基于量子密钥光源与探测的部分参数优化与器件模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
量子密钥分发系统是利用量子力学的基本原理来产生和发布密钥,以解决经典密码学在密钥分发方面存在的无法克服的缺陷,从而保证密钥在发布过程中的绝对安全,进而实现通信双方所交换信息的绝密。量子密钥分发的理论、实验研究是当前非常热门的量子信息研究领域中的一个重要部分。
     本文首先介绍了量子密钥产生的历史背景、量子密钥分发系统的关键技术、理论的发展、实验的实现及其进展。
     理想单光子源是量子密钥分配系统的关键技术,而目前用于量子密钥分配的单光子都是激光器输出经过精密控制的强衰减技术得到的,平均光子数却能影响单光子出现的概率,因此就有必要对最佳平均光子数进行研究。在规定的系统及合理的假设前提下,所谓最佳平均光子数(μ)就是能使净化密钥传送速率最大化的发送脉冲所含的平均光子数。在对窃听者的能力作出正确的评估之后,利用窃听及防护模型,并考虑使用修正后的净化密钥生成速率公式来研究最佳平均光子数。计算模拟结果表明,μ=1.15提供了大约10倍于μ=0.1的系统净化信息互换量,却不会对系统的安全性带来任何不利的影响。
     单光子探测器性能的好坏直接影响了量子保密通信系统的质量和有效传输距离。如何选好探测器以及怎样对探测器进行评价,就成为了关键因素,所以本文提出,可以利用计算机模拟的方法对APD器件进行研究,即在适当的假设前提下,依据经验公式并借助于MATLAB的矩阵运算功能计算吸收渐变电荷倍增分离型雪崩光电二极管(SAGCM-APD)的电场分布,然后以此得出电子、空穴倍增系数,最后再利用这些系数及传递函数计算出SAGCM-APD的增益—电压特性及频率响应特性,模拟的结果较好地与实验结果一致。
Quantum key distribution produces and releases key by making use of quantum mechanics principle,to solve the insuperably limitation of key distribution in classical cryptography,and guarantees the absolute security of the cryptographic key. Quantum information is currently one of the hottest research fields in physics, and quantum key distribution (QKD) is the most advanced subfield so far with regard to practical application.This thesis first introduce background、 key technique、 theory developing、 experiment realizing、 experiment progresing of QKD. Ideal single-photon source is the critical technique of QKD, at present the single-photon source of QKD is obtained by laser emmited with strong attenuation,moreover mean photon number affects the probability of single-photon,so it is necessary to research the optimal mean photon number,For quantum cryptography, the optimal mean photon number(μ) is the average photon number per transmitted pulse that results in the highest delivery rate of distilled cryptography key bits,given a specific system scenario and set of assumptions about Eve's capabilities. Given the reasonable appraisal about Eve's capabilities,offered detailed eavesdropping model and defence function,and researched the optimal mean photon number using revised delivery rate of distilled key bits. Experimental results show,μ= 1.15 provides nearly 10 times the throuthout of systems that empoly μ=0.1, without any adverse affect on system security.The single photon detector performance quality has affected the quantum key distribution system quality and the effective transmitting distance directly. How selects and carries on the appraisal to the detector, has become the key factor, therefore this thesis proposed to research APD by using computer simulation. Under the suitable supposition premise and on the basis of the empirical formula, the field profile of separate absorption, grading, charge, and multiplication avalanche photodiode (SAGCM-APD) is calculated by means of the MATLAB matrix operation function. The
    electrons and holes multiplication coefficients are in turn computed. By using above coefficients and the transfer functions, the gain-voltage and the frequency-response characteristics for SAGCM-APD are figured out. There is a good correspondence between the simulation with experimental results.
