高性能混合型超级电容器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
按照储能机理的不同,超级电容器可以分为以下三种:双电层电容器、法拉第赝电容器和混合型超级电容器。双电层电容器主要是通过在电极和电解质之间的界面上所形成的双电层电容来储能,该类电容器具有很高的功率密度和极好的循环性能。法拉第赝电容器,主要是通过在电极的表面或近表面发生快速可逆的化学吸附/脱附或氧化还原反应来储能,该反应的特点是有法拉第电流产生,其理论比电容和能量密度比双电层电容器高出10-100倍。混合型超级电容器的两个电极分别采用不同的储能机理,其中一个电极选用赝电容类或二次电池类电极材料,另一电极选用双电层电容类碳材料。因此混合型电容器可同时具有法拉第赝电容器或二次电池的高能量密度和双电层电容器的高功率密度。
     与有机电解液相比,水系电解液具有更高的离子电导率,因此其功率性能远远优于有机电解液。就能量密度而言,可从提高体系的工作电压U和放电比电容C两方面来提高能量密度E。有机电解液的工作电压通常能达3V。水系电解液的理论工作电压为1.23V,通过提高H2和O2析出的过电位可将工作电压提高到2V。对于放电比电容C,电容器类电极材料在水系电解液中的电容值通常高于有机电解液。综合考虑到电压和比电容值,水系电解液的能量密度则可能超过有机电解液。此外,与有机电解液相比,水系电解液价格更加便宜,安全性更好,环境污染小,且操作方便。总体看来,水系电解液更适合用作超级电容器的电解液。
     由于强酸性和强碱性水溶液对环境仍有较大的污染,而且基于这两类水系电解液的电容器仍存在价格昂贵、物质在电极沉积、爬碱、电解液消耗、电极稳定性差而影响能量密度和循环寿命等问题。因此本工作着重研究基于中性水溶液的混合型超级电容器。本工作以提高混合型电容器的功率密度、能量密度和循环性能为根本目的,一方面从法拉第反应的电极材料入手,制备具有高比表面积、结构稳定的纳米材料,提高材料的能量、功率密度和长期稳定性,另一方面对不同种类中性水溶液对电极材料电化学性能的影响进行研究,从而优选出最佳电解液,并对电极材料的反应机理进行分析研究。
     (1)通过对比活性炭在0.5mol/L Li2SO4、Na2SO4和K2SO4水溶液中的电化学性能,发现其倍率性能在K2SO4中最好,而在Li2SO4中最差。交流阻抗结果显示活性炭电极在三种电解液中的等效串联电阻以Li2SO4的顺序递减,说明水合离子在电解液本体和活性炭电极孔内部的迁移速度是按照Li+倍率性能最好。此外,最初的电化学循环能够有效活化电极,使得离子在活性炭孔内的动力学扩散更容易进行。与Li盐相比,K盐和Na盐在自然界中存在更丰富,且更廉价易得,因此基于K+和Na+的水系电解液比Li+更适合在电容器中应用。
     (2)通过溶液共沉淀法制备了比表面积高和结晶度非常低的δ-MnO2纳米棒,对该材料在Li2SO4、Na2SO4和K2SO4水溶液中的电化学性能进行对比。在低扫速下,由于Li+半径最小,Li+在MnO2固相中可逆的嵌/脱反应产生了额外的容量,使得MnO2在Li2SO4水溶液中的比电容最高(达201F/g)。在高扫速下,MnO2电极在K2SO4水溶液中的比电容最高,这可归因于K+的水合离子半径最小和离子电导率最高。交流阻抗结果显示MnO2电极在K2SO4水溶液中的电化学电阻最小。所组装成的AC/K2SO4/MnO2混合电容器可在0-1.SV进行可逆的充放电循环。在2kW/kg的功率密度下,能量密度有17Wh/kg,高于对称型电容器AC/K2SO4/AC和文献中报道的混合电容器AC/Li2SO4/LiMn2O4。同时显示出极好的循环性能,在没有除氧的条件下,23000次循环后电容损失小于6%。
     (3)为进一步研究δ-MnO2的电化学反应机理,通过高温固相法制备了同属6晶型并具有较高结晶度的KxMnO2·nH2O纳米材料,并对比了该材料在Li2SO4、Na2SO4和K2S04电解液中的电化学行为。结果显示电极材料在三种电解液中分别发生Li+、Na+和K+的嵌/脱反应,而且KxMnO2·nH2O电极的倍率性能和循环性能都是在K2SO4中最好,Li2SO4中最差,Na2SO4中居中。其倍率性能顺序与该材料在三种电解液中的电化学电阻大小相关。其循环性能顺序与该材料在三种电解液中充放电结束时晶格参数的变化剧烈程度有关。AC/K2SO4/KxMnO2·nH2O混合电容器的能量密度稍微低于前面工作中的AC/K2SO4/MnO2纳米棒混合电容器,这是由于MnO2纳米棒的颗粒尺寸明显小于KxMnO2·nH2O颗粒,从而具有更多的表面活性位置发生反应。
     (4)由于基于MnO2材料的混合电容器的能量密度与电池相比,仍然较低,而具有更高放电容量的尖晶石LiMn2O4材料则可能提高电容器的能量密度,同时为了提高LiMn2O4的倍率和循环性能,本工作制备了由纳米晶粒围成的有序大孔结构的LiMn2O4并将其用于水系电解液中。该材料在0.5mol/L Li2SO4水溶液中的可逆容量达118mAh/g。AC/Li2SO4/大孔LiMn2O4混合电容器的能量密度达42Wh/kg,并显示出极好的高倍率性能。在10000循环后放电容量损失小于7%,这可归功于大孔LiMn2O4材料的结晶度高、电极极化小、结构稳定度好、Mn溶解量低和有序多孔结构等因素。
     (5)通过水热法制备了结晶度较高的V2O5·0.6H20纳米带,对其作为混合型电容器正极材料的性能进行了探索和初步研究。发现该材料在K2S04水溶液中的电化学反应是基于K+在层间结构中可逆的嵌/脱反应。AC/K2SO4/V2O5·0.6H2O混合电容器能在0-1.8V间进行可逆的充放电循环,能量密度达29Wh/kg,并显示出非常好的倍率性能,但是该混合电容器的循环性能较差,应进一步对V2O5·0.6H20材料进行改性提高其循环性能。
According to charge storage mechanisms, supercapacitors can be divided into three types, i.e., electrochemical double layer capacitors (EDLCs), faradic pseudo-capacitors, and hybrid supercapacitors. EDLCs store energy through the charge separation at the electrode/electrolyte interface, and they show very high power density and excellent cycling performance. Pseudocapacitors characterized by the presence of faradic current, store energy by using the fast chemical absorption/desorption or redox reactions on the electrode surface, and their theoretical specific capacitance and energy is 10-100 times higher than that of EDLC. The two electrodes used in hybrid supercapacitors store energy in different manners. One of them uses pseudocapacitors type or secondary battery type electrode materials, and the other electrode uses EDLCs type carbon materials.
     The power capability of aqueous electrolyte is much higher than that of organic electrolyte due to their higher ionic conductivity. In the case of energy density, it can be improved by increasing the working voltage (U) and specific capacitance (C). The working voltage of organic electrolyte can be up to 3V. The theoretical working voltage of aqueous electrolyte is 1.23V, which can be widened to 2V by increasing the overpotentials of H2 and O2 evolution. As for the specific capacitance, the capacitor-type electrode materials usually shows higher capacitance values in aqueous electrolyte than in organic electrolyte. Based on the above consideration, the energy density of aqueous electrolyte may exceed organic electrolyte. Moreover, aqueous electrolytes are cheaper, safer, and more environmentally friendly than organic electrolytes. Therefore, aqueous electrolyte seems to be more suitable as electrolyte for hybrid supercapacitors.
     Since the strong acidic and alkaline aqueous electrolytes pose environmental pollution, and the capacitors based on them still have the problems of high-price, precipitation of materials on the electrode, electrolyte consumption, poor electrode stability, low energy density, and poor cycling life, etc., here we focus on the investigation of neutral aqueous electrolytes based hybrid supercapacitors.
     The aim of this dissertation is to improve the power density, energy density and cycling performances of hybrid supercapacitors. On the one hand, nano-scaled faradic electrode materials with high specific surface area and structural stability were prepared to improve the power density, energy density and cycling performances of hybrid supercapacitors. On the other hand, the influence of various neutral aqueous electrolytes on the electrochemical performances of electrode materials was investigated, from which the optimal electrolyte was selected and the reaction mechanism of electrode material was analyzed.
