锂离子动力电池制造关键技术基础及其安全性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文在对锂离子动力电池技术及产业化进展进行充分分析的基础上,研究了正、负极材料微观结构、形貌与电化学性能之间的关系,选定了动力电池的正、负极材料及其它关键材料;在动力电池功能电解液开发,电池结构设计以及制作工艺改进优化的基础上,开发了容量型和功率型锂离子动力电池;分析了动力电池在充放电过程中的热行为,建立了功率型动力电池的表面温度分布模型与散热模型;全面测试了动力电池(组)的电化学性能、安全性能,并对锂离子动力电池生产进行了试制研究。
     1.功率型动力锂离子电池的研制。
     以固相法制备了磷酸铁锂(LiFePO4)掺Mg材料,通过对其结构表征,发现在正极材料LiFePO4晶格中掺杂Mg,并且发生Fe位取代后,会引起LiFePO4晶胞体积收缩,晶格参数a、b减少,并增强材料的电子导电性,所制备的样品号为LP3的LiFePO4材料,化学计量比为LiFe0.95Mg0.05PO4,材料颗粒的粒径分布均匀,主要分布在7μm左右,表面形貌光滑,材料颗粒趋于球形,具有良好的电化学性能及倍率性能;负极材料方面,发现比表面积小、颗粒分布适中、循环性以及大电流充放电性能好的中间相碳微球石墨材料适合用于功率型锂离子电池的负极材料。
     研制功率型动力电池循环1900周(100%DOD)后容量保持率为初始容量的87%,30C放电的容量保持率为1C放电容量的91%,-20℃放电容量保持率为常温下放电容量的62%。
     2.容量型动力电池的研制。
     对材料的分析表征发现,晶格参数a<8.21 A、晶体生长完整、颗粒表面平整光滑、比表面积小于1.0m2·g-1、粒度分布比较集中的锰酸锂(LiMn2O4)材料结构稳定,不易引发与电解液的反应及John-Teller效应,具备良好的电化学循环性能及安全性能,是容量型动力电池合适的正极材料。
     发现在电解液中加入3%的1,3-丙烯磺酸内酯(1,3-PS)和5%的碳酸丙烯酯(PC),能使电池的高温(85℃,4小时)膨胀率由35.11%下降至12.40%;添加O.1M的双草酸硼酸锂(LiBOB)作为电解质盐,锰酸锂动力电池循环寿命在60℃下的循环寿命提高约3倍。
     发现在电解液中添加2%的环己基苯(CHB)时,电池过充性能明显改善,电池顺利通过3C/10V过充,基本不影响电池的其它性能。通过SEM.FTIR等手段研究发现CHB的防过充机理为阻断机理。
     研制的容量型电池在0.5C电流进行充放电循环500周后容量保持率为83%;20C倍率下放电,容量保持率为1C倍率放电容量的86%;高温(55℃)放电容量是常温(25℃)放电容量的99%,高温性能良好,低温(-25℃)放电容量是常温放电容量的75%。
     3.对电池在充放电过程中热量产生的因素进行了全面分析,并以研究制作的磷酸铁锂动力电池F11100120(标称容量:10Ah,标称电压:3.2V)在3C条件下放电表面温度分布数据为基础,建立了方型电池表面温度分布模型,模型如下:t=a+bx+cx2+dx3+ex4+fx5+gy+hy2+iy3+jy4+ky5
     (其中:x为电池的宽度,y为长度;x,y的系数为常数)
     根据电池表面温度分布情况,建立了电池表面散热模型,模型如下:Qt=4Qf+2Qs+2Qa+2Qb
     (其中:Qf为1/4电池正表面散热量,Qs为电池侧面散热量,Qa为电池极耳前端散热量,Qb为电池后端侧面散热量)
     以QC/T 743-2006“电动汽车用锂离子蓄电池”为标准,对本研究所制备的动力电池分别进行了过充、过放、短路、针刺、挤压、加热等安全性测试,测试过程中无起火、爆炸等现象出现,完全达到标准要求。
     4.试制生产了容量型M95100170(13Ah)与功率型F11100120(10Ah)两个型号的锂离子动力电池,并对安全性以及一致性工艺进行了重点研究。对试制产品的成品率进行分析,发现M95100170的成品率为97.2%,F11100120的成品率为95.2%。且产品一致性良好;试制生产的动力电池具备了较高的比能量和比功率,其中容量型动力电池M95100170的质量比能量为151Wh.kg-1,体积比能量为330Wh·L-1;功率型F11100120的质量比功率为2100W·kg-1,体积比功率为4000W·L-1,与国内外同类产品比较均达到了较高水平;将M95100170以串联的方式组装成13Ah/36V动力电池组,经500次充放电循环以后,电池组容量保持82%左右。动力电池模块通过了标准为QC/T 743-2006《电动汽车用锂离子蓄电池》的安全性测试。
The development of lithium ion power batteries was reviewed in detail. The dependence of electrochemical properties on the microstructure, morphology of anode and cathode materials were comprehensively investigated, and then the key materials for power lithium ion batteries were selected. Several kinds of advanced electrolyte for power batteries were developed. A series of manufacture technologies, such as the optimization of battery structure design, the improvement of safety were achieved. And then lithium ion battery with high energy density and that with high power density were developed. The thermal behaviors of the batteries during charge/discharge were studied, and the model of surface temperature distribution and thermal dissipation were established. The electrochemical properties and safety performances of the batteries were characterized. Finally, the pilot-scale manufacture of high energy density battery and high power density battery were carried out.
