复合材料在锂离子电池和储氢体系的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着社会的发展,人类对于能源需求量增多,石油、煤炭、天然气等不可再生能源逐渐减少,环境问题日益严重,使能源和环境成为备受关注的两大社会问题。发展低碳经济和清洁可再生能源成为各国非常重视的课题,这也对储能装置的各项指标提出了新的要求。燃料电池是研究比较多的储能装置之一,也是汽车动力的热点之一,但实现燃料电池在电动汽车的大量产业化还需时日。这其中,氢气的储存和运输是实现氢能源实用化关键的一环。锂离了电池因为其环境友好、输出电压高、高能量密度等优点,已经成为便携式电了产品可再充电源的主要选择对象,近年来,锂离子电池又成为汽车动力的热点之一。发展电动汽车,以电代油,是保证我国能源安全的战略措施,有着重要的战略意义。锂离子电池的发展,即要进一步提高锂离子电池的安全性能、循环寿命、能量密度和大倍率性能,关键在于材料创新。对于锂离子电池电极材料,目前还没有一种材料能够完全满足EV对锂离子电池提出的要求,除了寻找新材料、材料纳米化之外,复合材料的应用也是提高锂离子电池材料的一个重要途径。
     本论文通过对SSG石墨/VGCF、核壳结构及多孔结构TiO2/C和Ru/Li2O四个复合体系的研究,讨论了复合物对锂离子电池电极材料电化学性能提高的作用,并把复合物的概念扩及储氢领域。本文利用XRD、SEM、TEM、FTIR、XPS等方法对样品进行表征,采用CV、EIS、恒电流充放电等测试方法进行电化学性能表征,采用TDS方法对复合物的储氢性能进行表征。具体内容如下:
     “复合物”的概念很早就被用于锂离子电池的电极中,锂离子电池电极包括活性材料、导电剂和粘结剂,以用来保证电极的导电性及结构稳定性。论文第三章探讨了SSG石墨和导电剂VGCF (Vapor Growth Carbon Fiber)的复合均匀程度对石墨电极的电化学性能影响,并对其机理进行了分析。通过对电极制备工艺的控制,得到了SSG/VGCF复合均匀程度不同的两个电极,复合均匀、不均匀的电极分别用WF和PF电极来表示。电化学测试结果表明,WF电极首次可逆容量高,表现出良好的循环性能,而PF石墨电极,首次容量低,循环性能较差。交流阻抗研究发现,WF电极,膜电阻和电荷传质电阻几乎不随循环进行而增大,但对于PF电极,膜电阻和电荷传质电阻随着循环进行有了明显增大。对两个电极充放电后的电极进行SEM、XPS、EDX、显微拉曼分析,发现循环后两个电极表面均出现含有Li2CO3的沉积物,该沉积物由电解液分解形成,是SEI膜的组成成分,而WF电极沉积物明显少于PF电极。经过机理讨论,得出SSG/VGCF的复合均匀程度影响石墨电极的电子导电性和电极的电势分布,进而影响SEI膜的形成。对于复合程度不均匀的电极,其电势分布不一,造成了SEI膜在前期循环中形成不完善,无法抑制后续循环的电解液分解,导致持续的不可逆锂消耗和电荷损失,库仑效率低,循环性能变差。
     TiO2资源丰富、价格低廉、环境友好,近年来也成为锂离子电池的研究热点。但是其导电率较差,<10-10S/cm,提高导电率是对其进行改性的重要方法之一。论文第四章内容通过乳液聚合法,得到了核壳结构的TiO2-PAN复合物,再经过惰性气氛下煅烧,得到了TiO2-C核壳复合物。CV结果表示两个样品的嵌锂脱锂电位分别为1.7,2.0 V vs. Li/Li+, TiO2-C核壳复合物的循环性能优于TiO2纳米材料,电荷传质阻抗较小,锂离子表观扩散速率是纳米TiO2的十倍。主要是因为经过碳包覆,可以抑制纳米粒子在充放电过程中的团聚现象,提高了循环性能;同时,碳层的包覆,有效地提高了整个电极的导电性,降低了电荷传质阻抗,有利于锂离子在电极材料的传输,该方法可以作为提高纳米电极材料的有效方法之一。
     论文第五章内容用聚苯乙烯作为模板,得到了多孔的二氧化钛,并运用蔗糖包覆,惰性气氛下煅烧,得到了多孔TiO2-C复合物。多孔TiO2和TiO2-C复合物均表现出良好的锐钛矿晶型。充放电测试结果表明,在低倍率下,多孔TiO2和TiO2-C复合物两电极表现出相似的电化学性能,容量和充放电曲线相似。当增大充放电电流,多孔TiO2电极的极化明显增大,充放电曲线上升/下降趋势增快,而经过碳包覆,多孔TiO2电极的极化现象得到了抑制。充放电后两电极材料的TEM观察结果表明,TiO2会随着循环发生体积膨胀,造成结构破坏,碳包覆后,有利于抑制体积膨胀,维持循环过程中结构的稳定性。但这两种材料的容量需要进一步优化提高。
     论文第六章内容通过电化学的方法合成了Ru/Li2O纳米复合物,对其界面储锂机理进行了研究。电化学性能测试表明,Ru/Li2O纳米复合物在0.05-1.2 V vs.Li/Li+充放,表现出电容器的性质,且有很好的倍率性能,60C(1min)充放情况下,容量可达20 mAh/g,该储锂机理成为连接锂离子电池和电容器的桥梁。为了提供更多界面储存机理的证据,在界面储锂概念的基础上,将界面储存的概念扩展至储氢性能研究上,进一步研究了纳米复合物界面储氢性质。对Ru/Li2O纳米复合物的TEM表征结果表明,在Ru/Li2O纳米复合物的表面,有一层SEI膜,为了避免SEI膜中H的影响,将Ru/Li2O纳米复合物首先进行惰性气氛下40℃煅烧,并且在TDS测试中采用D2吸附。TDS结果表明,当室温、700 mbar吸附D2之后,煅烧后的Ru/Li2O纳米复合物在高温脱附过程中能够释放出D2,说明在该体系可以储存D2。通过氢气还原法和电化学合成方法得到了纳米Ru, TDS表明经过相同的室温D2吸附,脱附过程中没有检测到D2信号。尽管目前的研究结果和文献报道表明Li2O没有储氢性质,但关于Ru/Li2O具体的界面储氢机理,还有待进一步探索。
     通过对上述SSG石墨/VGCF、TiO2/C核壳结构及多孔结构和Ru/Li2O四个体系的研究,可以发现复合物对锂离子电池性能影响作用主要为以下几点:(1)提高电极的电子导电性,减小极化,提高大倍率性能;(2)维持循环过程中电极结构稳定性;(3)纳米复合物界面储锂机理的发现,将体相储锂和界面储存的概念结合起来,成为连接锂离子电池和超级电容器的桥梁,这一概念可以扩展至储氢材料体系。
     可以预见,本文所述的复合物概念将会成为改性锂离子电极材料的重要方法之一,提高锂离子电池的性能。
Low carbon economy and clean renewable energy now become significant topics over the world, due to the increasing demands for energy, decreasing amount of non-renewable energy, such as petrol, coal and natural gas, as well as environmental problems. As a result, energy storage devices with high performance are urgently required to use energy more efficiently. Among all the energy storage devices, lithium ion batteries exhibit much more advantages, such as high voltage, high energy density, etc., thus they have been quite popularly used in portable devices since their birth, and now they are nominated as new energy source for vehicles. Besides lithium ion batteries, fuel cell is another hot topic as energy source for EVs. However the storage and transportation of hydrogen is a crucial link for its application. For development of lithium ion batteries, their high performances, i.e., safety, good cycle performance, high energy and power density and high rate performance are mainly concerned. The key step for the further development is material innovation. Besides searching for new materials with high performance and preparation of nano materials, synthesis of composites is also an effective route for the achievement mentioned above.
     In this dissertation, the effects of composites for the improvement of lithium ion batteries are discussed with four different composites, SSG graphite/VGCF, core-shell TiO2/C, porous TiO2/C and Ru/Li2O composites. At the main time, the composite concept has been adopted to hydrogen storage system. XRD, SEM, TEM, FTIR and XPS were used for characterization, CV, EIS and discharge-charge measurements were used for investigation of electrochemical performance. TDS was used for hydrogen storage analysis. The main contents are as following:
     The concept of'composites'has been used in lithium ion batteries for a long time. The electrode is composed with active material, conductive additives and binder to increase the conductivity and stability. Chapter 3 is focused on how the dispersion of SSG graphite/VGCF affects electrochemical performance of graphite electrode. With the control of technology art, two kinds of graphite electrodes were obtained, with well and poor dispersion of VGCF, respectively. They are called WF (well fabricated) and PF (Poorly fabricated) electrode afterwards. It is found that WF electrode shows high reversible capacity in first cycle and better cycling performance, however, the reversible capacity and cycling performance are poor for PF electrode. The results got from the measurements of EIS, SEM, EDX, XPS and Raman reveal that the dispersion of SSG/VGCF greatly affects the electrochemical performance of graphite electrode. When the dispersion is homogeneous, homogeneous electronic conductivity dispersion is achieved for the whole electrode, thus perfect SEI film forms in the first cycles, which could prevent further electrolyte dispersion, as well as irreversible consumption of Li, and the good cycling performance is obtained. While for PF electrode, the dispersion of VGCF and electronic conductivity are bad, no perfect SEI film forms in the first cycles, and further decomposition of electrolyte occurs in the following cycles, giving rise to bad cycling performance.
     Chapter 4 concerns preparation of TiO2-C nanocomposites by first adopting emulsion polymerization method to form TiO2-PAN nanocomposites, followed by calcination in inert atmosphere. CV results reveal that both nano TiO2 and TiO2-C nanocomposites present redox peaks at 1.7,2.0 V vs. Li/Li+. TiO2-C nanocomposites show better cycling performance than that of nano TiO2. EIS results indicate that after carbon coating, the charge transfer resistance decreases. The apparent diffusion efficiency of TiO2-C nanocomposites is 10 folders larger than that of nano TiO2. After carbon coating, the aggregation of nanoparticles during cycling can be suppressed, and electronic conductivity is increased, thus TiO2-C nanocomposites show better electrochemical performance.
     The work mentioned in Chapter 4 is preparation and electrochemical performance investigation of porous TiO2 and TiO2-C by using PS template and sucrose as carbon source. The charge-discharge results reveal that at low current rate, both porous TiO2 and TiO2-C electrodes present the similar electrochemical performance, however, when increasing the charge-discharge rate, the polarization increases greatly for porous TiO2 electrode, the charge and discharge curve increases/declines faster. After carbon coating, the polarization is suppressed, giving rise to larger reversible capacity. Furthermore, TEM micrographs of both electrodes after 30 cycles at 0.5C indicate that, both materials suffer volume expansion during cycling, however, the carbon layer of TiO2-C electrode could suppress the volume expansion and keep the stability of porous structure.
     Chapter 6 is about interfacial storage of lithium and hydrogen in Ru/Li2O nanocomposites. The Ru/Li2O nanocomposites were prepared by electrochemical lithiation method. The electrochemical performance of Ru/Li2O nanocomposites in the potential range between 0.05 to 1.2V vs. Li/Li+ display a capacitor performance, with excellent rate performance. They deliver 120 mAh/g at 5C (1C=120 mA/g), even 20 mAh/g at 60C. The interfacial storage mechanism could provide a bridge between lithium ion batteries and capacitor. Interfacial storage of hydrogen in Ru/Li2O nanocomposites was investigated as well for more evidence of this mechanism. To avoid the interference of H from SEI film in Ru/Li2O nanocomposites, D2 was adopted instead of H2 for absorption, and the Ru/Li2O nanocomposites were first calcined to 400℃before hydrogen adsorption. TDS was used to investigate the substance desorption. The results indicate that Ru/Li2O nanocomposites after calcination can release D2 after absorption of D2 at room temperature. In comparison, the hydrogen storage of Ru nanoparticles prepared by hydrogen reduction method and further discharging to 0.8V vs. Li/Li+ was also investigated. For Ru nanoparticles, there is no HD or D2 desorption during the TDS measurement after loading D2at room temperature. Since Li2O can not be hydrogenated, the differences of the D2 desorption between Ru-Li2O nanocomposites and Ru nanoparticles may be correlated with the interfacial 'job-sharing'storage. The above results indicate that both lithium and hydrogen could be stored at the interfaces in Ru-Li2O nanocomposites reversibly. How far hydrogen is dissociated and ionized in the proper sense of the mechanism discussed, remains to be investigated.