引文
[1] Bruce Schneier.应用密码学(第二版)[M].北京:机械工业出版社,2000
    [2] Hughes, R. J. Morgan, G . L. and Glen Peterson, C . Quantum key distribution over 48km optical fibre network[J] . Mod. Opt, 2000, 47(2/3):553-547
    [3] 米景隆,量子保密通信[M].www.c-fol.net,2005
    [4] C. H. Bennett, G. Brassard, S. Breidbart, Aet al. . Quantum cryptography or unforgetable subway tokens[C] , in CHAUM, D. R. L. Rivest and A. T. Sherman (Eds. )"Advances in cryptology, Proceedings of Crypto'82', Plenum Press, NY:1983, 167-175
    [5] C. Bennett, F. Bessette, G. Brassard, L. Salvail and J. Smolin. Experimental quantum cryptography[J]. Cryptology, 1992, 5(1):3-28
    [6] Special issue on Quantum Communication[J]. Mod. Opt. 40, 1994
    [7] 吴令安:量子信息讲座,第四讲,量子密码通信(M] ,物理,1998
    [8] J. G. Rarity, P. C. M. Owens, and P. R. Tapster, Quantum random-number generation and key sharing[J] , J. Mod. Opt. 1994, 41 (12) : 2435-2444
    [9] P. D. Townsend, J. G. Rarity, and P, R. Tapster, single photon interference in a 10 km long optical fiber interferometer [J] , Electron. Lett. 1993, 29 : 634-635
    [10] J. G. Rarity, P. M. Gorman and P. R. Tapster, Secure key exchange over 1. 9km free-space range using quantum cryptography[J] , Electron. Lett. 2001, 3(8) : 512-513
    [11] W. T. Buttler, R. J. . Hughes, et al. , Practical free-space quantum key distribution over 1km[J] , Phys. Rev. Lett. 1998, 81 : 3283-3286
    [12] Paul Townsend, Optical encryption makes networks more secure[J] , fiber systems international, 2000, 1(1) : 30-32
    [13] Philip, A. Hiskett, Gabriele Bonfrate, Gerald S. Bullet and Paul D. Townsebd, Eight kilometer transmission experiment using an InGaAs/InP SPAD-based quantum cryptography receiver operating at 1. 55 μ m[J]. Journal of Modern Optics, 2001, 48(13) : 1957-1966
    [14] Paul D. Townsend, Quantum cryptography on multiuser optical fibre networks[J] , Nature, Jan. 1997, 385 : 47-49
    [15] P. D. Townsend, S. J. D. Phoenix, K. J. Blow and S. M. Barnett, Design of quantum cryptography for passive optical networks[J] , Electronics Letters, October 1994, 30(22) : 1975-1876
    [16] w. k. Wootters and W. H. Zurek, A single quantum cannot be cloned[J] , Nature, 1982, 299 : 802
    [17] B. Huttner, N. Imoto, N. Gisin and T. Mor, Quantum cryptoigraphy with coherent states[M] , Phys. Rev. A. 1995, 51 : 1863
    [18] KONRAD BANASZEK. Optimal receiver for quantum cryptography with two coherent states[J]. Physics Lett A, 1999, 253 : 12-15
    [19] LACAITA A, ZAPPA F, COVA S, et al. Single-Photon detection beyond 1 μ m: performance of commercially available InGaAs/InP detectors[J]. Applied Optics, 1996, 35(16) :2986-2996.
    [20] LACAITA A, FRANCESE P A, ZAPPA F, et al. Single-photon detection beyond 1μm: performnce of commercially available germanium photodiodes[J]. Appl Opt, 1994, 33(30) : 6902-6918
    [21] 梁创,廖静,梁冰等.硅雪崩光电二极管单光子探测器[J].光子学报,2000,29(12):1142-1147
    [22] COVA S, GHIONIM, LACAITA A, et al. Avalanche photodiodes and quenching circuitsfor single2photon detection [J]. Appl Opt , 1996, 35(12) : 1956-1976.
    [23] RARITYJ G, WALL T E, RIDLEY KD, et al. Single-photon counting for the 1300-1600nm range by use of Peltier-cooled and passively quenched InGaAs avalanche photodiodes[J]. Appl Opt, 2000, 39(36) :6746-6753
    [24] GRAYSON T P, WANGL J. 400-ps time resolution with a passively quenched avalanche photodiode [J]. Appl Opt, 1993, 32(16) :2907-2910
    [25] OWENS PCM, RARITYJ G, TAPSTER P R, et al. Photon countingwith passively quenched germanium avalanche [J]. Appl Opt, 1994, 33(30) : 6895-6901
    [26] ROCHAS A, GANI M, FURRER B, et al. Single photon detector fabricated in a complementary metal-oxide-semiconductor high-voltage technology [J]. Review of Scientific Instruments, 2003, 74(7) : 3263-3270
    [27] BROWN R G W, JONES R, RARITY J G, et al. Characterization of silican avalanche photodiodes for photon correlation measurements. 2: Active quenching [J]. Appl Opt, 1987, 16(12) : 2383-2389
    [28] VITERBINIM, NOZZOLI S, POLIM, et al. Voltage breakdownfollower avoids hard thermal constrains in a Geiger mode avalanche photodiode [J]. Apll Opt, 1996, 33(27) : 5345-5347
    [29] RIBORDY G, GAUTIERJ2D, ZBINDEN H, et al. Performance of InGaAsⅢnP avalanche photodiodes as gated2mode photon counters [J]. Appl Opt, 1998, 37(12) : 2272-2277
    [30] RAMOS R V, THE GAP. Single-photon detectors for quantum key distribution in 1550 nm: Simulations and experimental results [J]. Microwave and Optical Technology Lett, 2003, 37(2) : 136-139
    [31] 吉泽明男,上田英富.1550nm带单光子检出器极微弱光检出特性[J].信学技报,2001,64(10):7-10
    [32] NAMEKATA N, MAKINOY, INOUE S. Single-photon detector for long-distance quantum cryptography [J]. Electronics and Communications in Japan, Part 2, 2003, 86(5) : 10-15
    [33] IVAN PROCHAZKA. Peltier-cooled and actively quenched operation of InGaAs/InP avalanche photodiodes as photon counters at a 1. 55μm wavelength [J]. Appl Opt, 2001, 40(33) : 6012-6018.