     1. Lithium ion batteries with high power density were developed. LiFe1-xMgxPO4 cathode materials were synthesized by solid-state reaction. According to the results of cathode material characterization, the substitution of Fe with Mg in the LiFePO4 lattice has caused the contraction of unit cell volume and the decrease of lattice parameter a, b, as well as the improvement of electron conductivity. The prepared cathode material LP3, with stoichiometry of LiFe0.95Mgo.osPO4, Characterized with smooth surface and spherical morphology, has relatively concentrated particle size distribution(median size 7μm) and exhibits excellent electrochemical and high power properties. The MCMB (Mesophase Carbon Micro-Beads) samples shows a low specific surface area, narrow particle size distribution, stable cycle property and can be charged/discharged in a large current, which qualifies it to be the anode active material of lithium ion batteries with high power density. And then the lithium ion batteries with high power density were developed.
     The lithium ion batteries with high power density exhibit excellent electrochemical properties. The capacity retention ratio remains 87% after 1900 cycles. Compared with the discharge capacity at 1C current rate and ambient temperature, the discharge capacity at 30C current rate remains 91% and that at-20℃remains 62%, respectively.
     2. Synthesis and study of the high energy battery. The results of cathode material characterization indicate that the spinel LiMn2O4, characterized with lattice parameter a<8.21 A, exhibits smooth surface, perfect crystal growth, specific surface area below 1.0m2·g-1 stable structure and well particle size distribution. The John-Teller effect and the undesired reaction between LiMn2O4 and electrolyte decrease. Therefore, the material with typical properties described above is selected as cathode active material for the high energy battery.
     The advanced electrolyte special for LiMn2O4 power battery was studied. The swell rate of the battery decreases from 35.11% to 12.40% when 3% 1,3-PS and 5%PC used as electrolyte additives. For 0.1M LiBOB mixed with LiPF6 battery, the cycle life of LiMn2O4 power battery is greatly improved about 3 times at 60℃.
     The safety performance of LiMn2O4 power battery was also investigated. It is found that the addition of 2% CHB will improve the battery overcharge property. The LiMn2O4 battery passed the 3C/10V overcharge without any other expense. The SEM and FTIR characterizations show that the action mechanism of CHB was as ascribed to interdiction with.
     The capacity retention of the manufactured battery is 86% after 500 cycles, at 0.5C rate. The discharge capacity of the battery retains 86% at 20C, compared to that of 1C. The relatively high temperature (55℃) has little effect on the discharge capacity. However, the capacity retention is only 75% at low temperature (-25℃)..
     3. The potential factors contributing to the heat production were comprehensively concluded. The dates were collected from the surface temperature of LiFePO4 power battery (Model:F11100120, Nominal Capacity:10Ah, Nominal Voltage:3.2V) discharging at 3C rate, and analysed by fitting soft. The fitting model of temperature distribution of battery is as follow: t= a+bx+cx2+dx3+ex4+fx5+gy+hy2+iy3+jy4+ky5
     (x, y is the width and length of battery respectively, and the indexes of x, y are constant, t is temperature)
     The heat dissipation model was also established as follow: Q1=4Qf+2Qs+2Qa+2Qb
     (Qt is total thermal dissipation, Qf is obverse surface thermal dissipation, Qs, Qa, Qb denote the left and right side, the front side, the rear side thermal dissipation respectively)
     The safety testing items, including overcharge, overdischarge, short circuit, nail penetration, crush, heating test, were performed according the method of Industry Standard QC/T 743-2006 "Lithium-ion batteries for electric vehicle". All the testing items are satisfied.
     4. The pilot tests of high energy density battery M95100170 (13Ah) and high power density battery F11100120(10Ah)were carried out respectively. Key-point controls were performed on the safety and consistency technology. The results of pilot product show that the yield of M95100170 and F11100120 is 97.2%,95.2%, respectively. The consistency of pilot product is fairly good. The specific energy density of M95100170 is 151Wh-kg"1 or 330Wh-L"'and the specific power density of F11100120 is 2100W-kg"1, or 4000W-L"1. Both pilot products are in the advanced level, comparing with similar products at international. Furthermore, lithium power battery packs (13 Ah/36V) were assembled with M95100170 cell in series. The capacity retention rate of pack is 82% after 500 cycles. The pack also passed all the safety testing items according the method of Industry Standard QC/T 743-2006 "Lithium-ion batteries for electric vehicle".
引文
[1]Kotz R, Carlen M. Principles and applications of electrochemical capacitors. Electrochimica Acta,2000,45:2483-2498
    [2]Arai J, Yamaki T, Yamauchi S, et al. Development of a high power lithium secondary battery for hybrid electric vehicles. Journal of Power Sources,2005, 146:788-792
    [3]Kandler S, Wang C. Power and thermal characterization of a lithium-ion battery pack for hybrid-electric vehicles. Journal of Power Sources,2006,160:662-673.
    [4]Andrew C, Paul B. Comparison of commercial supercapacitors and high-power lithium-ion batteries for power-assist applications in hybrid electric vehicles I. Initial characterization. Journal of Power Sources,2002,112:236-246
    [5]Andrew B, Marshall M. Performance Characteristics of Lithium-ion Batteries of Various Chemistries for Plug-in Hybrid Vehicles. EVS24 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium. Stavanger, Norway, May 13-16, 2009
    [6]Anderman M. Performance of Large Lithium-ion batteries in key applications and gap analysis against requirements-Tutorial C, Advanced Automotive Battery Conference, Baltimore, Maryland, May 2006
    [7]Burke A, Van G. E. Plug-in Hybrid-Electric Vehicle Powertrain Design and Control Strategy Options and Simulation Results using Lithium-ion Batteries, paper presented at EET-2008 European Ele-Drive Conference, Geneva, Switzerland, March 12,2008.