     With the results from the above four systems studied, the effects of different nanocomposites as electrode materials in lithium ion batteries can be concluded as following:First, nanocomposites with carbon components could enhance the electronic conductivity, decrease the polarization and give rise to better rate performance; Second, nanocomposites with carbon coating layer enhance the structural stability. Third, interfacial storage of lithium in nanocomposites provides a bridge between lithium ion batteries and supercapacitors. Furthermore, the interfacial storage mechanism could be used in hydrogen storage, providing more evidence for the mechanism.
引文
[1]江泽民,对中国能源问题的思考[J].,上海交通大学学报,2008,42(3),:345
    [2]T. Nagaura, K. Tozawa. Lithium ion rechargeable battery [J]. Prog. Batteries Solar Cells,1990,9:209-217.
    [3]陈立泉,发展锂离子电池是应对金融危机的战略选择,科学时报,2009
    [4]吴宇平,戴晓兵,马军旗,程预江.锂离子电池一应用与实践[M].北京:化学工业出版社,2004,3
    [5]郭丙焜,徐徽,王先友,肖立新.锂离子电池[M].长沙:中南大学出版社,2002,2
    [6]M. S. Whittingham, Electrical energy-storage and intercalation chemistry [J]., Science,1976 192:1226
    [7]J.-M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries [J]. Nature,2001,414:359
    [8]M. Lazzari, B. Scrosati, A cyclable lithium organic electrolyte cell based on two intercalation electrodes [J]. J. Electrochem. Soc.,1980,127:773
    [9]K. Mizushima, P. C. Jones,; P. J. Wiseman, J. B. Goodenough, LixCoO2 (0    [10]吴宇平,戴晓兵,马军旗,程预江.锂离子电池-应用与实践.北京:化学工业出版社,2004:222
    [11]郑洪河.锂离子电池电解质[M].2007,化学工业出版社.
    [12]A. Manuel Stephan, K.S. Nahm Review on composite polymer electrolytes for lithium batteries [J]. Polymer,2006,47:5952
    [13]Zhang HP, Zhang P, Li ZH, Sun M, Wu YP, Wu HQ, A novel sandwiched membrane as polymer electrolyte for lithium ion battery [J]. Electrochem. Commun. 2007,9:1700-1703
    [14]Z. Jiang, B. Carroll, K.M. Abraham. Studies of some poly (vinylidene fluoride) electrolytes. J. Electrochim. Acta,1997,42(12):2667
    [15]吴宇平,戴晓兵,马军旗,程预江.锂离子电池-应用与实践.北京:化学工业出版社,2004:256
    [16]吴宇平,戴晓兵,马军旗,程预江.锂离子电池-应用与实践.北京:化学工 业出版社,2004:14
    [17]T. Ohzuku, A. Ueda, Solid-State Redox reaction of LiCoO2(R3m) for 4 volt secondary lithium cells[J], J. Electrochem. Soc.,1994,141:2972
    [18]吴宇平,戴晓兵,马军旗,程预江.锂离子电池-应用与实践.北京:化学工业出版社,2004:133
    [19]J.B. Goodenough, K. Mizuchima. Electrochemical cell with new fast ion conductors [P]. U.S. Patent:4,302,518,1981-11-24.
    [20]J.B. Goodenough, D.G. Wickham, W.J. Croft. Some magnetic and crystallographic properties of the system Lix+Ni1-2x++Nix+++O [J]. J. Phys. Chem. Solids,1958,5: 107-116.
    [21]A. Rougier, P. Gravereau, C. Delmas, Optimization of the composition of the Li1-zNi1+zO2 electrode materials:Structural, magnetic, and electrochemical studies[J], J. Electrochem. Soc.,1996,143:1168
    [22]H.J. Kweon, G.B. Kim, H.S. Lim, S.S. Nam, D.G. Park. Synthesis of LixNi0.85Co0.15O2 by the PVA precursor method and charge-discharge characteristics of a lithium ion battery using this material as cathode [J]. J. Power Sources,1999,83:84-92.
    [23]M.Y. Song, R. Lee, I. Kwon. Synthesis by sol-gel method and electrochemical properties of LiNi1-yAlyO2 cathode materials for lithium secondary battery [J]. Solid State Ionics,2003,156:319-328
    [24]C. Pouillerie, F. Perton, P. Biensan, J.P. Peres, M. Broussely, C. Delmas. Effect of magnesium substitution on the cycling behavior of lithium nickel cobalt oxide [J]. J. Power Sources,2001,96:293-302
    [25]M.M. Thackeray, W. I. F. David, P.G. Bruce, J.B. Goodenough. Lithium insertion into manganese spinels [J]. Mater. Res. Bull.,1983,18:461-472
    [26]D. Aurbach, M.D. Levi, K. Gamulski, B. Markovsky, G. Salitra, E. Levi, U. Heider, L. Heider, R. Oesten. Capacity fading of LixMn2O4 spinel electrodes studied by XRD and electroanalytical techniques [J]. J. Power Sources,1999,81:472-479.
    [27]H. Huang, C.A. Vincent, P.G. Bruce, Capacity loss of lithium manganese oxide spinel in LiPF6/ethylene carbonate-dimethyl carbonate electrolyte[J], J. Electrochem. Soc.,1999,146:481
    [28]G.G. Amatucci, N. Pereira, T. Zheng, J.M. Tarascon. Failure mechanism and improvement of the elevated temperature cycling of LiMn2O4 compounds through the use of the LiAlxMn2-xO4-zFz solid solution [J]. J. Electrochem. Soc.,2001,148: A171-A182.