     (1) The electrochemical performances of activated carbon in 0.5 mol/L Li2SO4, Na2SO4, and K2SO4 aqueous electrolytes were investigated. The equivalent series resistance (ESR) obtained from Nyquist plots decreases in the order of Li2SO4> Na2SO4>K2SO4, signifying that the migration speeds of the hydrated ions in the bulk electrolyte and within the inner pores of AC electrode increase in the order of Li+< Na+     (2) 8-MnCO2 nanorods with high surface areas and very low crystallinity were prepared from solution precipitation method and their electrochemical performance was investigated in Li2SO4, Na2SO4, and K2SO4 aqueous electrolytes. CV results show that at the slow scan rates, MnO2 shows the largest capacitance (201 F/g) in Li2SO4 electrolyte since the reversible intercalation/deintercalation of Li+ in the solid phase produces an additional capacitance besides the capacitance based on the absorption/desorption reaction. At the fast scan rates, MnO2 shows the largest capacitance in K2SO4 electrolyte due to the smallest hydration radius and highest ionic conductivity of K+. The assembled AC/K2SO4/MnO2 hybrid supercapacitor could be cycled reversibly between 0 and 1.8 V with energy density of 17Wh/kg at 2kW/kg, much higher than those of AC/K2SO4/AC supercapacitor and AC/Li2S04/LiMn204 hybrid supercapacitor. Moreover, this supercapacitor exhibits excellent cycling behavior with no more than 6% capacitance loss after 23,000 cycles at 10C rate even the dissolved oxygen is not removed.
     (3) In order to investigate the electrochemical reaction mechanism ofδ-MnnO2 more clearly, KxMnO2·nH2O with high crystallinity was prepared by solid-state method and its electrochemical behaviors in Li2SO4, Na2SO4 and K2SO4 aqueous solutions were compared. Results show that the electrode reaction of the KxMnO2·nH2O electrodes in the above three electrolyte involves the intercalation/deintercalation of Li+, Na+, and K+, respectively. Both the rate behavior and cycling performance of KxMnO2·nH2O electrodes in the three electrolyte are the best in K2SO4 solution and worst in Li2SO4 solution. The sequence of rate behavior is related to the electrochemical impedance of KxMnO2·nH2O electrodes in the three electrolytes. The sequence of cycling performance is related to the degree of the structural change of the electrode material at the end of charge and discharge. The energy density of AC/K2SO4/KxMnO2·nH2O hybrid supercapacitor is a little lower than the former work based on AC/K2SO4/MnO2 nanorods. This is because the particle size of MnO2 nanorods is much smaller than that of KxMnO2·nH2, thus possessing more active sites for electrode reaction.
     (4) As the energy density of the hybrid supercapacitors based on nano MnO2 materials at the low power density is still lower than that of current batteries, and spinel LiMn2O4 can discharge more capacity, here we prepared macroporous LiMn2O4 materials and use them in aqueous electrolyte. The discharge capacity of porous LiMn2O4 in Li2SO4 solution can be up to 118mAh/g. The assembled AC/Li2SO4/porous LiMn2O4 hybrid supercapacitor shows a high energy density of 42Wh/kg, and exhibits excellent rate behaviors. This supercapacitor also show excellent cycling performance with no more than 7% capacity loss after 10000 cycles, which can be ascribed to the high crystallinity, good structural stability, porous structure and nanograins of the prepared LiMn2O4.
     (5) V2O5-0.6H2O nanoribbons with high crystallinity were prepared and their electrochemical behaviors as cathode materials for the hybrid supercapacitors were investigated primarily. Results show that K+ ions can intercalate/deintercalate reversibly in the V2O5·0.6H2O interlayer space. AC/K2SO4/V2O5·0.6H2O hybrid supercapacitor was successfully assembled, which can be cycled reversibly in the voltage region of 0-1.8V and presents an energy density of 29Wh/kg. Although this supercapacitor shows very good rate behavior, its cycling behaviors is not good. Further works on the modification of V2O5·0.6H2O materials are needed to improve its cycling performances.
引文
水溶液对环境仍有较大的污染,而且基于此类电解液的电容器体系仍存在其它一些问题。例如,酸性AC//RuO2体系价格昂贵,AC//PbO2体系存在物质在电极沉积而影响能量密度和循环寿命等问题,碱性AC//NiOOH体系存在爬碱、电解液消耗问题等,AC//聚苯胺体系存在电极稳定性差等问题[122]。相反,中性水系电解液对环境更加友好,而且以其为电解液的混合电容器反而显示出较高的能量密度和较好的长期稳定性能。
    因此本论文着重研究基于中性水溶液的混合型超级电容器。在本论文中,以提高混合型电容器的功率密度、能量密度和循环性能为根本目的,主要从以下两方面开展工作:
    (1)从法拉第反应的电极材料入手,制备具有高比表面积、结构稳定的纳米材料,提高材料的能量、功率密度和长期稳定性。
    (2)对不同种类中性水溶液对电极材料电化学性能的影响进行研究,从而优选出最佳电解液,并通过实验结果对电极材料的反应机理进行进一步研究。
    本论文的研究内容主要包括以下几个部分:(1)对比研究活性炭在Li2SO4, Na2SO4和K2SO4水溶液中的电化学性能;(2)制备了比表面积高和结晶度非常低的6-MnO2纳米棒材料,对其作为混合型电容器正极材料的电化学反应机理和性能进行研究;(3)制备了同属δ-MnO2晶型并具有较高结晶度的KxMnO2·nH2O纳米材料,对其作为混合型电容器正极材料的电化学反应机理和性能进行研究;(4)通过聚苯乙烯胶晶模板法制备了大孔LiMn2O4材料,并对其作为正极材料在中性水溶液中的电化学性能进行研究;(5)制备了结晶度较高的V2O5·0.6H2O纳米带,对其作为混合型电容器正极材料的性能进行初步探索和研究。
    [1]A. S. Arico, P. Bruce, B. Scrosati, J. Tarascon, W. van Schalkwijk. Nanostructured materials for advanced energy conversion and storage devices [J]. Nat. Mater.,2005, 4:366-377.
    [2]J. R. Miller, P. Simon. Electrochemical capacitors for energy management [J]. Science,2008,321:651-652.
    [3]陈英放,李媛媛,邓梅根.超级电容器的原理及应用[J].电子元件与材料,2008,27:6-9.
    [4]M. Jayalakshmi, K. Balasubramanian. Simple capacitors to supercapacitors-an overview [J]. Int. J. Electrochem. Sci.,2008,3:1196-1217.
    [5]田志宏,赵海雷,李钥,王治峰,仇卫华.非对称型电化学超级电容器的研究进展[J].电池,2006,36:460-471.
    [6]P. Simon, Y. Gogotsi. Materials for electrochemical capacitors [J]. Nat. Mater. 2008,7:845-854.
    [7]X. Y. Tao, X. B. Zhang, L. Zhang, J. P. Cheng, F. Liu, J. H. Luo, Z. Q. Luo, H. J. Geise. Synthesis of multi-branched porous carbon nanofibers and their application in electrochemical double-layer capacitors [J]. Carbon,2006,44:1425-1428
    [8]Y. T. Kim, T. Mitani. Competitive effect of carbon nanotubes oxidation on aqueous EDLC performance:balancing hydrophilicity and conductivity [J]. J. Power Sources, 2006,158:1517-1522.
    [9]D. N. Futaba, K. Hata, T. Yamada, T. Hiraoka, Y. Hayamizu, Y. Kakudate, O. Tanaike, H. Hatori, M. Yumura, S. Iijima. Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes [J]. Nat. Mater.,2006,5:987-994.
    [10]郑丽萍,王先友,李娜,安红芳,陈权启.碳纳米管的修饰及其在超级电容器中的应用[J].化学通报,2009,8:720-727.
    [11]Y. D. Zhu, H. Q. Hu, W. C. Li, X. Y. Zhang. Cresol-formaldehyde based carbon aerogel as electrode material for electrochemical capacitor [J]. J. Power Sources,2006, 162:738-742.
    [12]C. Yang, Y. Kim, M. Endo, H. Kanoh, M. Yudasaka, S. Iijim, K. Kaneko. Nanowindow-regulated specific capacitance of supercapacitor electrodes of single-wall carbon nanohorns [J]. J. Am. Chem. Soc.,2007,129:20-21.
    [13]S. R. S. Prabaharan, R. Vimala, Z. Zainal. Nanostructured mesoporous carbon as electrodes for supercapacitors [J]. J. Power Sources,2006,161:730-736.
    [14]E. Gomibuchi, T. Ichikawa, K. Kimura, S. Isobe, K. Nabeta, H. Fujii. Electrode properties of a double layer capacitor of nano-structured graphite produced by ball milling under a hydrogen atmosphere [J]. Carbon,2006,44:983-988.
    [15]刘国阳,周安宁.超级电容器炭基电极材料研究进展[J].碳素,2006,4:27-30.
    [16]袁定胜,胡向春,刘应亮,杨创涛.超级电容器用炭材料的研究进展[J].电池,2007,37:466-468.
    [17]朱光真,邓先伦,孙康.电容器电极用新型炭材料的研究进展[J].生物质化学工程,2009,43:42-48.
    [18]J. Gamby, P. L. Taberna, P. Simon, J. F. Fauvarque, M. Chesneau. Studies and characterization of various activated carbons used for carbon/carbon supercapacitors [J]. J. Power Sources,2001,101:109-116.