    [8]郑敏信,齐铂金等.锂离子动力电池组充放电动态特性建模.电池,2008,38(3):149-151
    [9]Horiba T, Maeshima T, Matsumura T, et al. Applications of high power density lithium ion batteries. Journal of Power Sources,2005,146:107-110
    [10]余国华,肖斌.大容量动力型锂离子电池的研制与生产.电池工业,12(2):78-84
    [11]Divya K, Ostergaard J. Battery energy storage technology for power systems-An overview. Electric Power Systems Research,2009,79(4):511-520
    [12]Mark W, Ping Liu. Electrochemical characterization of high-power lithium ion batteries using triangular voltage and current excitation sources. Journal of Power Sources,2007,174(1):2-8
    [13]Tarascon J, Armand M. Issues and challenges facing rechargeable lithium batteries. NATURE,2001,414 (15):359-367
    [14]SUNG-YOON C, JASON T, YET-MING C. Electronically conductive phosphor-olivines as lithium storage electrodes. Nature materials,2002,1:123-128
    [15]Ting-Feng Y, Chun-Li H, Cai-Bo Y et al. A literature review and test:Structure and physicochemical properties of spinel LiMn2O4 synthesized by different temperatures for lithium ion battery. Synthetic Metals,2009,159:1255-1260.
    [16]Hiroo K, Mikito N, Hisashi T, et al. High-voltage lithium cathode materials. Journal of Power Sources,1999,81-82:67-72
    [17]Zhu X, Liu Y, Geng L et al. Synthesis and performance of lithium vanadium phosphate as cathode materials for lithium ion batteries by a sol-gel method. Journal of Power Sources,2008,184:578-582
    [18]Saidi M, Barker J, Huang H et al. Electrochemical Properties of Lithium Vanadium Phosphate as a Cathode Material for Lithium-Ion Batteries. Electrochemical and Solid-State Letters,2002,5-7:A149-A151
    [19]黄可龙等.锂离子电池原理与关键技术.北京:化学工业出版社,6-10.
    [20]Whittingham, M. S. Electrochemical energy storage and intercalation chemistry. Science,1976,192:1226-1227
    [21]Rao B, Francis R, Christopher. Lithium-Aluminum Electrode. J. Electrochem. Soc.,1977,124:1490
    [22]Mizushima K, Jones P, Goodenough J et al. LixCoO2 (0    [23]Murphy D, Christian P. Solid state electrodes for high energy batteries. Science, 1979,205:651-656.
    [24]Lazzari M. Scrosati B. A cyclable lithium organic electrolyte cell based on two intercalation electrodes. J. Electrochem. Soc.1980,127:773-774.
    [25]Will F. Hermetically sealed secondary battery with lanthanum nickel anode. US patent, US3874958,1975.
    [26]Percheron-Guegan A, Achard J, Sarradin J et al. Nickel et leurs applications electrochimiques. French patent,7516160,1975.
    [27]Nagaura T, Tozawa K. Lithium ion rechargeable battery. Prog. Batteries Solar Cells,1990,9:209-217.
    [28]Tarascon J, Gozdz A, Schmutz C et al. Performance of Bellcore's plastic rechargeable Li-ion batteries. Solid State Ionics,1996,86-88:49-54.
    [29]Croce F, Epifanio A, Hassoun J et al. Advanced electrolyte and electrode materials for lithium polymer batteries. Journal of Power Sources,2003,119-121: 399-402
    [30]Saunier J, Alloin F, Sanchez J et al. Thin and flexible lithium-ion batteries: investigation of polymer electrolytes. Journal of Power Sources,2003,119-121: 454-459
    [31]Hee-Tak K, Kyoung-Bae K, Sun-Wook K et al. Li-ion polymer battery based on phase-separated gel polymer electrolyte. Electrochimica Acta,2000,45(24): 4001-4007
    [32]Barbara R, Martin S, Andrea B et al. Polymer electrolyte for lithium batteries based on photochemically crosslinked poly(ethylene oxide) and ionic liquid. European Polymer Journal,2008,44:2986-2990
    [33]厉海艳,李全安,文九巴等.动力电池的研究应用及发展趋势.河南科技大学学报(自然科学版).2005,26(6):35-39
    [34]中华少又民共和国汽车行业标准.QC/T 743-2006,电动汽车用锉离子蓄电池.
    [35]Hariprakash B, Gaffoor S, Shukla A. Lead-acid batteries for partial-state-of-charge applications. Journal of Power Sources,2009,191 (1):149-153.