    [29]A.K. Padhi, K.S. Nanjundaswamy, J.B. Goodenough. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries [J]. J. Electrochem. Soc.,1997, 144:1188-1194
    [30]H. Liu, Q. Cao, L.J. Fu, C. Li, Y.P. Wu, H.Q. Wu. Doping effects of zinc on LiFePO4 cathode material for lithium ion batteries [J]. Electrochem. Commun., 2006,8:1553-1557
    [31]Z. Liu, A. Yu, J.Y. Lee. Synthesis and characterization of LiNi1-x-yCoxMnyO2 as the cathode materials of secondary lithium batteries [J].J. Power Sources,1999,81-82:416-419
    [32]T. Ohzuku, Y. Makimura. Layered lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for lithium-ion batteries [J]. Chem. Lett.,2001, (7):642-643.
    [33]J.M. Kim, H.T. Chung. The first cycle characteristics of Li[Ni1/3Co1/3Mn1/3]O2 charged up to 4.7 V [J]. Electrochim. Acta,2004,49:937-944.
    [34]M. Ma, N.A. Chernova, B.H. Toby, P.Y. Zavalij, M.S. Whittingham,. Structural and electrochemical behavior of LiMn0.4Ni0.4Co0.2O2 [J]. J. Power Sources,2007, 165:517-534.
    [35]J.K. Ngala, N.A. Chernova, M.M. Ma, M. Mamak, P.Y. Zavalij, M.S. Whittingham. The synthesis, characterization and electrochemical behavior of the layered LiNi0.4Mn0.4Co0.2O2 compound [J]. J. Mater. Chem.,2004,14:214-220.
    [36]T. Takamura, K. Endo, L. Fu, Y. Wu, K.J:Lee, T. Matsumote, Identification of nano-sized holes by TEM in the graphene layer of graphite and the high rate discharge capacility of Li-ion Battery anodes[J]. Electrochim. Acta,2007,53:1055-1061
    [37]S. Mori, H. Asahina, H. Suzuki, A. Yonei and K. Yokoto. Chemical properties of various organic electrolytes for lithium rechargeable batteries:1. Characterization of passivating layer formed on graphite in alkyl carbonate solutions [J]. J. Power Sources,1997,68:59-64.
    [38]E. Peled. The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems-the solid electrolyte interphase model [J]. J. Electrochem. Soc.,1979,126:2047-2051.
    [39]J.O. Besenhard. Handbook of Battery Materials [M]. Wiley-VCH, Weinheim,1999: 419-458.
    [40]D. Aurbach, B. Markovsky,I. Weissman, E. Levi, Y. Ein-Eli. On the correlation between surface chemistry and performance of graphite negative electrodes for Li ion batteries [J]. Electrochim. Acta,1999,45:67-86.
    [41]K. Kanamura, S. Shiraishi, H. Takezawa, Z. Takehara. XPS Analysis of the Surface of a Carbon Electrode Intercalated by Lithium Ions [J]. Chem. Mater.,1997,9: 1797-1804.
    [42]V. Eshkenazi, E. Peled, L. Burstein, D. Golodnitsky. XPS analysis of the SEI formed on carbonaceous materials [J]. Solid State Ionics,2004,170:83-91.
    [43]A.N. Dey, B.P. Sullivan. The electrochemical decomposition of propylene carbonate on graphite [J]. J. Electrochem. Soc.,1970,117:222-224.
    [44]M. Winter, G.H. Wrodnigg, J.O. Besenhard, W. Biberacher, P. Novak. Dilatometric investigations of graphite electrodes in nonaqueous lithium battery electrolytes [J]. J. Electrochem. Soc.,2000,147:2427-2431.
    [45]E. Frackowiak, J. Machnikowski, H. Kaczmarska, F. Beguin, Boronated mesophase pitch coke for lithium insertion [J]. J. Power Sources,2001,97-98:140
    [46]K. Yamaguchi, J. Suzuki, M. Saito, K. Sekine, T. Takamura, Stable charge/discharge of Li at a grapitized carbon fiber electrode in a pure PC electrolyte and the initial charging loss[J]. J. Power Sources,2001,97-98:159-164
    [47]J.R. Dahn, T. Zheng, Y. Liu, J.S. Xue. Mechanisms for lithium insertion in carbonaceous materials [J]. Science,1995,270:590-593.
    [48]K. Sato, M. Noguchi, A. Demachi, N. Oki, M. Endo. A mechanism of lithium storage in disordered carbons [J].1994,264:556-558
    [49]J.O. Besenhard, J. Yang, M. Winter. Will advanced lithium-alloy anodes have a chance in lithium-ion batteries? [J]. J. Power Sources,1997,68:87-90
    [50]J.O. Besenhard, Handbook of Battery Materials, Wiley-VCH, Weinheim,1999: 363-380
    [51]T. Takamura, S. Ohara, M. Uehara, J. Suzuki, K. Sekine[J]., A vacuum deposited Si film having a Li extraction capacity over 2000mAh/g with a long cycle life, J. Power Sources,2004,129:96-100
    [52]S. Ohara, J. Suzuki, K. Sekine, T. Takamura, Li insertion/extraction reaction at a Si film evaporated on a Ni foil [J]. J. Power Sources,2003,119-121:591-596
    [53]N. Ariel, G. Ceder, D. R. Sadoway, E. A. Fitzgerald, Electrochemically controlled transport of lithium through ultrathin SiO2 [J]. J. Appl. Phys.2005,98:023516
    [54]Y.S. Hu, R. Demir-Cakan, M.M. Titirici, J.O. Muller, R. Schlogl, M. Antonietti, J. Maier, Superior Storage performance of a Si@ SiOx/C nanocomposite as Anode Material for lithium ion batteries, [J]. Angew. Chem. Int. Ed.,2008:47:1645-1649
    [55]H. Li, X.J. Huang, L.Q. Chen. Direct imaging of the passivating film and microstructure of nanometer-scale SnO anodes in lithium rechargeable batteries [J]. Electrochem. Solid-State Lett.,1998,1:241-243.
