16-22
    [19]Hoffstaetter G H,Barstow B, et al. The Cornell ERL Prototype Project[A]. Pro-ceeding of PAC03,192-194
    [20]Lee B C,et al. High-power infrared free electron laser driven by a 352 MHz superconducting accelerator with energy recovery[J]. NIM A 2004,528.106-109
    [21]Poole M W, et al.4GLS:A New Type of Fourth Generation Light Source Facili-ty[A]. Proc. PAC 2003,189-191.
    (22] Zhenchao Liu. Kexin Liu, et al. Optical design of the energy recovery linac FEL at Peking University[A]. Proceedings of FEL06,277-280
    [23]朱雄伟、张闯,王书鸿,陈森玉.第四代光源--相干光源[J].现代物理知识,2009,21(5):49-51
    [24]Schreiber S. The injector of the VUV-FEL at DESY[A]. Proceedings of the 27th International Free Electron Laser Conference,2005,545-548
    [25]Sheffied R L, et al. RF Photoelectron Gun Experimental Performance [A]. Proc Linear Accelerator Conf 1988.520
    [26]Stephan F. Status and perspectives of photo injector developments for high bright-ness beams[J]. The physics and applications of high brightness electron beams. 2007.
    [27]Ben-Zvi I, Bazarov I V. Summary, Working Group 1:Electron guns and injector designs[J]. Nucl. Inst. Meth. A 2006,557,337-344
    [28]Todd A. State-of-the-art electron guns and injector designs for energy recovery linacs (ERL)[J]. Nucl. Inst. Meth. A 2006,557,36-44
    [29]Sekutowicz J. Superconducting RF Photoinjectors; an Overview[A]. Proceedings of SRF2007,424-428
    [30]McKenzie J W, Militsyn B L, et al.3D SIMULATIONS OF A NON-AXISYMMETRIC HIGH AVERAGE CURRENT DC PHOTOCATHODE ELECTRON GUN[A]. EPAC08,2008,238-240
    [31]Grames J, Adderley P, et al. A Biased Anode to Suppress Ion Back Bombardment in a DC High Voltage Photoelectron Gun[A]. AIP Conf. Proc,2008,980,110-117
    [32]Hernandez-Garcia C. Proc, PESP-09
    [33]Dowell D H, et al. Appl. Phys. Lett.1993,63:2035.
    [34]Rimmer R A. The LUX re-entrant gun (JLab)
    [35]Rimmer R A. A high-gradient CW RF photo-cathode electron gun for high current injectors[A]. Proc.2005 Particle Accelerator Conference
    [36]Xiao L. et al. Dual feed rf gun design for LCLS[A]. Proceedings of the 2005 Particle Accelerator Conference
    [37]Lewellen J W. Noonan J. Field-emission cathode gating for rf electron guns[J]. Phys. Rev. ST Accel. Beams 2005,8:033502
    [38]Chaloupka H, et al. Nucl. Instrum. Methods Phys. Res., Sect. A 1989.285:327
    [39]Janssen D, et al. Nucl. Instrum. Methods Phys. Res., Sect. A 2003,507:314
    [40]Burrill A. in Proceedings of ERL09,2009 WG119; WG103
    [41]Abo-Bakr M, et al. in Proceedings of SRF09,2009,223.
    [42]Bisognano J, et al. in Proceedings of the 23rd Particle Accelerator Conference, Vancouver, Canada,2009, MO4PBC04.
    [43]Sekutowicz J, et al. TESLA-FEL Report No.2005-09, DESY,2005
    [44]Nguyen D C, et al. Nucl. Instr. Meth. Phys. Res. A 2004,528:71
    [45]Batchelor K, Farrell J P. et al. A HIGH CURRENT, HIGH GRADIENT, LASER EXCITED, PULSED ELECTRON GUN[A]. EPAC,1998,22-26
    [46]Dowell D H, et al. Nucl. Instr. and Meth. A (2010), doi:10.1016/j.nima.2010.03.104
    [47]Maldonado J R, et al. Phys. Rev. Spec. Top. Accel. Beams 2008,11:060702
    [48]Maldonado J R, Pianetta P, Dowell D H, Smedley J, Kneisel P. J. Appl. Phys. 2010,107:013106
    [49]Suberlucq G. Proceedings of EPAC 2004,2004, p.64
    [50]Dowell D. Nucl. Instr. and Meth. A 1995,356:167
    [51]Garcia C H, et al. Pres. PAC 2005,16-20 May 2005, Knoxville, TN, USA
    [52]Jensen K L, et al. Appl. Phys. Lett.2004,85:5448
    [53]Ben-Zvi I, Chang X, Johnson P D, Kewisch J and Rao T.2004, C-AD Accelerator physics Report C-A/AP/149, Brookhaven National Lab [A]
    [54]Xiangyun Chang. Studies in Laser Photo-cathode RF Guns[D]. Doctor Thesis, 2005, Stony Brook University.