    [19]D. Qu. Studies of the activated carbons used in double-layer supercapacitors [J]. J. Power Sources,2002,109:403-411.
    [20]K. Jurewicz, C. Vix-Guterla, E. Frackowiak, S. Saadallah, M. Reda, J. Parmentier, J. Patarin, F. Beguin. Capacitance properties of ordered porous carbon materials prepared by atemplating procedure [J]. J. Phys. Chem. Solids,2004,65:287-293.
    [21]J. A. Fernandez, T. Morishita, M. Toyoda, M. Inagaki, F. Stoeckli, T. A. Centeno. Performance of mesoporous carbons derived from poly(vinylalcohol) in electrochemical capacitors [J]. J. Power Sources,2008,175:675-679.
    [22]C. Vix-Guterl, E. Frackowiak, K. Jurewicz, M. Friebe, J. Parmentier, F. Beguin. Electrochemical energy storage in ordered porous carbon materials [J]. Carbon,2005, 43:1293-1302.
    [23]L. Eliad, E. Pollak, N. Levy, G. Salitra, A. Soffer, D. Aurbach. Assessing optimal pore-to-ion size relations in the design of porous poly(vinylidenechloride) carbons for EDLC capacitors [J]. Appl. Phys. A,2006,82:607-613.
    [24]G. Salitra, A. Soffer, L. Eliad, Y. Cohen, D. Aurbach. Carbon electrodes for double-layer capacitors. I. relations between ion and pore dimensions [J]. J. Electrochem. Soc.,2000,147:2486-2493.
    [25]M. Arulepp, J. Leis, M. Latt, F. Miller, K. Rumma, E. Lust, A. F. Burke. The advanced carbide-derived carbon based supercapacitor [J]. J. Power Sources,2006, 162:1460-1466.
    [26]M. Arulepp, L. Permann, J. Leis, A. Perkson, K. Rumma, A. Janes, E. Lust. Influence of the solvent properties on the characteristics of a double layer capacitor [J]. J. Power Sources,2004,133:320-328.
    [27]E. Raymundo-Pinero, K. Kierzek, J. Machnikowski, F. Beguin. Relationship between the nanoporous texture of activated carbons and their capacitance properties in different electrolytes [J]. Carbon,2006,44,2498-2507.
    [28]Y. Gogotsi, A. Nikitin, H. Ye, W. Zhou, J. E. Fischer, B. Yi, H. C. Foley, M. W. Barsoum. Nanoporous carbide-derived carbon with tunable pore size [J]. Nat. Mater., 2003,2:591-594.
    [29]J. Chmiola, G. Yushin, Y. Gogotsi, C. Portet, P. Simon, P. L. Taberna. Anomalous increase in carbon capacitance at pore size below 1 nm [J]. Science,2006,313: 1760-1763.
    [30]J. Huang, B. G. Sumpter, V. Meunier. Theoretical model for nanoporous carbon supercapacitors [J]. Angew. Chem. Int. Ed.,2008,47:520-524.
    [31]M. J. Bleda-Martinez, J. A. Macia-Agullo, D. Lozano-Castello, E. Morallon, D. Cazorla-Amoros, A. Linares-Solano. Role of surface chemistry on electric double layer capacitance of carbon materials [J]. Carbon,2005,43:2677-2684.
    [32]P. Azais, L. Duclaux, P. Florian., D. Massiot, M. Lillo-Rodenas, A. Linares-Solano, J. Peres, C. Jehoulet, F. Beguin. Causes of supercapacitors ageing in organic electrolyte [J]. J. Power Sources,2007,171:1046-1053.
    [33]A. G. Pandolfo, A. F. Hollenkamp. Carbon properties and their role in supercapacitors [J]. J. Power Sources,2006,157:11-27.
    [34]H. Liu, G. Zhu. The electrochemical capacitance of nanoporous carbons in aqueous and ionic liquids [J]. J. Power Sources,2007,171:1054-1061.
    [35]J. P. Zheng, T. R. Jow. High energy and high power density electrochemical capacitors [J]. J. Power Sources,1996,62:155-159.
    [36]Y. Y. Liang, H. L. Li, X. G. Zhang. Solid state synthesis of hydrous ruthenium oxide for supercapacitors [J]. J. Power Sources,2007,173:599-605.
    [37]H. Kim, S. Cho, Y. Ok, T. Seong. All solid-state rechargeable thin-film microsupercapacitor fabricated with tungsten cosputtered ruthenium oxide electrodes [J]. J. Vac. Sci. Technol. B,2003,21:949-952.
    [38]W. Sugimoto, T. Shibutani, Y. Murakami, Y. Takasu. Charge storage capabilities of rutile-type RuO2-VO2 solid solution for electrochemical supercapacitors [J]. Electrochem. Solid- State Lett.,2002,5:A170-172.
    [39]Y. Takasu, Y. Murakami. Design of oxide electrodes with large surface area [J]. Electrochim. Acta,2000,45:4135-4141.
    [40]S. L. Kuo, N. L. Wu. Composite supercapacitor containing tin oxide and electroplated ruthenium oxide [J]. Electrochem. Solid-Sate Lett.,2003,6:A85-A87.
    [41]H. K. Kim, S. H. Choi, Y. S. Yoon, S. Y. Chang, Y. W. Ok, T. Y. Seong. Characteristics of RuO2-SnO2 nanocrystalline-embedded amorphous electrode for thin film microsupercapacitors [J]. Thin Solid Films,2005,475:54-57.
    [42]徐艳,王本根,王清华,刘宏宇.超级电容器用氧化钌及其复合材料的研究进展[J].电子元件与材料,2006,25:7-1 0.
    [43]V. R. Shinde, S. B. Mahadik, T. P. Gujar, C. D. Lokhande. Supercapacitive cobalt oxide (Co3O4) thin films by spray pyrolysis [J]. Appl. Surf. Sci.,2006,252: 7487-7492.
    [44]T. Cottineau, M. Toupin, T. Delahaye, T. Brousse, D. Belanger. Nanostructured transition metal oxides for aqueous hybrid electrochemical supercapacitors [J]. Appl. Phys. A,2006,82:599-606.
    [45]冯继成,刘萍,赵家昌,唐博合金,徐菁利.超级电容器复合电极材料应用研究进展[J].上海工程技术大学学报,2009,23:270-276.
    [46]庞旭,马正青,左列,曾苏民.超级电容器金属氧化物电极材料研究进展[J].表面技术,2009,38:77-79.
    [47]张菲,胡会利,高鹏.超级电容器用过渡金属氧化物的研究进展[J].电池,2009,39:291-293.
    [48]张治安,杨邦朝,邓梅根,胡永达.金属氧化物超大容量电容器电极材料的研究进展[J].材料导报,2004,18:30-33.
    [49]杨惠,石兆辉,陈野,张密林.金属氧化物超级电容器的研究进展[J].电池,2005,35:477-479.
    [50]R. N. Reddy, R. G. Reddy. Synthesis and electrochemical characterization of amorphous MnO2 electrochemical capacitor electrode material [J]. J. Power Sources, 2004,132:315-320.
    [51]C. C. Hu, T. W. Tsou. The optimization of specific capacitance of amorphous manganese oxide for electrochemical supercapacitors using experimental strategies [J]. J. Power Sources,2003,115:179-186.
    [52]H. Kim, B. N. Popov. Synthesis and characterization of MnO2-based mixed oxides as supercapacitors [J]. J. Electrochem. Soc.,2003,150:D56-62.
    [53]G. X. Wang, B. L. Zhang, Z. L. Yu, M. Z. Qu. Manganese oxide/MWNTs composite electrodes for supercapacitors [J]. Solid State Ionics,2005,176: 1169-1174.
    [54]S. C. Pang, M. A. Anderson, T. W. Chapman. Novel electrode materials for thin film ultracapacitors: comparison of electrochemical properties of sol-gel-derived and electrodeposited manganese dioxide [J]. J. Electrochem. Soc.,2000,147:444-450.
    [55]S. F. Chin, S. C. Pang, M. A. Anderson. Material and electrochemical characterization of tetrapropylammonium manganese oxide thin films as novel electrode materials for electrochemical capacitors [J]. J. Electrochem. Soc.,2002,149: A379-384.
    [56]H. Y. Lee, J. B. Goodenough. Supercapacitor behavior with KC1 electrolyte [J]. J. Solid State Chem.,1999,144:220-223.
    [57]W. Dong, D. R. Rolison, B. Dunn. Electrochemical properties of high surface area vanadium oxide aerogels [J]. Electrochem. Solid-State Lett.,2000,3:457-479.
    [58]T. Kudo, Y. Ikeda, T. Watanabe, M. Hibino, M. Miyayama, H. Abe, K. Kajita. Amorphous V2O5/carbon composites as electrochemical supercapacitor electrodes [J]. Solid State Ionics,2002,152-153:833-841.