    [56]W.F. Liu, X.J. Huang, Z. X. Wang, H. Li, L.Q. Chen, Studies of stannic oxide as an anode material for lithium-ion batteries[J]. J. Electrochem. Soc.1998,145:59-62
    [57]F. Ding, Z.W. Fu, M.F. Zhou, Q.Z. Qin. Tin-based composite oxide thin-film electrodes prepared by pulsed laser deposition [J]. J. Electrochem. Soc.,1999,146: 3554-3559.
    [58]S.H. Ng, D.I. dos Santos, S.Y. Chew, D. Wexler, J. Wang, S.X. Dou, H.K. Liu, Polyol-mediated synthesis of ultrafine tin oxide nanoparticles for reversible Li-Ion storage, [J]. Electrochem Commun.2007,9:915-919
    [59]I.A. Courtney, J.R. Dahn, Electrochemical and in situ X-ray diffraction studies of the reaction of lithium with tin oxide composites, [J]. J. Electrochem. Soc.1997, 144:2045-2052
    [60]P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J.M. Tarascon, Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries, [J]. Nature,2000,407:28
    [61]Z. Yang, D. Choi, S. Kerisit, K. M. Rosso, D. Wang, J. Zhang, G. Graff, J. Liu, Nanostructures and lithium electrochemical reactivity of lithium titanites and lithium oxides:A review, [J]. J. Power Sources,2009,192:588-598
    [62]B. Zachau-christiansen, K. West, T. Jacobsen, S. Atlung, Lithium insertion in different TiO2 modifications,[J].1988,28-30:1176-1182
    [63]Koudriachova, H. M. Harrison, S.W. de Leeuw, Density-functional simulations of lithium intercalation in rutile, Phys. Rev. B, [J].2002,65:235423
    [64]Koudriachova, H. M. Harrison, S.W. de Leeuw, Effect of diffusion on lithium intercalation in titanium dioxide, [J]. Phys. Rev. Lett.2001,86(7):1275-1278
    [65]Y.S. Hu, L. Kienle, Y.G. Guo, J. Maier, High lithium electroactivity of nanometer-sized rutile TiO2, [J]. Adv. Mater.,2006,18(11):1421
    [66]E. Baurin, S. Cassaignon, M. Koelsch, J.P. Jolivet, L. Dupont, J. M. Tarascon, Structural evolution during the reaction of Li with nano-sized rutile type TiO2 at room temperature, [J]. Electrochem. Commun.2007,9:337-342
    [67]C. Jiang, I. Honma, T. Kudo, H. Shou, Electrochem. Nanocrystalline rutile TiO2 electrode for high-capacity and high-rate lithium storage, [J]. Solid State Lett. 2007,10:A127
    [68]D. H. Wang, D.W. Choi, Z. Yang, V. V. Viswanathan, Z. Nie, C. Wang, Y. Song, J. Zhang, J. Liu, Synthesis and Li-ion insertion properties of highly crystalline mesoporous rutile TiO2, [J]. Chem. Mater.2008,20:3435-3442
    [69]M. Wagemaker, A. A. van Well, G. J. Kearley, F. M. Mulder, The life time of lithium in anatase TiO2, [J]. Solid State Ion.,2004,175:191-193
    [70]S. Lunell, A. Stashans, L. Ojamae, H. Lindstrom, A. Hagfeldt, Li and Na diffusion in TiO2 from quantum chemical theory versus electrochemical experiment, [J]. J. Am. Chem. Soc.,1997,119:7374-7380
    [71]G. Sudant, E. Baudrin, D. Larcher, J. M. Tarascon, Electrochemical lithium reactivity with nanotextured anatase-type TiO2, [J]. J. Mater. Chem.,2005,15(12): 1263-1269
    [72]H. Lindstrom, S. Sodergren, A. Solbrand, H. Rensmo, J. Hjelm, A. Hagfeldt, S. E. Lindquist, Li Ion insertion in TiO2 (anatase).2. Voltammetry on nanoporous film, [J]. J. Phys. Chem. B,1997,101:7717-7122
    [73]Y.G. Guo, Y.S. Hu, J. Maier, Synthesis of hierarchically mesoporous anatase sphere and their application in lithium batteries, [J]. Chem. Commun.2006,26: 2783-2785
    [74]R. Marchand, L. Brohan, M. Tournoux, Mater. Res. Bull., TiO2 (B) a new form of titanium-dioxide and the potassium octatitanate K2Ti8O17, [J].1980,15:1129-1133
    [75]M. Tournoux, R. Marchand, L. Brohan, Layered K2Ti4O9 and the open metastable TiO2 (B) structure, [J]. Prog. Solid State Chem.,1986,17:33
    [76]A. R. Armstrong, G. Armstrong, J. Canales, R. Garcia, P. G. Bruce, lithium-ion intercalation into TiO2-B nanowires, [J]. Adv. Mater.,2005,17(7):862
    [77]G. Armstrong, A. R. Armstrong, J. Canales, P.G. Bruce, TiO2 (B) nanotubes as negative electrodes for rechargeable lithium batteries, [J]. Electrochem. Solid-State Lett.2006,9(3):A139
    [78]M. Zukalova, M.L. Kalbac, L. Kavan,.I, Exnar, M. Graetzel, Pseudocapacitive lithium storage in TiO2(B), [J]. Chem. Mater.,2005,17:1248-1255
    [79]D. W. Murphy, F.J. Disalvo, J. N. Carides, J. V. Waszczak, Toppchemical reactions of rutile related structures with lithium, Mater. Res. Bull.,1978,13:1395-1402
    [80]P. Balaya, H. Li, L. Kienle, J. Maier, Fully reversible homogeneous and heterogeneous Li storage in RuO2 with high capacity, [J]. Adv. Funct. Mater.,2003, 13:621-625
    [81]N. Tsuda, K. Nasu, A. Fujimori, K. Siratori, Electronic conduction in oxides; Second ed., Springer,2000
    [82]M. Armand, F. Dalard, D. Deroo, C. Mouliom, Modelling the voltammetric study of intercalation in a host structure application to lithium intercalation in RuO2, [J]. Solid State Ionics,1985,15:205-210