    [36]王然,许检红.电动公交车用化学电源的比较研究.电池技术,2008,(8):27-29
    [37]Taniguchi A, Fujioka N. Kanamaru K et al. Development of Prismatic Nickel/Metal-Hydride Battery for HEV. The 17th International Electric Vehicle Symposium & Exposition (EVS 17),2000 Montreal, Canada
    [38]Danil V. Toyota Prius HEV neurocontrol and diagnostics. Neural Networks, 2008,21:458-465
    [39]Ovshinsky S, Dhar S, Fetcenko M et al. Advanced materials for next generation NiMH portable, HEV and EV batteries. Aerospace and Electronic Systems Magazine,1999,14(5):17-23
    [40]Paul G, John A, Dennis C. Development of advanced nickel/metal hydride batteries for electric and hybrid vehicles. Journal of Power Sources,1999, 80(1-2):157-163
    [41]Mao L, Tong J. Effect of Co additives on the cycle life of Ni-MH batteries. Journal of Alloys and Compounds,1999,293-295(1):829-832)
    [42]Chopher E, Borroni B. Fuel cell commercialization issues for light-duty vehicle applications Journal of Power Sources,1996,61(1):33-48
    [43]Jeong K, BYEONG S. Fuel economy and life-cycle cost analysis of a fuel cell hybrid vehicle. Journal of Power Sources,2002,105(1):58-65
    [44]Eberhard M, Gerolf R. Battery Monitoring and Electrical Energy Management: Precondition for future vehicle electric power systems. Journal of Power Sources, 2003,116(1-2):79-98
    [45]Gregory L. Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs:Part 1. Background. Journal of Power Sources,2004, 134(2):252-261
    [46]Gregory L. Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs:Part 2. Modeling and identification, Journal of Power Sources,2004,134(2):262-276
    [47]唐致远,管道安,张娜.锂离子动力电池的安全性研究进展.化工进展.2005,24(10):1098-1102
    [48]Howard W, Spotnitz R. Theoretical evaluation of high-energy lithium metal phosphate cathode materials in Li-ion batteries. Journal of Power Sources,2007,165, (2):887-891
    [49]Liu Y, Li X, Guo H et al. Overcharge performance of LiMn2O4/graphite battery with large capacity. Journal of Central South University of Technology,2009,16(5): 763-767
    [50]HUANGH, FAULKNERT, BARKER J et al. Lithium metal phosphates, power and automotive applications. Journal of power sources,2009,189(1):748-751
    [51]曹立波,乐中耀,白中浩等.锂离子动力电池燃烧机理及其防护措施.汽车工程,2003,25(6):566-568
    [52]Roth E, Doughty D, Franklin J. DSC investigation of exothermic reactions occurring at elevated temperatures in lithium-ion anodes containing PVDF-based binders. Journal of Power Sources,2004,134:222-234
    [53]Spotnitz R, Franklin J. Abuse behavior of high-power, lithium-ion cells. Journal of Power Sources,2003,113(1):81-100
    [54]Investigations of the Exothermic Reactions of Natural Graphite Anode for Li-Ion Batteries during Thermal Runaway. Journal of The Electrochemical Society,2005 152 (1)A73-A79
    [55]Laman F, Gee M, Denovan J. Impedance Studies for Separators in Rechargeable Lithium Batteries. J. Electrochem. Soc.,1993,140(4):L51-L53
    [56]Mandal B, Padhi A, Zhong S et al. New low temperature electrolytes with thermal runaway inhibition for lithium-ion rechargeable batteries. Journal of Power Sources,2006,162:690-695
    [57]Mandal B, Filler R. Thermal runaway inhibitors. US Patent, US 6746794, 2004-06-08.
    [58]Braja K. Mandal, Akshaya K et al. Thermal runaway inhibitors for lithium battery electrolytes. Journal of Power Sources,2006,161(2):1341-1345
    [59]Abouimrane A, BelharouakI, Amine K. Sulfone-based electrolytes for high-voltage Li-ion batteries. Electrochemistry Communications,2009,11(5): 1073-1076
    [60]Deng J, Lua Z, Belharouak I et al. Preparation and electrochemical properties of Li4Ti5O12 thin film electrodes by pulsed laser deposition. Journal of Power Sources, 2009,193, (2):816-821
    [61]Yoshida T, Kitoh K, Ohtsubo S et al. Safety Performance of Large and High-Power Lithium-Ion Batteries with Manganese Spinel and Meso Carbon Fiber. Electrochemical and Solid-State Letters,2007,10(3):A60-A64
    [62]庞静,卢世刚,刘莎.锂离子电池过充特性的研究.电化学,2005,11(4):398-401
    [63]Leising R, Palazzo M, Takeuchi E et al. A study of the overcharge reaction of lithium-ion batteries. Journal of Power Sources,2001,97-98:681-683
    [64]Chen Y, Evans J. Thermal Analysis of Lithium-Ion Batteries. J. Electrochem. Soc.,1996,143(9):2708-2712
    [65]Tobishima S, Yamaki J. A consideration of lithium cell safety. Journal of Power Sources,1999,81-82:882-886
    [66]黄海江.锂离子电池安全性研究及影响因素分析.[博士学位论文]上海:中国科学院研究生院,2004.
    [67]Choi Y, Chung K, Kim W et al. Suppressive effect of Li2CO3 on initial irreversibility at carbon anode in Li-ion batteries. Journal of Power Sources,2002, 104(1):132-139
    [68]H. Kato, Y. Yamamoto, Y Nishi,184th ECS Fall Meeting,93-2, New Orleans, 1993(Ext.Abstr.22).
    [69]Balakrishnan P, Ramesh R, Kumar T. Safety mechanisms in lithium-ion batteries. Journal of Power Sources,2006,155:401-414
    [70]Ilic D, Birke P, Holl K et al. PoLiFlexTM, the innovative lithium-polymer battery. Journal of Power Sources,2004,129(1):34-37
    [71]Ganesh V. Characterization of thermal cut-off mechanisms in prismatic lithium-ion batteries, Journal of Power Sources,2001,101(2):231-237
    [72]Feng X, Ai X, Yang H. A positive-temperature-coefficient electrode with thermal cut-off mechanism for use in rechargeable lithium batteries. Electrochemistry Communications,6(10):1021-1024.
    [73]Yi W, Huaiyu Z, Jian H et al. Wet-laid non-woven fabric for separator of lithium-ion battery, Journal of Power Sources,189(1):616-619
    [74]郭炳焜,徐徽,王先友等.锂离子电池.长沙:中南大学出版社,2002,231-246
    [75]Arora P, Zhang Z. Battery Separators. Chemical Review,2004:104 4419-4462
    [76]Zhang S. A review on the separators for liquid electrolyte Li-ion batteries, Journal of Power Sources,2007,164:351-364.