    [55]Jones M E and Peter W. Proc.6th Int. Conf. on High-Power Particle Beams, Kobe, Japan,1986,774:777
    [56]Kim K J. RF AND SPACE-CHARGE EFFECTS IN LASER-DRIVEN RF ELEC TRON GUNS[J]. Nuclear Instruments and Methods in Physics Research A.1989, 275:201-218
    [57]Travier C. An Introduction to photo-injector design[J]. Nucl. Instr. Meth. A,1994, 340(1),26:39
    [58]Carlsten B E, New photoelectric injector design for the Los Alamos national lab-oratory XUV FEI accelerator[J]. Nucl. Instr. Meth. A,1989,285:313
    [59]Serafini L and Rosenzweig J. Envelope analysis of intense relalivistic quailaminar beams in rf photoinjectors:A theory of emittance compensation[J]. Phys. Rev. E 1997,55:7565
    [60]Chun-xi Wang, Kwang-Je Kim, Massimo Ferrario, et al. Criteria for emittance compensation in high-brightness photoinjectros[J]. Phys. Rev. ST-Accel Beam, 2007,10:104201
    [61]Luiten O J, van der Geer S B, et al. How to realize uniform three-dimensional Ellipsoidal electron bunches[J]. Phys. Rev. Lett.,2004,93:094802
    [62]Rosenzweig J B. Cook A M, et al. Emittance compensation with dynamically optimized photoelectron beam profiles[J]. Nucl. Instr. Meth. A.2006,557,87: 93
    [63]Limborg-Deprey C, Bolton P R. Optimum electron distributions for space charge dominated beams in photoinjectors[J]. Nucl. Instr. Meth. A,2006,557,105:116
    [64]Crosson E R, Berryman K W, et al. The determination of an electron beam's longi-tudinal phase space distribution through the use of phase-energy measurements^!]. Nucl. Instr. Meth. A,1996,375,87:90
    [65]Loos H. Longitudinal phase space tomography and its implementation in energy recovery linacs[J]. Nucl. Instr. Meth. A,2006,557,309:313
    [66]Cavalieri A L, et al. Clocking Femtosecond Ⅹ Rays[J]. Phys. Rev. Lett,2005,94, 11:114801
    [67]向导.高亮度电子束发射度、束长和束斑的先进测量方法研究[D].清华大 学博士学位论文,2008
    [68]Blackmore V, Doucas G, et al. First measurement of the longitudinal bunch profile of a 28.5 GeV beam using coherent Smith-Purcell radiation[J]. Phys. Rev. ST Accel. Beams,2009,12:032803
    [69]Shintake T, et al. Design of laser Compton spot size monitor[A].15th Int. Conf. on High-Energy Accelerators, Hamburg, Germany, July 20-24,1992
    [70]Bazarov I V. Sinclair C K. Multivariate optimization of a high brightness dc gun photoinjector[J]. Phys. Rev. ST-Accel Beam,2005,8:034202
    [71]谢文楷.带电粒子束的理论与设计[M].科学出版社,2009
    [72]Teng L. Primer in beam dynamics in synchrotrons[A]. Physics of Particle Accel-erators,1989,184:1878
    [73]Wiedemann H. Particle Accelerator Physics[C]. Springer,3rd edit,2007
    [74]Stanley Humphires Jr. Charged Particle Beams[M].2002
    [75]Xie M. Exact and variational solutions of 3D eignmodes in high gain FELs[J]. Nucl. Instr. Meth. A,2000,445:59
    [76]Puff H. Phys. Status Solidi,1964,4:125
    [77]Berglund C N and Spicer W E. Phys. Rev. A,1964,136:1030
    [78]
    [79]Dowell D and Schmerge J. Quantum efficiency and thermal emittance of metal photocathodes[J]. PRST AB,2009,12:074201
    [80]Trautner H. Spectral Response of Cesium Telluride and Rubidium Telluride Pho-tocathodes for the Production of Highly Charged Electron Bunches[D]. PhD the-sis, Johannes Gutenberg-Universit at in Mainz.