    [83]E. Bekaert, P. Balaya, S. Murugavel, J. Maier, M. Menetrier,6Li MAS NMR investigation of electrochemical lithiation of RuO2:evidence for an interfacial storage mechanism, [J]. Chem. Mater.,2009,21:856-861
    [84]J. Jamnik, J. Maier, Nanocrystallinity effects in lithium battery materials, Aspects of nano-ionics. Part IV, Phys. Chem. Chem. Phys.2003,5:5215-5220
    [85]J. Maier, Size effects on mass transport and storage in lithium batteries, [J]. J. Power Sources,2004,174:569-574
    [86]G. Nuspl, L. Wimmer, M. Eisgruber, Lithium metal phosphates, method for producing the same and use thereof as electrode material. [P], World Patent WO 2005,2005/051840:A1
    [87]C. Delacourt, P. Poizot, S. Levasseur, C. Masquelier, Size effects on carbon free LiFePO4 powders:The key to superior energy density. [J]. Electrochem. Solid State Lett.2006,9:A352-A355
    [88]P. Gibot, M. Casas-Cabanas, L. Laffont, S. Levasseur, P. Carlach, S. Hamelet, J.M. Tarascon, C. Masquelier, Room-temperature single-phase Li insertion/extraction in nanoscale LixFePO4, [J]. Nat. Mater.2008,7:741-747
    [89]H. Li, X.J. Huang, L.Q. Chen, Z.G. Wu, Y. Liang, A high capacity nano-Si composite anode material for lithium rechargeable batteries, [J]. Electrochem. Solid State Lett.1999,2(11):547-549
    [90]D.W.Y. Yu, K. Donoue, T. Inoue, M. Fujimoto, S. Fujitani, Effect of electrode parameters on LiFePO4 cathodes, [J]. J. Electrochem. Soc.2006,153(5):A835-A839
    [91]Y. Xu, G. Yin, Y. Ma, P. Zuo, X. Cheng, Simple annealing process for performance improvement of silicon anode based on polyvinylidene fluoride binder, [J]. J. Power Sources,2010,195:2069-2073
    [92]Y.S. Wu, Y. H. Wang, Y.H. Lee, Performance enhancement of spherical natural graphite by phenol resin in lithium ion batteries, [J]. J. Alloy Compd.2006, 426:218-222
    [93]K. Endo, H. P. Zhang, L. J. Fu, K. J. Lee, K. Sekine K, T. Takamura, Y. U. Jeong, Y. P. Wu, R. Holze, H. Q. Wu, Electrochemical performance of a novel surface modified spherical graphite as anode material for lithium ion batteries, [J]. J Appl Electrochem.2006,36:1307
    [94]J. Gao, L.J. Fu, H.P. Zhang, Y.P. Wu, Suppression of PC decomposition at the surface of graphitic carbon by Cu coating [J]. Electrochem. Commun.2006,8: 1726-1730
    [95]J. Gao, H. P. Zhang, L.J. Fu, T. Zhang, Y.P. Wu, T. Takamura, H.Q. Wu, R. Holze, Suppressing propylene carbonate decomposition by coating graphite electrode foil with silver [J]. Electrochem. Acta,2007,52:5417-5421
    [96]Y. K. Sun, S. T. Myung, M. H. Kim, J. Prakash, K. Amine, Synthesis and characterization of Li[(Ni0.8Co0.1Mn0.1)0.8(Ni0.5Mn0.5)0.2]O2 with the microscale core-shell structure as the positive electrode material for lithium batteries, [J]. J. Am. Chem. Soc.2005,127:13411
    [97]Wang Y, Wang J, Yang J, Nuli Y, High rate LiFePO4 electrode material synthesized by a novel rout from FePO4·4H2O, [J]. Adv. Funct. Mater.,2006,16: 2135-2140
    [98]Y.S. Hu, Y.G. Guo, R. Dominko, M. Gaberscek, J. Jamnik, J. Maier, Improved electrode performance of porous LiFePO4 using RuO2 as an oxidic nanoscale interconnect, [J]. Adv. Mater.2007,19:1963-1966
    [99]G.X. Wang, J. Yao, H.K. Liu, Characterization of nanocrystalline Si-MCMB composite anode materials, [J]. Electrochem Solid-State Lett.2004,7(8):A250-A253
    [100]T. Zhang, L.J. Fu, J. Gao, L.C. Yang, Y.P. Wu, H.Q. Wu, Core-shell Si/C nanocomposite as anode material for lithium ion batteries, [J]. Pure Appl. Chem. 2006,78:1889
    [101]K. Wang, X. He, L. Wang, J. Ren, C. Jiang, C. Wan, Si, Si/Cu core in carbon shell composite as anode material in lithium-ion batteries, [J]. Solid State Ionics. 2007,178:115
    [102]T. Zhang, J. Gao, H.P. Zhang, L.C. Yang, Y.P. Wu, H.Q. Wu, Preparation and electrochemical properties of core-shell Si/SiO nanocomposite as anode material for lithium ion batteries, [J]. Electrochem Commun.2007,7:886
    [103]G. Derien, J. Hassoun, S. Panero, B. Scrosati, Nanostructured Sn-C composite as an advanced anode material in high-performance lithium-ion batteries, [J]. Adv Mater.2007,19:2336-2340
    [104]M. Noh, Y. Kim, M. G. Kim, H. Lee, H. Kim, Y. Kwon, Y. Lee, J. Cho, Monomer-capped tin metal nanoparticles for anode materials in lithium secondary batteries, [J]. Chem. Mater.2005,17:3320-3324
    [105]Y.G. Guo, Y.S. Hu, W. Sigle, J. Maier, Surperior electrode performance of nanostructured mesoporous TiO2 (anatase) through efficient hierarchical mixed conducting networks[J.], Adv. Mater.2007,19:2087-2091
    [106]J. Maier, Mass storage in space charge regions of nano-sized systems (Nano-ionics. Part V), Farady Discuss.,2007,134:51-66
    [1]丘利,胡玉和.X-射线衍射技术及设备[M].北京:冶金工业出版社,1998.