    [77]Chen G, Richardson T. Overcharge Protection for High Voltage Lithium Cells Using Two Electroactive Polymers. Electrochemical and Solid-State Letters,2006,9 (1):A24-A26
    [78]Chen G, Richardson T. Overcharge Protection for Rechargeable Lithium Batteries Using Electroactive Polymers. Electrochemical and Solid-State Letters,2004,7(2): A23-A26
    [79]Xiao L, Ai X, Cao Y, et al. A composite polymer membrane with reversible overcharge protection mechanism for lithium ion batteries. Electrochemistry Communications,2005,7:589-592
    [80]Richard M, Dahn J. Accelerating rate calorimetry study on the thermal stability of lithium intercalated graphite in electrolyte Ⅰ. Experimental. J. Electrochem. Soc., 1999,146:2068-2077
    [81]MacNeil D, Larcher D, Dahn J. A comparison of the reactivity of various carbon electrolyte materials with electrolyte at elevated temperature, J. Electrochem. Soc., 1999,146:3596-3602
    [82]McNeil D, Christensen L, Landucci J et al. An auto catalytic mechanism for the thermal decomposition of LixCoO2 in electrolytes. J. Electrochem. Soc.,2000,147: 970-979
    [83]MacNeil D, Dahn J. Test of reaction kinetics using both differential scanning and accelerating rate calorimetries as applied to the reaction of LixCoO2 in non-aqueous electrolyte. J. Phys. Chem. A,2001,105:4430-4439
    [84]Shui S, Xu K, Zhang T et al. LiBOB as Salt for Lithium-Ion Batteries. Electrochemical and solid-state letters,2002,5 (1):A26-A29
    [85]Schmidt M, Heider U, Kuehner A.et al. Lithium fluoroalkylphosphates:a new class of conducting salts for electrolytes for high energy lithium-ion batteries. Journal of Power Sources,2001,97-98:557-560
    [86]Oesten R, Heider U, Schmidt M. Advanced electrolytes. Solid State Ionics,2002, 148(3-4):391-397
    [87]Gnanaraj J, Levi M, Gofer Y et al.LiPF3(CF2CF3)3:A Salt for Rechargeable Lithium Ion Batteries. J. Electrochem. Soc.,2003,150(4):A445-A454
    [88]Oren Mizrahi, Nir Amir, Elad Pollak. Electrolyte Solutions with a Wide Electrochemical Window for Rechargeable Magnesium Batteries. J. Electrochem. Soc.,2008,155(2):A103-A109
    [89]Hyung Y, Donald R, Amine K et al. Flame-retardant additives for lithium-ion batteries. Journal of Power Sources,2003,119-121:383-387
    [90]Ota H, Kominato A, Chun W et al. Effect of cyclic phosphate additive in non-flammable electrolyte. Journal of Power Sources,2003,119-121:393-398
    [91]Wang X, Yasukawa E, Kasuya S. Nonflammable Trimethyl Phosphate Solvent-Containing Electrolytes for Lithium-Ion Batteries:II. The Use of an Amorphous Carbon Anode. J. Electrochem. Soc.2001,148:A1066-A1071
    [92]Wang X, Yasukawa E, Kasuya S. Nonflammable Trimethyl Phosphate Solvent-Containing Electrolytes for Lithium-Ion Batteries:Ⅰ. Fundamental Properties. J. Electrochem. Soc.,2001,148(10):A1058-A1065
    [93]Xu K, Ding M, Zhang S et al. An Attempt to Formulate Nonflammable Lithium Ion Electrolytes with Alkyl Phosphates and Phosphazenes. J. Electrochem. Soc.,2002, 149(5):A622-A626
    [94]Narayanan S, Surampudi S, Attia A et al. Analysis of Redox Additive-Based Overcharge Protection for Rechargeable Lithium Batteries. J. Electrochem. Soc.,1991, 138:2224-2229
    [95]Abraham K M, Pasquariello D M. Overcharge Protection of Secondary Non-aqueous Batteries. Cannada patent, CA1306003,1992-08-04
    [96]Abraham K, Pasquariello D, Willstaedt E. Lithium/Molybdenum Oxysulfide Secondary BatteriesJ ournal of the Elect rochemical Societ y,1989,136(2):576-577
    [97]Golovin M, Wilkinson P, Dudley J et al. Applications of Metallocenes in Rechargeable Lithium Batteries for Overcharge Protection Journal of the Elect rochemical Society,1992,139 (1):5-10
    [98]熊学,戴永年,李伟宏,刘露.锂离子二次电池过充保护添加剂的研究现状.材料导报,2007,(21):256-262
    [99]Cha C, Ai X, Yang H. Polypyridine complexes of iron used as redox shuttles for overcharge protection of secondary lithium batteries. J Power Sourc,1995,54 (2):255-258
    [100]Abraham K, Rohan J, Foo C et al. Chemical Overcharge Protection of Lithium and Lithium-ion Secondary Batteries. Europe Patent, EP 0825663,1998-02-25
    [101]Korepp C, Kernb W, Lanzer E. et al.4-Bromobenzyl isocyanate versus benzyl isocyanate -New film-forming electrolyte additives and overchargeprotection additives for lithium ion batteries. Journal of Power Sources,2007,174:637-642
    [102]Lee Y, Cho J.3-Chloroanisole for overcharge protection of a Li-ion cell. Electrochimica Acta,2007,52:7404-7408
    [103]Mao H, Wainwright D. Polymerizable Additives for Making Nonaqueous Rechargeable Lit hium Bat teries Safe after Overcharge. US patent. US 6074776, 2000-06-13
    [104]Abe K, Matsumori Y, Ueki A. Nonaqueous Electrolytic Solution and Lithium Secondary Batteries. Europe patent, EP 1361622,2003-11-12
    [105]Roh K, Choi J, Lee J. Elect rolyte Composition for Lit hium Secondary Battery Having High Overcharge Safety. World patent, WO2004040687, 2004-05-13
    [106]朱亚薇,董全峰,郑明森等.锂离子电池耐过充添加剂的研究.电池,2006,36(3):168-169
    [107]卜源,袁华,马晓华等.一种锂离子蓄电池过充保护添加剂的研究.电源技术,2006,30(4):298-299
    [108]陈玉红,唐致远,谭才渊.环己苯对锂离子电池过充保护行为的研究.2005年中国储能电池与动力电池及其关键材料学术研讨会,2005,长沙.