    [34] HISKETT P A, SMITHJ M, BULLER G S, et al. Low-noise single-photon detection at wavelength 1. 55μm [J]. Electron Lett , 2001, 37(17) : 1081-1083
    [35] LIAO C, WANGJ, LU H, et al. Single photon detection at telecomwavelengths by InGaAs/InPAPD basedon gated-mode operation [J]. Semiconductor Photonics and Technology, 2005, 11(2) : 73-77
    [36] TOMITA A, NAKAMURA K. Balanced gated-mode photon detector for quantum2bit discrimination at 1550 nm [J]. Optics Letters , 2002, 27(20) : 1827-1829
    [37] KOSAKA H, TOMITAA, NAMHU Y, et al. Single-photon interference experoiment over 100 km for quantum cryptography system using balanced gated-mode photon detector Electron [J]. Lett, 2003, 39(16): 1199-1201
    [38] TOMITAA, NAKAMURA K,TAJIMAA. Recent Progress in Quantum Key Transmission [J].Nec J.of Adv.Tech.,Winter 2005 : 84-91
    [39] TOMITAA. High-performance Photon Detector for Qubit Distribution in 1550nm [J]. Appled Optics ,2005,37(12):290-293
    [40] KANG Y, BETHUNED S, RISK W P, et al. APDs for sngle-photon detection at telecom wavelengths [J]. Procedings of SPIE,2003, 52(46): 512-519
    [41] HISKETT P A, BULLER GS, LOUDON A Y, et al. Townsend, and Michael J. Robertson, Performance and designof InGaAs/InP photodiodesfor single-photon counting at 1.55um [J]. Appl Opt, 2000, 39(36):6818-6829
    [42] A. Muller, H. Zbinden and N. Gisin. Quantum cryptography over 23 km in installed under-lake telecom fibre[J], Europhys. Lett.,1996,33(5):335-339
    [43] C.H.Bennett. G.Brassard. Proc. IEEE Int. Conference on Computers[C]. Systems and Signal Processing. IEEE. New York(1984)
    [44] Bennett, Charles H. Quantum cryptography using any two nonorthogonal states[J].Physical Review Letters, 1992,68(21):3121-3124
    [45] Ekert,A., Quantum cryptography based On Bell's theorem[J]. Phys. Rev. Lett. 67, 1991 : 661-633
    [46] Charles H.Bennett,Gilles Brassard and N.David Mermin. Quantum cryptography without Bell's theorem[J]. Phy.Rev.Lett.,1992 Feb 3,68(5),:557-559
    [47] Artur K.Ekert,John G.Rarity,Paul R.Tapster and G.Massimo Palma. Practical quantum cryptography based on two-photon interferometry[J]. Phy.Rev.Lett.,69(1992):1293-1295
    [48] Blow K.J. and Phoenix S.J.D. On a fundamental theorem of quantum cryptography[J]. J.Mod.Opt.,1993, 40(12):33-36
    [49] Barnett S.M.,Bruno Huttner and Phoenix S.J.D. Eavesdropping Strategies and Rejected-data Protocols in Quantum Cryptography [J].J.Mod.Opt., 1993,40:2501-2513
    [50] Werner M. J. and Milburn G. J. Eavesdropping using quantum-nondemolition measurements[J]. Phys, Rev. A, 1993, 47:639-641
    [51] Artur K. Ekert and G. Massimo Palma, J. Mod. Opt. Quantum Cryptography with Interferometric Quantum Entanglement[J]. 1994, 41 (12): 2413-2423
    [52] Ekert, Artur K. , Bruno Huttner, G. Massimo Palma, and Asher Peres. Eavesdropping on quantum-cryptographical systems[J] , Phys. Rev. A, 1994, 50(2): 1047-1056
    [53] Lior Goldenberg and Lev Vaidman. Quantum Cryptography Based on Orthogonal States[J]. Phy. Rev. Lett. , 1995, 75(7): 1239-1243
    [54] M. Koashi and N. Imoto. Quantum Cryptography Based on Two Mixed States[J]. Phy. Rev. Lett. , 1996, 77(10):2137-2140
    [55] C. H. Bennett, G. Brassard, C. Crepeau and M. H. Skubiszewska. Practical Quantum Oblivious Transfer[J]. Advances in Cryptography, Proceedings of Crypto'91
    [56] C. H. Bennett, G. Brassard and J. M. Robert. Privacy amplification by public discussion[J]. J. Computing, 1998, 17:210-229
    [57] C. H. Bennett et al. , Phy. Rev. A, 1996, 54:2674
    [58] A Ekert and C Macchiavello. Quantum Error Correction for Communication. Phys. Rev. Lett. , 1996, 77(12) : 2585-2588
    [59] N. Gisin, Ribordy, G, W. Tittel, and H. Zbinden . Quantum cryptography[M]. Reviews of Modern Physics, 2002,
    [60] G. Gilbert and M. Hamrick. Quantum Cryptography: A Comprehensive Analysis (Part One)[J]. 2000, quant-ph/0009027.