    [2]黄慧忠等.纳米材料分析技术[M].北京:化学工业出版社,2003.
    [3]马礼敦.高等结构分析[M].上海:复旦大学出版社,2001.
    [4]陈国珍,黄智贤,刘文远,分光光度法(上册)[M].北京,1980.
    [5]王培铭,许乾慰.材料研究方法[M].科学出版社.2005
    [6]R.S. Nicholson. Theory and application of cyclic voltammetry for measurement of electrode reaction kinetics [J]. Anal. Chem.,1965,37:1351-1355.
    [7]A.J. Bard, L.R. Faulkner. Electrochemical Methods:fundamentals and applications, 2nd Ed [M]. Wiley J.,2001.
    [8]田昭武.电化学研究方法[M].北京:科学出版社,1984.
    [9]柳厚田,徐品弟等译.电化学中的仪器方法[M].上海:复旦大学出版社,1992.
    [10]查全性.电极过程动力学导论(第三版)[M].北京:科学出版社,2002.
    [11]周伟舫.电化学测量[M].上海:上海科技出版社,1985.
    [12]F. von Zeppelin, M. Haluska, M. Hirscher, Thermal desorption spectroscopy as a quantitative tool to determine the hydrogen content in solids [J]. Therochimica Acta, 2003,404:251-258
    [1]Y.L. Cao, L.F. Xiao, X.P. Ai, H. Z. Yang, Surface-modified graphite as an improved intercalating anode for lithium-ion batteries, [J]. Electrochem. Solid-state Lett.2003,6:A30
    [2]M.W. Verbrugge, B.J. Koch, Composite Titanate-Graphite Negative Electrode for Improved State-of-Charge Estimation of Lithium-Ion Batteries, [J]. J. Electrochem. Soc.,2003, 150:A347
    [3]D. Aurbach, H. Teller, M. Koltypin, E. Levi, On the behavior of different types of graphite anodes, [J].J. Power Sources,2003,119-121
    [4]K. Endo, H.P. Zhang, L.J. Fu, K. Lee, K. Sekine, T. Takamura, Y. U. Jeong, Y.P. Wu, R. Holze, H.Q. Wu, Electrochemical peroformance of a novel surface modified spherical graphite as anode material for lithium ion batteries[J]., J. Appl. Electrochem.,2006,36:1307-1310
    [5]E. Peled, The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems-the solid electrolyte interphase model [J]. J. Electrochem. Soc.,1979,126:2047-2051.
    [6]唐致远,庄新国,碳电极中锂离子扩散系数测定方法的述评[J].,化学通报网络版,1999,8:99088
    [7]A. Funabiki, M. Inaba, Z. Ogumi, A.c. impedance analysis of electrochemical lithium intercalation into highly oriented pyrolytic graphite[J]., J. Power Sources, 1997,68:227-231
    [8]D. Goers, H. Buqa, L. Hardwick, A. Wusig, P. Novak, Raman Spectroscopic and structural studies of heat-treated graphites for lithium-ion batteries, [J]. Ionics,2003, 9:258-265
    [9]G.F Li, H. Li, Y.J. Mo, L.Q. Chen, X.J. Huang, Further identification to the SET film on Ag electrode in lithium batteries by surface enhanced Raman scattering (SERS), [J]. J. Power sources,2002,104:190
    [10]F. Joho, B. Rykart, A. Blome, P. Novak, H. Wilhelm, M E. Spahr, Relation between surface properties, pore structure and first-cycle charge loss of graphite as negative electrode in lithium-ion batteries [J]. J. Power Sources,2001,97-98:78-82
    [11]G. Gachot, S. Grugeon, M. Armand, S. Pilard, P. Guenot, J.M. Tarascon, S. Laruelle, Deciphering the multi-step degration mechanisms of carbonate-based electrolyte in Li batteries, [J]. J. Power Sources,2008,178:409-421
    [12]S. Zhang, M.S. Ding, K. Xu, J. Allen, T.R. Jow, Understanding solid electrolyte interface film formation on graphite electrodes, [J]. Electrochem. Solid-State Lett. 2001,4(12):A206-A208
    [13]E.E. Yair, A new perspective on the formation and structure of the solid electrolyte interface at the graphite anode of Li-Ion cells. [J]. Electrochem. Solid-State Lett.1999,2(5):212-214
    [1]F.Caruso, Nanoengineering of particle surfaces, [J]. Adv. Mater.,2001,13:11
    [2]Z. Yang, D. Choi, S. Kerisit, K. M. Rosso, D. Wang, J. Zhang, G. Graff, J. Liu, Nanostructures and lithium electrochemical reactivity of lithium titanites and lithium oxides:A review, [J]. J. Power Sources,2009,192:588-598
    [3]Q. Cao, H.P. Zhang, G.J. Wang, Q. Xia, Y.P. Wu, H. Q. Wu, A novel carbon-coated LiCoO2 as cathode material for lithium ion battery, [J].2007,9(5):1228-1232
    [4]H. Li, X. Huang, L. Chen, G. Zhou, Z. Zhang, D. Yu, J. Yu, N. Pei, The crystal structural evolution of nano-Si anode caused by lithium insertion and extraction at room temperature, [J]. Solid State Ionics,2000,135:181
    [5]I. Kim, P.N. Kumta, G.E. Blomgren, Si/TiN nanocomposites-Novel anode materials for Li-ion batteries, [J]. Electrochem. Solid-State Lett.,2000,3:493-496
    [6]S. Hwang, H. Lee, S. Jang, S.M. Lee, S.J. Lee, H. Baik, J. Lee, Si/C Composites for High Capacity Lithium Storage Materials, [J]. Electrochem. Solid-State Lett.2001,4: A97
    [7]K.T. Lee, Y.S. Jung, S.M. Oh, Synthesis of tin-encapsulated spherical hollow carbon for anode material in lithium secondary batteries, [J]. J. Am. Chem. Soc.2003,125: 5652
    [8]J. Gao, L.J. Fu, H.P. Zhang, T. Zhang, Y.P. Wu, H.Q. Wu, Suppression of PC decomposition at the surface of graphitic carbon by Cu coating. [J]. Electrochemistry Communications 8 (2006) 1726-1730