    [109]Mao H Y. Polymerizable Aromatic Additives for Overcharge Protection in Non-aqueous Rechargeable Lit hium Batteries. US patent, US 5879834,1999-03-09.
    [110]Ralph O, Stephan K, Lutz B. Overcharge Protection of Nonaqueous Recha-rgeab le Lithium Batteries by Cyano-substituted Thiophenes as Electrolyte Additives. US patent, US20040053138,2004-03-18
    [111]Noh H G. Polymer Elect rolyte Composition for Improving Overcharge Safety and Lit hium Battery Using t he Same.USpatent, US 20030152837,2004-08-14
    [112]Fung Y, Zhu D. Electrodeposited Tin coating as negative electrode material for lithium-ion battery in room temperature mlten salt. J. Electrochem. Soc.2002,149: A319.
    [113]Nakagawa H, Izuchi S, Kuwana K et al. Liquid and Polymer Gel Electrolytes for Lithium Batteries Composed of Room-Temperature Molten Salt Doped by Lithium Salt. J. Electrochem. Soc.2003,150:A695-A700
    [114]Shin J, Henderson W, Passerini S. Ionic liquids to the rescue Overcoming the ionic conductivity limitations of polymer electrolytes. Electrochem. Commun.2003,5: 1016-1020.
    [115]Sakaebe H, Matsumoto H. N-Methyl-N-propylpiperidinium bis(trifluorometh-anesulonyl)imide (PP13-TFSI)-novel electrolyte base for Li battery. Electrochemistr-y Communications,2003,5(7):594-598
    [117]Sloop S, Pugh J, Wang S et al. Chemical Reactivity of PF5 and LiPF6 in Ethylene Carbonate/Dimethyl Carbonate Solutions. Electrochem. Solid-State Lett., 2001,4(4):A42-A44
    [118]Zinigrad E, Larush-Asraf L, Josef S et al. On the thermal stability of LiPF6 Thermochimica Acta,2005,438(1-2):184-191
    [119]Jiang J, Dahn J. Comparison of the Thermal Stability of Lithiated Graphite in LiBOB EC/DEC and in LiPF6 EC/DEC. Electrochem. Solid-State Lett.,2003,6(9): A180-A182
    [120]Jiang J, Dahn J. ARC studies of the thermal stability of three different cathode materials:LiCoO2; Li[Nio.iCoo.8Mno.i]02; and LiFePO4, in LiPF6 and LiBOB EC/DEC electrolytes. Electrochemistry Communications,2004,6(1):39-43
    [121]Xu K, Zhang S, Lee U et al. LiBOB:Is it an alternative salt for lithium ion chemistry Journal of Power Sources,2005,146, (1-2) 79-85
    [122]Sasaki Y, Handa M, Kurashima K. Application of Lithium Organoborate with Salicylic Ligand to Lithium Battery Electrolyte. J. Electrochem. Soc.,2001,148,(9): A999-A1003
    [123]Jiang J, Fortier H, Reimers J. Thermal Stability of 18650 Size Li-ion Cells Containing LiBOB Electrolyte Salt. J. Electrochem. Soc.,2004,151 (4):A609-A613
    [124]Katsuya H, Yasue N, Shin-ichi T et al. Mixed solvent electrolyte for high voltage lithium metal secondary cells. Electrochimica Acta,1999,44 2337-2344
    [125]Xu K. Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries. Chem. Rev.,2004,104:4303-4417
    [126]Bar-Tow D, Peled E, Bursteinb L. A Study of Highly Oriented Pyrolytic Graphite as a Model for the Graphite Anode in Li-Ion Batteries. J. Electrochem. Soc., 1999,146(3):824-832
    [127]Aurbach D. Review of selected electrode-solution interactions which determine the performance of Li and Li ion batteries. Journal of Power Sources,2000,89(2): 206-218
    [128]Lee H, Sun X, Yang X et al. Synthesis and Study of New Cyclic Boronate Additives for Lithium Battery Electrolytes J. Electrochem. Soc.,2002,149(11): A1460-A1465
    [129]Lee H, Ma Z, Yang X et al. Synthesis of a Series of Fluorinated Boronate Compounds and Their Use as Additives in Lithium Battery Electrolytes. J. Electrochem. Soc.,2004,151(9):A1429-A1435
    [130]Pasquier A, Dism F, Bowmer T. Differential Scanning Calorimetry Study of the Reactivity of Carbon Anodes in Plastic Li-Ion Batteries. J. Electrochem. Soc.,1998, 145(2):472-477
    [131]马荣骏.锂离子电池负极材料的研究及应用进展.有色金属,2008,60(2):38-45.