    [59]H. Y. Lee, J. B. Goodenough. Ideal supercapacitor behavior of amorphous V2O5·nH2O in potassium chloride (KC1) aqueous solution [J]. J. Solid State Chem., 1999,148:81-84.
    [60]R. N. Reddy, R. G. Reddy. Porous structured vanadium oxide electrode material for electrochemical capacitors [J]. J. Power Sources,2006,156:700-704.
    [61]S. Suzuki, M. Hibino, M. Miyayama, High rate lithium intercalation properties of V2O5/carbon/ceramic-filler composites [J]. J. Power Sources,2003,124:513-517.
    [62]A. Dobley, K. Ngala, S. Yang, P. Y. Zavalij, M. S. Whittingham. Manganese vanadium oxide nanotubes:synthesis, characterization, and electrochemistry [J]. Chem. Mater.,2001,13:4382-4386.
    [63]J. S. Sakamoto, B. Dunn. Vanadium oxide-carbon nanotube composite electrodes for use in secondary lithium batteries [J]. J. Electrochem. Soc.,2002,149:A26-A30.
    [64]T. Watanabe, Y. Ikeda, T. Ono, M. Hibino, M. Hosoda, K. Sakai, T. Kudo. Characterization of vanadium oxide sol as a starting material for high rate intercalation cathodes [J]. Solid State Ionics,2002,151:313-320.
    [65]I. Kim, J. Kim, B. Cho, Y. Lee, K. Kim. Synthesis and electrochemical characterization of vanadium oxide on carbon nanotube film substrate for pseudocapacitor applications [J]. J. Electrochem. Soc.,2006,153:A989-996.
    [66]I. Kim, J. Kim, B. Cho, K. Kim. Pseudocapacitive properties of electrochemically prepared vanadium oxide on carbon nanotube film substrate [J]. J. Electrochem. Soc.,2006,153:A1451-1458.
    [67]吴宇平,张汉平,吴峰等编著.绿色电源材料[M].化学工业出版社,2008:p367.
    [68]任丽,王立新,赵金玲,张福强,李佐邦.导电聚合物及导电聚毗咯的研究进展[J].材料导报,2002,16:60-62.
    [69]A. Laforgue, P. Simon, J. F. Fauvarque. Chemical synthesis and characterization of fluorinated polyphenylthiophenes:application to energy storage [J]. Synth. Met., 2001,123:311-319.
    [70]W. Li, J. Chen, J. Zhao, J. Zhang, J. Zhu. Application of ultrasonic irradiation in preparing conducting polymer as active materials for supercapacitor [J]. Mater. Lett., 2005,59:800-803.
    [71]A. Rudge, J. Davey, I. Raistrick, S. Gottesfeld, J. P. Ferraris. Conducting polymers as active materials in electrochemical capacitors [J]. J. Power Sources,1994, 47:89-107.
    [72]K. Naoi, S. Suematsu, A. Manago. Electrochemistry of poly(1,5-diaminoanthraquinone) and its application in electrochemical capacitor materials [J]. J. Electrochem. Soc.,2000,147:420-426.
    [73]K. Naoi, S. Suematsu, M. Hanada, H. Takenouchi. Enhanced cyclability of π-π stacked supramolecular (1,5-Diaminoanthraquinone) oligomer as an electrochemical capacitor material [J]. J. Electrochem. Soc.,2002,149:A472-477.
    [74]张治安,邓梅根,汪斌华,胡永达,杨邦朝.电化学混合电容器[J].电池,2004,34,295-297.
    [75]刘兴江,陈梅,胡树清,汪继强.电化学混合电容器的研究进展[J].电源技术,2005,29:787-790.
    [76]T. R. Jow, J. P. Zheng, S. P. Ding. Pulse performance of a Li-ion battery assisted by an electrochemical capacitor based on amorphous hydrous ruthenium oxide [A]. The 7th international seminar on double layer capacitors and similar energy storage devices, Deerfield Beach, FL.,1997.
    [77]Y. Wang, Z. Wang, Y. Xia. An asymmetric supercapacitor using RuO2/TiO2 nanotube composite and activated carbon electrodes [J]. Electrochim. Acta,2005,50: 5641-5646.
    [78]C. Hu, H. Guo, K. Chang, C. Huang. Anodic composite deposition of RuO2-xH2O-TiO2 for electrochemical supercapacitors [J]. Electrochem. Commun., 2009,11:1631-1634.
    [79]A. I. Belyakov, O. G. Dashko, V. A. Kazarov, S. A. Kazaryan, S. V. Litvinenko, I. I. Kutyanin, P. A. Schmatko, V. I. Vasechkin, J. M. Volfkovich. PCT RU Pat.,00353, 1997.
    [80]S. A. Kazaryan, S. N. Razumov, S. V. Litvinenko, G. G. Kharisov, V. I. Kogan. Mathematical model of heterogeneous electrochemical capacitors and calculation of their parameters [J]. J. Electrochem. Soc.,2006,153:A1655-A1671.
    [81]S. M. Butler, J. R. Miller. Asymmetric lead dioxide-carbon electrochemical capacitor. (http://www.electrochem.org/dl/ma/203/pdfs/0156.pdf)
    [82]A. I. Belyakov. Asymmetric electrochemical supercapacitors with aqueous electrolytes [A]. ESSCAP 2008, Roma, Italy, Nov 6-7,2008.
    [83]S. Razumov, A. Klementov, S. Litvinenko, A. Beliakov. U.S. Pat.,6222723 B1, 2001.
    [84]A. D. Klementov, I. Varakin, S. Litvinenko, N. Starodubtsev, A. Stepanov. New ultracapacitors developed by JSC "ESMA" for various applications [A]. The 8th international seminar on DLC and similar energy storage devices. Deerfield Beach, F1., USA,1998.
    [85]J. P. Zheng. The limitations of energy density of battery/double-layer capacitor asymmetric cells [J]. J. Electrochem. Soc.,2003,150:A484-A492.
    [86]J. H. Park, O. Ok. Park, K. H. Shin, C. S. Jin, J. H. Kim. An electrochemical capacitor based on a Ni(OH)2/activated carbon composite electrode [J]. Electrochem. Solid-State Lett.,2002,5:H7-H10.
    [87]V. Ganesh, S. Pitchumani, V. Lakshminarayanan. New symmetric and asymmetric supercapacitors based on high surface area porous nickel and activated carbon [J]. J. Power Sources,2006,158:1523-1532.
    [88]H. Inoue. T. Morimoto, S. Nohara. Electrochemical characterization of a hybrid capacitor with Zn and activated carbon electrodes [J]. Electrochem. Solid-State Lett., 2007,10:A261-A263.
    [89]A. Yuan, Q. Zhang. A novel hybrid manganese dioxide/activated carbon supercapacitor using lithium hydroxide electrolyte [J]. Electrochem. Commun.,2006, 8:1173-1178.
    [90]卢海,张治安,赖延清,李晶.超级电容器用导电聚苯胺电极材料的研究进展[J].电池,2007,37:309-311.
    [91]J. H. Park, O. O. Park. Hybrid electrochemical capacitors based on polyaniline and activated carbon electrodes [J]. J. Power Sources,2002,111:185-190.
    [92]V. Khomenko, E. Raymundo, F. Beguin. Optimisation of an asymmetric manganese oxide/activated carbon capacitor working at 2V in aqueous medium [J]. J. Power Sources,2006,153:183-190.
    [93]M. S. Hong, S. H. Lee, S. W. Kim. Use of KC1 aqueous electrolyte for 2V manganese oxide/activated carbon hybrid capacitor [J]. Electrochem. Solid-State Lett., 2002,5:A227-A230.
    [94]T. Brousse, M. Toupin, D. Belanger. A hybrid activated carbon-manganese dioxide capacitor using a mild aqueous electrolyte [J]. J. Electrochem. Soc.,2004,151: A614-A622.
    [95]T. Brousse, P. L. Taberna, O. Crosnier, R. Dugas, P. Guillemet, Y. Scudeller, Y. Zhou, F. Favier, D. Belanger, P. Simon. Long-term cycling behavior of asymmetric activated carbon/MnO2 aqueous electrochemical supercapacitor [J]. J. Power Sources, 2007,173:633-641.
    [96]G. X. Wang, S. Zhong, D. H. Bradhurst, S. X. Dou, H. K. Liu. Secondary aqueous lithium-ion batteries with spinel anodes and cathodes [J]. J. Power Sources, 1998,74:198-201.
    [97]夏永姚,王永刚.基于活性炭和锂离子嵌入化合物的水系混合储能器件[P].中国专利,200510025269.6,2005-04.
    [98]Y. Wang, Y. Xia. A new concept hybrid electrochemical surpercapacitor: Carbon/LiMn2O4 aqueous system [J]. Electrochem. Commun.,2005,7:1138-1142.
    [99]周邵云,李新海,王志兴,郭华军.混合超级电容器用锂离子电池材料的进展[J].电池,2007,37:404-406.
    [100]张治安,王姣丽,赖延清,李劫.非对称电化学电容器负极材料Li4Ti5O12的研究进展[J].材料导报,2008,22:26-29.