    [61] W. T. Buttler, R. J. Hughes, S. K. Lamoureaux, G. L. Morgan, J. E. Nordholt and C. G. Peterson. Daylight quantum key distribution over 1. 6 km[J]. Phys. Rev. Lett. 2000, 84:5652-5655
    [62] D. Bethune and W. Risk. Autocompensating quantum cryptography[J]. New Journal of Physics, 2004, 4(42): 1-15
    [63] David S. Pearson, Chip Elliott. On the optimal mean photon number for quantum cryptography[J]. Quantum Information and Computation. 2003, 0(0):000-000
    [64] B. Slutsky, R. Rao, P. Sun, L. Tancevski and S. Fainman . Defense frontier analysis of quantum cryptographic systems. Applied Optics, 1998, 37(14):2869-2878
    [65] J. M. Myers, T. Wu and D. Pearson . Entropy estimates for individual attacks on the BB84 protocol for quantum key distribution[J]. Proceedings of SPIE Defense and Security 2004, 5105
    [66] B. Saleh, M. Teich. Fundamentals of photonics. Wiley Interscience, 1991
    [67] R. J. Mcintyre. Multiplication noise uniform Avalanche diodes[J]. IEEE Transactions on Electron Devices 13(1), 1966:164-169
    [68] 陈维友,刘式墉.用于电路模拟的PIN雪崩光电二极管模型[J].固体电子学研究与进展,1997,17(3):95-97
    [69] Abbas Zarifkar, Mohammad Sorrosh. Circuit modeling of separate absorption, charge and multiplication avalanche photodiode (SACM-APD) [J]. IEEE LFNM, 2004, 32(12):213-219
    [70] A. Banoushi, M. R. Kardan, M. Ataee Naeini. A circuit model simulation for separate absorption, grading, charge, and multiplication avalanche photodiodes. Solid-State electronics[J] , 2005, 49:871-877
    [71] Y. M. El-batawy, M. J. Deen. Analysis and circuit modeling of waveguide-separated absorption charge multiplication-avalanche photodetector (WG-SACM-APD) [J]. IEEE Trans. Electron Devices, 2005, 52(3):335-344
    [72] Y. M. El-batawy, M. J. Deen. Modeling and Optimization of Resonant Cavity Enhanced-Separated Absorption Graded Charge Multiplication-Avalanche Photodetector(RCE-SAGCM-APD) [J]. IEEE Trans. Electron Devices, 2003, 50(3):790-801
    [73] Y. M. El-batawy, M. J. Deen. Analysis, Circuit Modeling, and Optimization of Mushroom Waveguide Photodetector (Mushroom-WGPD) [J]. J. Lightw. Technol. , 2005, 23(1):423-431
    [74] 刘敏,魏玲编著.MATLAB通信仿真与应用.北京:国防工业出版社,2001
    [75] Levine, W. S. ed . Using matlab to analyze and design controls ystems. Menlo park:Addison-wesley publishing co. , 1995
    [76] 薛定宇,陈阳泉著.基于MATLAB/Simulink的系统仿真技术与应用[M].北京: 清华大学出版社,2002
    [77] 谭明峰,戴葵,刘芸.量子算法模拟实现技术研究[J].国防科技大学学报,2000,22(2)
    [78] Aichar A. R. Riad, Russel E. Hayes Simulation studies in both the frequency and time domains of lnGaAsP-InP avalanche photodetectors [J]. IEEE Trans. Electron Devices, 1980, 27(5): 1000-1003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700