    [132]Gao J, Ying J, Jiang C et al. High density spherical Li4Ti5O12/C anode material with good rate capability for lithium ion batteries. Journal of Power Sources,2007,166 (1):255-259
    [133]Huang S, Wen Z, Zhang J et al. Li4Ti5O12/Ag composite as electrode materials for lithium-ion battery. Solid State Ionics,2006,177 (9-10):851-8551
    [134]Yang L, Gao L. Li4Ti5O12/C composite electrode material synthesized involving conductive carbon precursor for Li-ion battery. Journal of Alloys and Compounds, 2009,485(1-2):93-97
    [135]Lin Z, Hu X, Huai Y et al. One-step synthesis of Li4Ti5O12/C anode material with high performance for lithium-ion batteries. Solid State Ionics,2010,18(8-10): 412-415
    [136]Tobishima S, Takei K, Sakurai Y. Lithium ion cell safety. Journal of Power Sources,2000,90(2):188-195
    [137]He B, Bao S, Liang Y et al. Electrochemical properties and synthesis of LiAl0.05Mn1.95O3.95F0.05 by a solution-based gel method for lithium secondary battery. Journal of Solid State Chemistry,2005,178(3):897-901
    [138]Li T, Qiu W, Zhao H. Electrochemical properties of spinel LiMn2O4 and LiAlo.1Mn1.9O3.9F0.1 synthesized by solid-state reaction. Journal of University of Science and Technology Beijing, Mineral, Metallurgy, Material,2008,15(2):187-191
    [139]Kageyama M, Li D, Kobayakawa K. Structural and electrochemical properties of LiNi1/3Mn1/3Co1/3O2-xFx prepared by solid state reaction. Journal of Power Sources,2006,157(1):494-500
    [140]Amatucci G, Pereira N. Fluoride based electrode materials for advanced energy storage devices. Journal of Fluorine Chemistry,2007,128(4):243-262
    [141]Padhi A, Nnajundaswamy K, Goodenough J. Phospho-Olivines as positive-electrode materials for lithium batteries. J. Electrochem.Soc,1997, 144(4):1188-1194
    [142]Bruce Peter, Scrosati B, Tarascon J. Nanomaterials for Rechargeable Lithium Batteries. Angew. Chem. Int. Ed.2008,47,2930-2946
    [143]Wang G, Shen X, Yao J. One-dimensional nanostructures as electrode materials for lithium-ion batteries with improved electrochemical performance. Journal of Power Sources,2009,189:543-546
    [144]Garbarczyk J, Wasiucionek M, Jozwiak P, et al. Novel nanomaterials based on electronic and mixed conductive glasses. Solid State Ionics,2009,180:531-536
    [145]Dominko R, Bele M, Gaberscek M. Impact of the Carbon Coating Thickness on the Electrochemical Performance of LiFePO4/C Composites. Journal of The Electrochemical Society,2005,152:A607-A610
    [146]张俊喜,曹小卫,李雪等.LiFePO4表面碳包覆方法中碳源的碳化研究.上海电力学院学报,2008,24(2):172-177
    [147]Meethong N, Kao Y, Speakman S. Aliovalent Substitutions in Olivine Lithium Iron Phosphate and Impact on Structure and Properties. Adv. Funct. Mater.2009,19: 1060-1070
    [148]Delacourt C, Wurm C, Laffont L et al. Electrochemical and electrical properties of Nb-and C-containing LiFePO4 composites. Solid State Ionics,2005,177(3): 333-341
    [149]Kang B, Ceder G. Battery materials for ultrafast charging and discharging. NATURE,2009,458:190-193
    [150]Wu X, Jiang L, Cao F. LiFePO4 Nanoparticles Embedded in a Nanoporous Carbon Matrix:Superior Cathode Material for Electrochemical Energy-Storage Devices. Adv. Mater.2009,21:2710-2714
    [151]Chung S, Bloking J, Chiang Y. Electronically conductive phospho-olvines as lithium storage electrodes, Nature materials,2002,1:123
    [152]胡环宇,仇卫华,李发喜,赵海雷,王碧燕.Mg掺杂对LiFePO4材料电化学性能的影响.电源技术.2006,30(1):18-20
    [153]Wang D, Li H, Shi S et al. Improving the rate performance of LiFePO4 by Fe-site doping. Electrochimica Acta,2005,50 (14):2955-2958
    [154]Takami N, Sato A, Osaki T. Lithium secondary battery and method for manufacturing a negative electrode. US patent, US6156457.2000-12-05.