    [101]G. G. Amatucci, F. Badway, A. D. Pasquier, T. Zheng. An asymmetric hybrid nonaqueous energy storage cell [J]. J. Electrochem. Soc.,2001,148:A930-A939.
    [102]X. Hu, Y. Huai, Z. Lin, J. Suo, Z. Deng. A (LiFePO4-AC)/Li4Ti5O12 hybrid battery capacitor [J]. J. Electrochem. Soc.,2007,154:A1026-A1030.
    [103]M. Inaba, Y. Oba, F. Niina, Y. Murota, Y. Ogino, A. Tasaka, K. Hirota. TiO2 (B) as a promising high potential negative electrode for large-size lithium-ion batteries [J]. J. Power Sources,2009,189:580-584.
    [104]A. R. Armstrong, G. Armstrong, J. Canales, P. G. Bruce. TiO2-B nanowires as negative electrodes for rechargeable lithium batteries [J]. J. Power Sources,2005,146: 501-506.
    [105]Q. Wang, Z. Wen, J. Li. A hybrid supercapacitor fabricated with a carbon nanotube cathode and a TiO2-B nanowire anode [J]. Adv. Funct. Mater.,2006,16: 2141-2146.
    [106]T. Brousse, R. Marchand, P. Taberna, P. Simon. TiO2 (B)/activated carbon non-aqueous hybrid system for energy storage [J]. J. Power Sources,2006,158: 571-577.
    [107]M. E. A. Dompablo, A. Varez, F. Garcia-Alvarado. Structural study of electrochemically obtained Li2+xTi3O7 [J]. J. Solid State Chem.,2000,153:132-139.
    [108]C. Bohnke, J. Fourquet, N. Randrianantoandro, T. Brousse, O. Crosnier. Electrochemical insertion of lithium into the ramsdellite-type oxide Li2Ti3O7: influence of the Li2Ti3O7 particle size [J]. J. Solid State Electrochem.,2002,6: 403-411.
    [109]F. Chen, R. Li, M. Hou, L. Liu, R. Wang, Z. Deng. Preparation and characterization of ramsdellite Li2Ti307 as an anode material for asymmetric supercapacitors [J]. Electrochim. Acta,2005,51:61-65.
    [110]V. Khomenko, E. Raymundo-Pinero, F. Beguin. High-energy density graphite/AC capacitor in organic electrolyte [J]. J. Power Sources,2008,177: 643-651.
    [111]H. Li, L. Cheng, Y. Xia. A hybrid electrochemical supercapacitor based on a 5V Li-ion battery cathode and active carbon [J]. Electrochem. Solid-State Lett.,2005,8: A433-A436.
    [112]S. Ma, K. Nam, W. Yoon, X. Yang, K. Ahn, K. Oh, K. Kim. A novel concept of hybrid capacitor based on manganese oxide materials [J]. Electrochem. Commun., 2007,9:2807-2811.
    [113]A. Laforgue, P. Simon, J. F. Fauvarque, J. F. Sarrau, P. Lailler. Hybrid supercapacitors based on activated carbon and conducting polymers [J]. J. Electrochem Soc.,2001,148:A1130-A1134.
    [114]A. Laforgue, P. Simon, J. F. Fauvarque, M. Mastragostino, F. Soavi, J. F. Sarrau, P. Lailler, M. Conte, E. Rossi, S. Saguatti. Activated carbon/conducting polymer hybrid supercapacitors [J]. J. Electrochem Soc.,2003,150:A645-A651.
    [115]K. S. Ryu, Y. Lee, K. Han, Y. J. Park, M. G. Kang, N. Park, S. H. Chang. Electrochemical supercapacitor based on polyaniline doped with lithium salt and active carbon electrodes [J]. Solid State Ionics,2004,175:765-768.
    [116]李凡群,赖延清,高宏权,张治安.超级电容器用离子液体电解质的研究进展[J].电池,2008,38:63-65.
    [117]A. Balducci, U. Bardi, S. Caporali, M. Mastragostino, F. Soavi. Ionic liquids for hybrid supercapacitors [J]. Electrochem. Commun.,2004,6:566-570.
    [118]H. Liu, P. He, Z. Li, Y. Liu, J. Li. A novel nickel-based mixed rare-earth oxide/activated carbon supercapacitor using room temperature ionic liquid electrolyte [J]. Electrochim. Acta,2006,51:1925-1931.
    [119]A. Balducci, W. A. Henderson, M. Mastragostino, S. Passerini, P. Simon, F. Soavi. Cycling stability of a hybrid activated carbon//poly(3-methylthiophene) supercapacitor with N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl) imide ionic liquid as electrolyte [J]. Electrochim. Acta,2005,50:2233-2237.
    [120]C. Arbizzani, M. Biso, D. Cericola, M. Lazzari, F. Soavi, M. Mastragostino. Safe, high-energy supercapacitors based on solvent-free ionic liquid electrolytes [J]. J. Power Sources,2008,185:1575-1579.
    [121]P. Sivaraman, A. Thakur, R. K. Kushwaha, D. Ratna, A. B. Samui. Poly(3-methylthiophene)-activated carbon hybrid supercapacitor based on gel polymer electrolyte [J]. Electrochem. Solid-State Lett.,2006,9:A435-438.
    [122]徐睿,唐子龙,李俊荣,张中太.非对称混合电池/混合电容器[J].化学进展,2009,21:235-243.
    在组装成两电极电容器进行恒电流充放电时,电容器的放电比电容同样按照公式2-2进行计算,只是质量m为正、负电极中活性材料的质量之和(g)。能量密度E (Wh/kg)和功率密度P (W/kg)分别按照公式2-3和2-4计算:
    其中I为充放电过程中的电流(A),t为放电时间(h),Uα为平均工作电压(V),m为正、负电极中活性材料的质量之和(kg)。
    [1]丘利,胡玉和.X-射线衍射技术及设备[M].北京:冶金出版社,1998.
    [2]马礼敦.高等结构分析[M].上海:复旦大学出版社,2001.
    [3]藤峪昭,相泽益男,井上徹.电化学分析方法[M].北京:北京大学出版社,1995.
    [4]吴宇平,戴晓兵,马军旗,程预江.锂离子电池——应用与实践[M].北京:化学工业出版社,2004.
    [5]查全性.电极过程动力学导论[M].北京:科学出版社,2002.
    [6]田昭武.电化学研究方法第三版[M].北京:科学出版社,1984.
    [7]A. J. Bard, L. R. Faulkner著.邵元华等译.电化学方法——原理和应用.第二版[M].北京:化学工业出版社,2005.
    [8]英南安普顿电化学小组著.柳厚田,徐品第等译.电化学中的仪器方法[M].上海:复旦大学出版社,1992. 的微孔中,并被容纳在微孔内部,因此,与循环前的活性碳电极相比,离子在孔内部的动力扩散更容易进行。因此可以将最初的电化学循环称为电化学活化过程,该活化机理对于超级电容器有着重要作用,而与需要形成固体/电解质相界面膜的锂离子电池的活化机理不同。
    (1)通过对活性炭电极在0.5mol/LLi2SO4、Na2SO4和K2SO4水溶液中的电化学性能对比研究,发现其倍率性能在K2S04中最好,而在Li2SO4中最差。
    (2)交流阻抗结果显示活性炭电极在三种电解液中的等效串联电阻以Li2SO4>Na2SO4>K2SO4的顺序递减,这说明水合碱金属离子在电解液本体和活性炭电极孔内部的迁移速率是按照Li+倍率性能最好。此外,在经过最初的电化学循环后,离子在活性炭孔内部的动力学扩散更容易进行。
    (3)与Li盐相比,K盐和Na盐在自然界中存在更丰富,且更廉价易得,因此基于K+和Na+的水系电解液比Li+更适合在电容器中应用。
    [1]B. L. Ellis, W. R. M. Makahnouk, Y. Makimura, K. Toghill, L.F. Nazar, A multifunctional 3.5 V iron-based phosphate cathode for rechargeable batteries [J]. Nat. Mater.,2007,6:749-753.
    [2]H. Liu, G. Zhu. The electrochemical capacitance of nanoporous carbons in aqueous and ionic liquids [J]. J. Power Sources,2007,171:1054-1061.
    [3]B. Xu, F. Wu, R. Chen, G. Cao, S. Chen, G. Wang, Y. Yang. Room temperature molten salt as electrolyte for carbon nanotube-based electric double layer capacitors [J]. J. Power Sources,2006,158:773-778.
    [4]P. Liu, M. Verbrugge, S. Soukiazian. Influence of temperature and electrolyte on the performance of activated-carbon supercapacitors [J]. J. Power Sources,2006,156: 712-718.
    [5]L. Wang, T. Morishita, M. Toyoda, M. Inagaki. Asymmetric electric double layer capacitors using carbon electrodes with different pore size distributions [J]. Electrochim. Acta,2007,53:882-886.