    [81]Han J H, et al. Emission mechanisms in a photocathode RF gun[A]. Proceedings of 2005 Particle Accelerator Conference,856-858
    [82]Keil E. Proc.1987 IEEE Particle Accelerator Conf.,1987,1319
    [83]李正红,胡克松,肖效光,等.高压直流连续波光阴极注入器中电子束流发射度研究[J].强激光与粒子束,2003,15(5):509-512
    [84]Floettmann K. Some basic features of the beam emittance [J]. PHYSICAL RE-VIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS,2003,6:034202
    [85]Wang J W. RF Properties of Periodic Accelerating Structures for Linear Collid- ers[A]. slac-r-339,96-104
    [86]徐文灿3.5 cell DC-SC光阴极注入器的物理、设计和关键部件研究[D].2009,北大博士论文。
    [87]刘圣广.李永贵.光阴极微波电子枪中发射度补偿及模拟计算[J].原子核物理评论,2002,19(3):338-341.
    [88]陈文雄,西门纪业.电子光学基础[M].北京:北京大学出版社,1986
    [89]Carlsten B E. Photoelectric injector design code[A]. Proc of Particle Accelerator Conference.1989:313-315
    [90]Chang X, Ben-Zvi I, et al. in Proceedings of 2005 Particle Accelerator Confer-ence, USA, May 16-20,2005 p2251
    [91]Chang X, Ben-Zvi I, et al. in Proceedings of 2007 Particle Accelerator Conference ,USA. June 25-29,2007 p2044
    [92]Chang X, Ben-Zvi I, et al. in Proceedings of 2009 Particle Accelerator Confer-ence, Canada, May 4-8,2009 p691
    [93]Chang X. Ben-Zvi I. et al. Phys. Rev. Lett.,2010,105:164801
    [94]Mainwood A.1994, Properties and Growth of Diamond[C] (Emis Data Reviews Ser.9) ed G Davies (London:INSPEC) p 3
    [95]Collins A T.1994, Properties and Growth of Diamond[C] (Emis Data Reviews Ser.9) ed G Davies (London:INSPEC) p 288
    [96]Yater J E, Shih A, and Abrams R. Electron transport and emission properties of C(100)[J]. Physical Review B, V56; R4410
    [97]陈光华,张阳.金刚石薄膜的制备与应用[.J].化学工业出版社,2004
    [98]Watanabi T, Teraji T and Ito T. J. Appl. Phys.,2004,95:866
    [99]Dimitrov D A, Busby R, Cary J R, et al. Journal of appled physics,2010,108: 073712
    [100]Jensen K L, Yater J E, Shaw J L, et al. Journal of appled physics,2010,108: 044509
    [101]Jensen K L, Yater J E, Shaw J L, et al. J. Appl. Phys.,2010,108:044509
    [102]余家新.Ⅲ-Ⅴ族化合物半导体输运性质的蒙特卡罗模拟[D].北京交通大学硕士论文,2008
    [103]叶良修.小尺寸半导体器件的蒙特卡罗模拟[M].北京,科学出版社,1997
    [104]Ridley B K.1999, Quantum Processes in Semiconductors[M]. Clarendon:Ox-ford, p107
    [105]Ferry D K.2000, Semiconductor Transport[M]. Taylor, Francis:London
    [106]Borsari V, Jacoconi C. Phys. Satus Solid,1972, B 54:649
    [107]Kato K. IEEE Trans. Electr. Dev..1988, ED-35:1344
    [108]Ferry D K.2000, Semiconductor Transport[M]. Taylor, Francis:London
    [109]Deferme W, Bogdan A, Bogdan G, Haenen K, et al. Phys. Status Solidi A,2004, 204:3017
    [110]Nava F, Canali C, Jacoboni C, et al. Solid State Commun.,1980,33:475
    [111]王忆峰,唐利斌.利用有限差分和MATLAB矩阵运算直接求解二维泊松方程[J].红外技术,2010,32:213-230
    [112]Laux S E. On particle-Mesh Coupling in Monte Carlo Semiconductor Device Simulation[A]. IBM Research Report, RC 20081
    [113]李凯.纳米金刚石薄膜次级电子发射特性研究[D].中国工程物理研究院硕士论文.2008
    [114]Smedley J, Ben-Zvi I, Bohon J, et al. Mater. Res. Soc. Symp. Proc,2008.1039-P09-02
    [115]李晓静,于盛旺,张思凯,唐伟忠,吕反修.新型MPCVD金刚石膜等离子发生器及等离子特性数值模拟[J].人工晶体学报,2010,39:867-871
    [116]周建.微波等离子体化学气相沉积法制备高质量金刚石膜研究[D].武汉理工大学博士论文,2001

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700