    [155]Dolle M, Grugeon S, Beaudoin B. In situ TEM study of the interface carbon/electrolyte. Journal of Power Sources,2001,97-98:104-106
    [156]Gee B, Home C, Cairns et al. Supertransferred Hyperfine Interactions at 7Li: Variable Temperature 7Li NMR Studies of LiMn2O4-Based Spinels. J. Phys. Chem. B, 1998,102:10142-10149
    [157]Zhi X, Liang G, Wang L et al. The cycling performance of LiFePO4/C cathode materials. Journal of Power Sources.2009,189(1):779-782
    [158]Abraham D, Heaton J, Kang S et al. Investigating the Low-Temperature Impedance Increase of Lithium-Ion Cells. Journal of The Electrochemical Society, 2008,155(1):A41-A47
    [159]Barboux P, Shokoohi F, Tarascon J. Method for preparation of LiMn2O4 intercalation compounds and use thereof in secondary lithium batteries. US Patent, US5,135,732,1992-08-04
    [160]Tarascon J, McKinnon W, Coowar F et al. Synthesis Conditions and Oxygen Stoichiometry Effects on Li Insertion into the Spinel LiMn2O4. J. Electrochem. Soc., 1994,141(6):1421-1431
    [161]Amatucci G, Pereira N, Zheng T et al. Failure Mechanism and Improvement of the Elevated Temperature Cycling of LiMn2O4 Compounds Through the Use of the LiAlxMn2-x O4-ZFZ Solid Solution. Journal of The Electrochemical Society,2001, 148(2):A171-A182
    [162]Kuriyama K, Onoue A., Yuasa Y et al. Atomic force microscopy study of surface morphology change in spinel LiMn2O4:Possibility of direct observation of Jahn-Teller instability. Surface Science,2007,601:2256-2259
    [163]Chen Z, Lu W, Liu J. LiPF6/LiBOB blend salt electrolyte for high-power lithium-ion batteries. Electrochimica Acta,2006,51:3322-3326
    [164]ZHANG S. A review on electrolyte additives for lithium-ion batteries. Journal of Power Sources,2006,162(2):1379-1394
    [165]LEE H, LEE J H, AHN S et al. Co-use ofcyclohexyl benzene and biphenyl for overcharge protection of lithium-ion batteries [J]. Electrochem Solid-state Lett,2006, 9(6):A307-A310
    [166]XIAO L, AI X, CAO Y et al. Electrochemical behavior of biphenyl as polymerizable additive for overcharge protection of lithium-ion batteries. ElectrochimicaActa,2004,49(24):4189-4196
    [167]胡传跃,李新海,王志兴等.锂离子电池电解液过充添加剂的行为.中国有色金属学报,2004,14(12):2125-2130
    [168]ADACHI M, TANAKA K, SEKAI K. Aromatic compounds as redox shuttle additives for 4V class secondary lithium batteries. Journal ofthe Electrochemical Society,1999,146(4):1256-1261.
    [169]CHONG Z, WANG Q, AMINE K. Understanding the stability of aromatic redox shuttles for overcharge protection of lithium-ion cells. Journal of the Electrochemical Society,2006,153(12):A2215-A2219.
    [170]LEE H, KIM S, JEON J et al. Proton and hydrogen formation by cyclohexyl benzene during overcharge of Li-ionbatteries. Journal of Power Sources,2007,173(2): 972-978.
    [171]MANCINI M, PETRUCCI L, RONCI E et al. Long cycle life Li-Mn-O defective spinel electrodes. Journal of Power Sources,1998,76(1):91-97
    [172]陈玉红,唐致远,汪亮等.环己苯和三乙胺对锂离子电池的过充保护.电源技术,2006,30(10):829-832.
    [173]黄海江,解晶莹.锂离子蓄电池不同循环状态的过充行为.电源技术,2005,29(10):633-636
    [174]SHIMA K, SHIZUKA K, UE M et al. Reaction mechanisms of aromatic compounds as an overcharge protection agent for 4 V class lithium-ion cells. Journal of Power Sources,2006,161 (2):1264-1274
    [175]WILLIAMS D, FLEMING I. Spectroscopic methods in organic chemistry. Beijing:World Publishing Corporation,1998:45-62.
    [176]伍越寰,李伟昶,沈晓明.有机化学.合肥:中国科学技术大学出版社,2002:130-134
    [177]AURBACH D, GAMOLSKY K, MARKOVSKY B et al. On the use of vinylene carbonate(VC)as an additive to electrolyte solutions for Li-ion batteries. Electrochimica Acta,2002,47(9):1423-1439.
    [178]Sato N. Entropy control and surface analysis of energy storage systems for advanced vehicles. Surface and Coatings Technology,2003,169-70:758-763
    [179]张遥,白杨,刘兴江.动力用锂离子电池热仿真分析.电源技术.2008,32(7):461-464
    [180]Reimers J, Dahn J. Electrochemical and in situ X-ray diffraction studies of lithium intercalation in LixCoO2. J Electrochem Soc,1992,139:2091-2097
    [181]吕东生,李伟善,刘煦等.过充电时LiMn2O4/LiPF6(EC+DEC)界面性质.电池,2004,34(4):268-2691
    [182]Saito Y, Takano K, Negishi A. Thermal behaviors of lithium-ion cells during overcharge. J Power Sources,2001,97-98:693-696
    [183]Zhao M, Kariuki S, Dewald H et al. Electrochemical Stability of Copper in Lithium-Ion Battery Electrolytes. J. Electrochem. Soc.,2000,147:2874-2879
    [184]Hossein Maleki, Jason N. Howard.Effects of overdischarge on performance and thermal stability of a Li-ion cell. Journal of Power Sources 160 (2006) 1395-1402
    [185]Joongpyo Shim Azucena Sierra, Kathryn A. Striebel. The development of low cost LiFePO4-based high power lithium-ion batteries.2003, http://re positorie s.cdli b.org/lbnl/LBNL-54098
    [186]Kennedy B, Patterson D., et al. Use of Lithium-ion batteries in electric vehicles. Journal of Power Sources,2000,90:156-162
    [187]杨模桦.电动车用电池的特性需求及其发展现况.工业材料,1999,146:140-145
    [188]冯熙康,朱进朝等.电动车与航天用锂离子蓄电池的进展.电源技术,1999,23(3):186-190
    [189]毕道治.CIBF2001技术交流会.电源技术,2001,35(4):315-317
    [190]赵淑红,吴锋,王子冬等.动力电池功率密度性能测试评价方法的比较研究.兵工学报,2009,30(6):764-768
    [191]]日本举国开发可充电电池,NEDO启动210亿日元计划http://china.nikkeibp.com.cn/new-s/elec/47486-20090813.html.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700