    [6]C. M. Yang, Y. J. Kim, M. Endo, H. Kanoh, M. Yudasaka, S. Iijima, K. Kaneko. Nanowindow-regulated specific capacitance of supercapacitor electrodes of single-wall carbon nanohorns [J]. J. Am. Chem. Soc.,2007,129:20-21.
    [7]C. Vix-Guterl, S. Saadallah, K. Jurewicz, E. Frackowiak, M. Reda, J. Parmentier, J. Patarin, F. Beguin. Supercapacitor electrodes from new ordered porous carbon materials obtained by a templating procedure [J]. Mat. Sci. Eng. B,2004,108: 148-155.
    [8]H. Y. Lee, V. Mnivannan, J. B. Goodenough. Electrochemical capacitors with KC1 electrolyte [J]. C. R. Acad. Sci. Paris, t.2, Serie II c,1999,565-577.
    [9]R. N. Reddy, R. G. Reddy. Sol-gel MnO2 as an electrode material for electrochemical capacitors [J]. J. Power Sources,2003,124:330-337.
    [10]R. Kotz, M. Carlen. Principles and applications of electrochemical capacitors [J]. Electrochim. Acta,2000,45:2483.
    [11]A. Celzard, F. Collas, J. F. Mareche, G Furdin, I. Rey. Porous electrodes-based double-layer supercapacitors:pore structure versus series resistance [J]. J. Power Sources,2002,108:153-162.
    [12]V. Khomenko, E. Raymundo-Pinero, F. Beguin. High-energy density graphite/AC capacitor in organic electrolyte [J]. J. Power Sources,2008,177: 643-651.
    [13]B. Xu, F. Wu, S. Chen, C. Zhang, G Cao, Y. Yang. Activated carbon fiber cloths as electrodes for high performance electric double layer capacitors [J]. Electrochim. Acta,2007,52:45954598.
    [14]S. R. Sivakkumar, W. J. Kim, J. A. Choi, D. R. MacFarlane, M. Forsyth, D. W. Kim. Electrochemical performance of polyaniline nanofibres and polyaniline/multi-walled carbon nanotube composite as an electrode material for aqueous redox supercapacitors [J]. J. Power Sources,2007,171:1062-1068.
    [15]J. Chmiola, G Yushin, Y. Gogotsi, C. Portet, P. Simon, P. L. Taberna. Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer [J]. Science,2006, 313:1760-1763.
    [16]吴宇平,万春荣,姜长印.锂离子二次电池[M],化学工业出版社,2002. >Na2SO4>K2SO4的顺序递减,这也是MnO2电极在K2SO4水溶液中倍率性能最好的原因所在。此外,最初的电化学循环可以有效活化MnO2电极,使电解液能够充分浸润到电极材料内部,从而有利于电荷传递反应的进行。
    (3)以MnO2为正极材料、活性炭(AC)电极为负极,在K2SO4水溶液中组装成的混合电容器可在0-1.8V间进行可逆的充放电循环。在2kW/kg的高功率密度下,能量密度有17Wh/kg,高于对称型电容器AC/K2SO4/AC和混合电容器AC/Li2SO4/LiMn2O4。而且该电容器显示出极好的循环性能,在没有除氧的条件下,在10C倍率下23000循环后电容损失小于6%。
    (4)该电容器价格便宜,能量/功率密度较高,且对环境污染小,有望实现商业化应用。
    [1]J. Wei, N. Nagarajan, I. Zhitomirsky. Manganese oxide films for electrochemical supercapacitors [J]. J. Mater. Process. Tech.,2007,186:356-361.
    [2]M. Toupin, T. Brousse, D. Belanger. Influence of microstructure on the charge storage properties of chemically synthesized manganese dioxide [J]. Chem. Mater., 2002,14:3946-3952.
    [3]S. J. Bao, B. L. He, Y. Y. Liang, W. J. Zhou, H. L. Li. Synthesis and electrochemical characterization of amorphous MnO2 for electrochemical capacitor. Mat. Sci. Eng. A,2005,397:305-309.
    [4]M. S. Wu, R. H. Lee. Nanostructured manganese oxide electrodes for lithium-ion storage in aqueous lithium sulfate electrolyte [J]. J. Power Sources,2008,176: 363-368.
    [5]T. Brousse, M. Toupin, R. Dugas, L. Athouel, O. Crosnier, D. Belanger. Crystalline MnO2 as possible alternatives to amorphous compounds in electrochemical supercapacitors [J]. J. Electrochem. Soc.,2006,153:A2171-A2180.
    [6]X. Yang, Y. Wang, H. Xiong, Y. Xia. Interfacial synthesis of porous MnO2 and its application in electrochemical capacitor [J]. Electrochim. Acta,2007,53:752-757.
    [7]C. Ye, Z. M. Lin, S. Z. Hui. Electrochemical and capacitance properties of rod-shaped MnO2 for supercapacitor [J]. J. Electrochem. Soc.,2005,152: A1272-A1278.
    [8]S. Devaraj, N. Munichandraiah. Effect of crystallographic structure of MnO2 on its electrochemical capacitance properties [J]. J. Phys. Chem. C,2008,112:4406-4417
    [9]R. Pitchai, D. H. Park, G. Campet. Comment on “hydrothermal synthesis and pseudocapacitance properties of a-MnO2 hollow spheres and hollow urchins” [J]. J. Phys. Chem. C,2008,112:6588.
    [10]R. Ma, Y. Bando, L. Zang, T. Sasaki. Layered MnO2 nanobelts: hydrothermal synthesis and electrochemical measurements [J]. Adv. Mater.,2004,16:918-922.
    [11]T. Brousse, M. Toupin, D. Belanger. A hybrid activated carbon-manganese dioxide capacitor using a mild aqueouse electrolyte [J]. J. Electrochem. Soc.,2004, 151:A614-A622.
    [12]M. Minakshi, P. Singh, T. B. Issa, S. Thurgatea, R. D. Marco. Lithium insertion into manganese dioxide electrode in MnO2/Zn aqueous battery Part II. Comparison of the behavior of EMD and battery grade MnO2 in Zn|MnO2|aqueous LiOH electrolyte [J]. J. Power Sources,2004,138:319-322.
    [13]V. Subramanian, H. Zhu, R. Vajtai, P. M. Ajayan, B. Wei. Hydrothermal synthesis and pseudocapacitance properties of MnO2 nanostructures [J]. J. Phys. Chem. B,2005, 109,20207-20214.
    [14]P. Ragupathy, H. N. Vasan, N. Munichandraiah. Synthesis and characterization of nano-MnO2 for electrochemical supercapacitor studies [J]. J. Electrochem. Soc.,2008, 155:A34-A40.
    [15]B. O. Park, C. D. Lokhande, H. S. Park, K. D. Jung, O. S. Joo. Performance of supercapacitor with electrodeposited ruthenium oxide film electrodes-effect of film thickness [J]. J. Power Sources,2004,134:148-152.
    [16]L. Athouel, F. Moser, R. Dugas, O. Crosnier, D. Belanger, T. Brousse. Variation of the MnO2 birnessite structure upon charge/discharge in an electrochemical supercapacitor electrode in aqueous Na2SO4 Electrolyte [J]. J. Phys. Chem. C,2008, 112:7270-7277.
    [17]H. Y. Lee, V. Mnivannan, J. B. Goodenough. Electrochemical capacitors with KC1 electrolyte [J]. C. R. Acad. Sci. Paris, t.2, Serie II c,1999,565-577.
    [18]R. N. Reddy, R. G. Reddy. Sol-gel MnO2 as an electrode material for electrochemical capacitors [J]. J. Power Sources,2003,124:330-337.
    [19]B. E. Conway. Ionic hydration in chemistry and biophysics, Elsevier, Amsterdam, 1981, p.73.
    [20]P. W. Atkins. Physical Chemistry, second ed., W.H. Freeman and Company, San Francisco,1981, p.893.
    [21]M. S. Hong, S. H. Lee, S. W. Kim. Use of KC1 aqueous electrolyte for 2 V manganese oxide/activated carbon hybrid capacitor [J]. Electrochem. Solid-State Lett., 2002,5:A227-A230.
    [22]Y. Wang, Y. Xia. A new concept hybrid electrochemical surpercapacitor: Carbon/LiMn2O4 aqueous system [J]. Electrochem. Commun.,2005,7:1138-1142. 中会发生分离,因此需要大量的电解液来补充电解液的消耗。然而在AC/K2SO4/KxMnO2·nH2O混合电容器中,K+为工作离子,而电极材料KxMnO2·nH2O本身就含有K+,因此,电解液浓度在充电过程中几乎是恒定的,不易造成电解液消耗。该混合电容器电解液的使用量可远远小于对称电容器。通常情况下,电极材料的重量约占实际电池总重量的50%,因此混合电容器AC/K2SO4/KxMnO2·nH2O的实际比能量密度能达13Wh/kg,远远高于商业化的双电层电容器(3-5Wh/kg),稍微低于铅酸电池的实际能量密度(30-50Wh/kg)[19]。但是与目前的二次电池相比,该混合电容器具有更高的功率密度、更长的循环寿命、更低花费和环境友好等特性,使其在大功率装置中有较好的应用前景。
    (1)通过固相法制备了同属6晶型并具有较高结晶度的KxMnO2·nH2O纳米材料,对该电极材料进行循环伏安、XRD、ICP和EDX测试,发现该电极材料在K2SO4水溶液中的电化学反应是基于K+在固体晶格中可逆的嵌/脱反应。
    (2)对比了KxMnO2nH2O材料在Li2SO4、Na2SO4和K2SO4电解液中的电化学行为,结果显示电极材料在三种电解液中分别发生Li+、Na+和K+的嵌/脱反应,而且KxMnO2·nH2O电极的倍率性能和循环性能都是在K2SO4中最好,Li2SO4中最差,Na2SO4中居中。其倍率性能顺序与该材料在三种电解液中的电化学电阻大小相关。其循环性能顺序与该材料在三种电解液中充放电结束时晶格参数的变化剧烈程度有关。
    (3)以KxMnO2·nH2O为正极材料、活性炭电极为负极,在K2SO4水溶液中组装了混合型电容器。该电容器在0-1.8V间能进行可逆的充放电循环,在140W/kg和2kW/kg的功率密度下,能量密度分别有25和16Wh/kg。而且该电容器具有较好的循环性能,在25C的电流倍率下,10000次循环后,电容损失小于2%,这与KxMnO2·nH2O材料在长期循环中较高的结构稳定性是分不开的。
    (4)KxMnO2·nH2O材料的制备方法简单,以该材料为正极材料组装成的混合电容器价格便宜,工艺操作方便,高功率密度下能够保持较高的能量密度,在大功率电子设备中有着较好的应用前景。
    [1]Y. Omomo, T. Sasaki, L. Wang, M. Watanabe. Redoxable nanosheet crystallites of MnO2 derived via delamination of a layered manganese oxide [J]. J. Am. Chem. Soc., 2003,125:3568-3575.
    [2]L. Wang, Y. Omomo, N. Sakai, K. Fukuda, I. Nakai, Y. Ebina, K. Takada, M. Watanabe, T. Sasaki. Fabrication and characterization of multilayer ultrathin films of exfoliated MnO2 nanosheets and polycations [J]. Chem. Mater.,2003,15:2873-2878.
    [3]M. Nakayama, S. Konishi, H. Tagashira, K. Ogura. Electrochemical synthesis of layered manganese oxides intercalated with tetraalkylammonium ions [J]. Langmuir, 2005,21:354-359.
    [4]H. Kanoh, W. Tang, Y. Makita, K. Ooi. Electrochemical intercalation of alkali-metal ions into birnessite-type manganese oxide in aqueous solution [J]. Langmuir,1997,13:6845-6849.
    [5]R. Chen, M. S. Whittingham. Cathodic behavior of alkali manganese oxides from permanganate [J]. J. Electrochem. Soc.,1997,144:64-L67.
    [6]S. H. Kim, S.J. Kim, S. M. Oh. Preparation of layered MnO2 via thermal decomposition of KMnO4 and its electrochemical characterizations [J]. Chem. Mater., 1999,11:557-563.
    [7]Y. Lu, L. Yang, M. Wei, Y. Xie, T. Liu. Studies on structure and electrochemical properties of pillared M-MnO2 (M=Ba2+, Sr2*, ZrO2+) [J]. J. Solid State Electrochem., 2007,11:1157-1162.
    [8]J. Ge, L. Zhuo, F. Yang, B. Tang, L. Wu, C. Tung. One-dimensional hierarchical layered KxMnO2 (x< 0.3) nanoarchitectures: synthesis, characterization, and their magnetic properties [J]. J. Phys. Chem. B,2006,110:17854-17859.
    [9]H. Y. Lee, V. Mnivannan, J. B. Goodenough. Electrochemical capacitors with KC1 electrolyte [J]. C. R. Acad. Sci. Paris, t.2, Ser. IIc,1999,565-577.
    [10]Y. Kadoma, Y. Uchimoto, M. Wakihara. Synthesis and structural study on MnO2 nanosheet material by X-ray absorption spectroscopic technique [J]. J. Phys. Chem. B, 2006,110:174-177.
    [11]S. Komaba, N. Kumagai, S. Chiba. Synthesis of layered MnO2 by calcination of KMnO4 for rechargeable lithium battery cathode [J]. Electrochim. Acta,2000,46: 31-37.
    [12]吴宇平,万春荣,姜长印.锂离子二次电池[M],化学工业出版社:2002.
    [13]R. N. Reddy, R. G. Reddy. Porous structured vanadium oxide electrode material for electrochemical capacitors [J]. J. Power Sources,2006,156:700-704.
    [14]Z. J. Lao, K. Konstantinov, Y. Tournaire, S. H. Ng, G X. Wang, H. K. Liu. Synthesis of vanadium pentoxide powders with enhanced surface-area for electrochemical capacitors [J]. J. Power Sources,2006,162:1451-1454.
    [15]J. C. Lytle, H. Yan, N. S. Ergang, W. H. Smyrl, A. Stein. Structural and electrochemical properties of three-dimensionally ordered macroporous tin(IV) oxide films [J]. J. Mater. Chem.,2004,14:1616-1622.
    [16]C. K. Chan, H. Peng, G. Liu, K. Mcilwrath, X. F. Zhang, R. A. Huggins, Y. Cui. High-performance lithium battery anodes using silicon nanowires [J]. Nat. Nanotechnol.,2008,3:31-35.
    [17]R. N. Reddy, R. G. Reddy. Sol-gel MnO2 as an electrode material for electrochemical capacitors [J]. J. Power Sources 2003,124:330-337.
    [18]A. C. Partridge, C. Milestone, C. O. Too, G G. Wallace. Ion transport membranes based on conducting polymers [J]. J. Memb. Sci.,1997,132:245-253.
    [19]F. Beck, P. Ruetschi. Rechargeable batteries with aqueous electrolytes [J]. Electrochim. Acta,2000,45:2467-2482. 短了Li+扩散路径长度,改善了电极/电解液界面的接触性质,并有利于电荷传递反应的发生。
    (3)AC/Li2SO4/大孔LiMn2O4混合电容器的能量密度达42Wh/kg,并显示出极好的高倍率性能和循环性能,10000循环后放电容量损失小于7%,这可归功于大孔LiMn2O4材料的结晶度高、电极极化小、结构稳定度好、Mn溶解量低和有序多孔结构等因素。
    [1]J. M. Tarascon, M. Armand. Issues and challenges facing rechargeable lithium batteries [J]. Nature,2001,414:359-367.
    [2]E. Hosono, T. Kudo, I. Honma, H. Matsuda, H. Zhou. Synthesis of single crystalline spinel LiMn2O4 nanowires for a lithium ion battery with high power density [J]. Nano Lett.,2009,9:1045-1051.
    [3]A. S. Arico, P. Bruce, B. Scrosati, J. M. Tarascon, W. V. Schalkwijk. Nanostructured materials for advanced energy conversion and storage devices [J]. Nat. Mater.,2005,4:366-377.
    [4]H. Yue, X. Huang, D. Lv, Y. Yang. Hydrothermal synthesis of LiMn2O4/C composite as a cathode for rechargeable lithium-ion battery with excellent rate capability [J]. Electrochim. Acta,2009,54:5363-5367.
    [5]I. Taniguchi. Physical and electrochemical properties of spherical nanostructured LiCrxMn2-xO4 particles synthesized by ultrasonic spray pyrolysis [J]. Ind. Eng. Chem. Res.,2005,44:6560-6565.
    [6]C. Wang, S. Lu, S. Kan, J. Pang, W. Jin, X. Zhang. Enhanced capacity retention of Co and Li doubly doped LiMn2O4 [J]. J. Power Sources,2009,189:607-610.
    [7]X. Li, Y. Xu. Spinel LiMn2O4 active material with high capacity retention [J]. Appl. Surf. Sci.,2007,253:8592-8596.
    [8]S. Lim, J. Cho. PVP-Assisted ZrO2 coating on LiMn2O4 spinel cathode nanoparticles prepared by MnO2 nanowire templates [J]. Electrochem. Commun., 2008,10:1478-1481.
    [9]Y. P. Wu, E. Rahm, R. Holze. Effects of heteroatoms on electrochemical performance of electrode materials for lithium ion batteries [J]. Electrochim. Acta, 2002,47:3491-3507.
    [10]C. Lia, H. P. Zhang, L. J. Fu, H. Liu, Y. P. Wu, E. Rahm, R. Holze, H. Q. Wu. Modified cathode materials by surface coating for lithium ion batteries [J]. Electrochim. Acta,2006,51:3872-3883.
    [11]D. K. Kim, P. Muralidharan, H. W. Lee, R. Ruffo, Y. Yang, C. K. Chan, H. Peng, R. A. Huggins, Y. Cui. Spinel LiMnO4 nanorods as lithium ion battery cathodes [J]. Nano Lett.,2008,8:3948-3952.
    [12]H. Yan, S. Sokolov, J. C. Lytle, A. Stein, F. Zhang, W. H. Smyrl. Colloidal-crystal-templated synthesis of ordered macroporous electrode materials for lithium secondary batteries [J]. J. Electrochem. Soc.,2003,150:A1102-A1107.
    [13]J. C. Lytle, H. Yan, N. S. Ergang, W. H. Smyrl, A. Stein. Structural and electrochemical properties of three-dimensionally ordered macroporous tin (IV) oxide films [J]. J. Mater. Chem.,2004,14:1616-1622.
    [14]K. T. Lee, J. C. Lytle, N. S. Ergang, S. M. Oh, A. Stein. Synthesis and rate performance of monolithic macroporous carbon electrodes for lithium-ion secondary batteries [J]. Adv. Funct. Mater.,2005,15:547-556.
    [15]E. M. Sorensen, S. J. Barry, H. Jung, J. M. Rondinelli, J. T. Vaughey, K. R. Poeppelmeier. Three-dimensionally ordered macroporous Li4TisO12: effect of wall structure on electrochemical properties [J]. Chem. Mater.,2006,18:482-489.
    [16]F. Jiao, J. Bao, A. H. Hill, P. G Bruce. Synthesis of ordered mesoporous Li-Mn-O spinel as a positive electrode for rechargeable lithium batteries [J]. Angew. Chem. Int. Ed.,2008,47:9711-9716.
    [17]J. Luo, Y. Wang, H. Xiong, Y Xia. Ordered mesoporous spinel LiMn2O4 by a soft-chemical process as a cathode material for lithium-ion batteries [J]. Chem. Mater., 2007,19:4791-4795.
    [18]D. Lu, W. Li, X. Zuo, Z. Yuan, Q. Huang. Study on electrode kinetics of Li+ insertion in LixMn2O4 (0≤ x≤1) by electrochemical impedance spectroscopy [J]. J. Phys. Chem. C,2007,111:12067-12074.
    [19]T. Okumura, T. Fukutsuka, Y. Uchimoto, K. Amezawa, S. Kobayashi. Cathode having high rate performance for a secondary Li-ion cell surface-modified by aluminum oxide nanoparticles [J]. J. Power Sources,2009,189:471-475.
    [20]C. H. Jiang, S. X. Dou, H. K. Liu, M. Ichihara, H. S. Zhou. Synthesis of spinel LiMn2O4 nanoparticles through one-step hydrothermal reaction [J]. J. Power Sources, 2007,172:410-415.
    [21]K. M. Shaju, P. G Bruce. A stoichiometric nano-LiMn2O4 spinel electrode exhibiting high power and stable cycling [J]. Chem. Mater.,2008,20:5557-5562.
    [22]B. W. Kang, G. Ceder. Battery materials for ultrafast charging and discharging [J]. Nature,2009,458:190-193.
    [23]Y. S. Hu, Y. G. Guo, W. Sigle, S. Hore, P. Balaya, J. Maier. Electrochemical lithiation synthesis of nanoporous materials with superior catalytic and capacitive activity [J]. Nat. Mater.,2006,5:713-717.
    [24]X. Li, Y. Xu. Novel method to enhance the cycling performance of spinel LiMn2O4 [J]. Electrochem. Commun.,2007,9:2023-2026.
    [25]M. M. Thackeray. Manganese oxides for lithium batteries [J]. Prog. Solid State Chem.,1997,25:1-71.
    [26]S. B. Tang, M. O. Lai, L. Lu. Electrochemical studies of low-temperature processed nano-crystalline LiMn2O4 thin film cathode at 55℃ [J]. J. Power Sources, 2007,164:372-378.
    [27]K. Kanamura, K. Dokko, T. Kaizawa. Synthesis of spinel LiMn2O4 by a hydrothermal process in supercritical water with heat-treatment [J]. J. Electrochem. Soc.,2005,152:A391-A395.
    [28]J. S. Sakamoto, B. Dunn. Hierarchical battery electrodes based on inverted opal structures [J]. J. Mater. Chem.,2002,12:2859-2861.
    [29]Y. Wang, Y. Xia. A new concept hybrid electrochemical surpercapacitor: Carbon/LiMn2O4 aqueous system [J]. Electrochem. Commun.,2005,7:1138-1142. 容器(10Wh/kg)[14]。其优良的倍率性能可归功于V2O5·0.6H20的二维层状结构,而且其层间距较大,甚至能容纳聚合物分子,并有利于离子在层间结构中迁移。此外,V2O5·0.6H20的一维纳米带结构也有利于提高该材料的倍率性能
    (1)通过水热法制备了结晶度较高的V2O5·0.6H20纳米带,对该电极材料在中性水溶液中的电化学行为进行研究,并对充电和放电结束的电极材料进行XRD和EDX分析,发现该电极材料在K2SO4水溶液中的电化学反应是基于K+在层间结构中可逆的嵌/脱反应。
    (2)以V2O5·O.6H2O纳米带为正极材料、活性炭电极为负极、K2SO4水溶液为电解液组装成混合电容器。该电容器在0-1.8V间能进行可逆的充放电循环,能量密度高达29Wh/kg,并显示出非常好的倍率性能,在2kW/kg的功率密度下,能量密度仍有20Wh/kg。然而,该混合电容器的循环性能较差,因此为实现V2O5材料在电容器中的应用,应进一步对其改性提高其循环性能。
    [1]C. Leger, S. Bach, P. Soudan, J. P. Pereira-Ramos. Structural and electrochemical properties of ω-LixV205 (0.4< x< 3) as rechargeable cathodic material for lithium batteries [J]. J. Electrochem. Soc.,2005,152:A236-A241.
    [2]H. K. Park, W. H. Smyrl, M. D. Ward. V2O5 xerogel films as intercalation hosts for lithium [J]. J. Electrochem. Soc.,1995,142:1068-1073.
    [3]E. Potiron, A. Salle, A. Verbaere, Y. Piffard, D. Guyomard. Electrochemically synthesized vanadium oxides as lithium insertion hosts [J]. Electrochim. Acta,1999, 45:197-214.
    [4]L. M. Chen, Q. Y. Lai, Y. J. Hao, Y. Zhao, X. Y. Ji. Investigations on capacitive properties of the AC/V2O5 hybrid supercapacitor in various aqueous electrolytes [J]. J. Alloy. Compd.,2009,467:465-471.
    [5]H. Y. Lee, J. B. Goodenough. Ideal supercapacitor behavior of amorphous V2O5·nH2O in potassium chloride (KC1) aqueous solution [J]. J. Solid State Chem., 1999,148:81-84.
    [6]T. Cottineau, M. Toupin, T. Delahaye, T. Brousse, D. Belanger. Nanostructured transition metal oxides for aqueous hybrid electrochemical supercapacitors [J]. Appl. Phys. A,2006,82:599-606.
    [7]W. C. Fang. Synthesis and electrochemical characterization of vanadium oxide/carbon nanotube composites for supercapacitors [J]. J. Phys. Chem. C,2008, 112:11552-11555.
    [8]C. Xiong, A. E. Aliev, B. Gnade, K. J. Balkus Jr. Fabrication of silver vanadium oxide and V2O5 nanowires forelectrochromics [J]. ACS Nano,2008,2:293-301.
    [9]Y. Wei, C. W. Ryu, K. B. Kim. Cu-doped V2O5 as a high-energy density cathode material for rechargeable lithium batteries [J]. J. Alloy. Compd.,2008,459:L13-L17.
    [10]吴宇平,戴晓兵,马军旗,程预江.锂离子电池——应用与实践[M],化学工业出版社,北京,2004.
    [11]R. N. Reddy, R. G. Reddy. Porous structured vanadium oxide electrode material for electrochemical capacitors [J]. J. Power Sources,2006,156:700-704.
    [12]H. Kanoh, W. Tang, Y. Makita, K. Ooi. Electrochemical intercalation of alkali-metal ions into birnessite-type manganese oxide in aqueous solution [J]. Langmuir,1997,13:6845-6849.
    [13]L. Athouel, F. Moser, R. Dugas, O. Crosnier, D. Belanger, T. Brousse. Variation of the MnO2 birnessite structure upon charge/discharge in an electrochemical supercapacitor electrode in aqueous Na2SO4 electrolyte [J]. J. Phys. Chem. C,2008, 112:7270-7277.
    [14]Y G. Wang, Y. Y. Xia. A new concept hybrid electrochemical surpercapacitor: Carbon/LiMn2O4 aqueous system [J]. Electrochem. Commun.,2005,7:1138-1142.
    [15]V. Petkov, P. N. Trikalitis, E. S. Bozin, S. J. L. Billinge, T. Vogt, M. G. Kanatzidis. Structure of V2O5·nH2O xerogel solved by the atomic pair distribution function technique [J]. J. Am. Chem. Soc.,2002,124:10157-10159.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700