    [9]G. Sudant, E. Baudrin, D. Larcher, J. M. Tarascon, Electrochemical lithium reactivity with nanotextured anatase-type TiO2, [J]. J. Mater. Chem.2005,15:1263
    [10]M. Wagemaker, A.P.M. Kentgens, F.M. Mulder, Equilibrium lithium transport between nanocrystalline phases in intercalated TiO2 anatase, [J]. Nature.2002,418: 397-399
    [11]R. van de Krol, A. Goossens, J. Schoonman, Spatial extent of lithium intercalation in Anatase TiO2, [J]. J. Phys. Chem. B,1999,103:7151-7159
    [12]M. Wagemaker, W.J.H. Borghols, F. M. Mulder, Large impact of particle size on insertion reactions. A case for Anatase LixTiO2, [J]. J. Am. Chem. Soc.2007,129: 4323-4327
    [13]Y.P. Wu, X.B. Dai, J.Q. Ma, Y.J. Chen, Lithium ion batteries-Practice and Applications, Chemical Industry Press, Beijing,2004
    [14]F. Joho, B. Rykart, A. Blome, P. Novak, H. Wilhelm, M E. Spahr, Relation between surface properties, pore structure and first-cycle charge loss of graphite as negative electrode in lithium-ion batteries [J]. J. Power Sources,2001,97-98:78-82
    [15]P. Delahay. New Instrumental Methods in Electrochemistry [M]. New York,1954, p119
    [16]T. Zhang, L. Fu, J. Gao, L. Yang, Y.Wu, H. Wu, Core-shell Si/C nanocomposite as anode material for lithium ion batteries, [J]. Pure Appl. Chem.2006,78:1889-1896
    [1]Y.G. Guo, Y.S. Hu, J. Maier, Synthesis of hierarchically mesoporous anatase sphere and their application in lithium batteries, [J]. Chem. Commun.2006,26:2783-2785
    [2]R. Ryoo, S.H. Joo, M. Kruk, M Jaroniec, Ordered mesoporous carbons, [J]. Adv. Mater.2001,13:677-681
    [3]B. Tian, X. Liu, H. Yang, S. Xie, C. Yu, B. Tu, D. Zhao, General Synthesis of Ordered Crystallized Metal Oxide Nanoarrays Replicated by Microwave-Digested Mesoporous Silica, [J]. Adv. Mater.,2003,15:1370
    [4]F. Jiao, J. Bao, A.H. P.G. Bruce, Synthesis of ordered mesoporous Li-Mn-O spinel as a positive electrode for rechargeable lithium batteries, [J]. Angew. Chem. Int. Ed. 2008,47:9711-9716
    [5]J. Luo, Y. Wang, H. Xiong, Y. Xia, Ordered mesoporous spinel LiMn2O4 by a soft-chemical process as a cathode material for lithium-ion batteries, [J]. Chem. Mater. 2007,19:4791-4795
    [6]Y. C. Hsu, Y. T. Hsu, H. Y. Hsu, C. M Yang, Facile synthesis of mesoporous silica SBA-15 with additional inter-particle porosities, [J]. Chem. Mater.2007,19:1120-1126
    [7]D. Zhao, J. Feng, Q. Huo, N. Melosh, G. H. Frerickson, B. F. Chelka, G. D. Stucky, Triblock copolymer sytheses of Mesoporous silica with periodic 50 to 300 Angstrom pores, [J]. Science,1998,279:548-552
    [8]H. Zhou, S. Zhu, M. Hibino, I Honma, M. Ichihara, Lithium Storage in ordered mesopours carbon (CMK-3) with high reversible specific energy capacity and good cycling performance [J]. Adv. Mater.2003,24:2107-2111
    [9]J. Huang, Z. Jiang, The synthesis of hollow spherical LiTi2O12 by macroemulsion method and its application in Li-Ion batteries, [J]. Electrochem. Solid-State Lett. 2008,11(7):A116-A118
    [10]J. Maier, Size effects on mass transport and storage in lithium batteries, [J]. J. Power Sources,2004,174:569-574
    [11]Y. Guo, Y. Hu, W. Sigle, J. Maier, Superior electrode performance of nanostructured mesoporous TiO2 through efficient hierarchical mixed conducting networks, [J]. Adv. Mater.,2007,19:2087-209
    [12]K.C. Manikandan Nair, S. Thomas, G. Groeninckx, Thermal and dynamic mechanical analysis of polystyrene composites reinforced with short sisal fibres, [J]. Compoistes Science and Technology,2001,61:2519-2529
    [13]T. Borodina, D. Grigoriev, H. Mohwald, D. Shchukin, Hydrogen storage materials protected by a polymer shell, [J]. J. Mater. Chem.,2010,20:1452-1456
    [14]A. Botha, C.A. Strydom, DTA and FT-IR anaylsis of the rehydration of basic magnesium carbonate, [J]. J. Therm. Anal.Cal.,2003,71:987-995
    [15]G. Martra, S. Coluccia, L. Marchese, V. Augugliaro, V. Loddo, L. Palmisano, M. Schiavello, The role of H2O in the photcatalytic oxidation of toluene in vapour phase on anatase TiO2 catalyst A FTIR study, [J]. Catalysis Today,1999,53:695-702
    [16]Sadtler commercial spectra IR grating Inorganics, U.K. Sadtler Research Laboratories Inc.,1965,1:249
    [17]G. Q. Liu, Z.G. Jin, X.X. Liu, T. Wang, Z. F. Liu, Anatase TiO2 porous thin films prepared by sol-gel method using CTAB surfactant, [J]. J. Sol-Gel Sci. Technol. 2007,41:49
    [18]G. Sudant, E. Baudrin, D. Larcher, J. M. Tarascon, Electrochemical lithium reactivity with nanotextured anatase-type TiO2, [J]. J. Mater. Chem.,2005,15(12): 1263-1269
    [1]P. Poizot, S. Larueele, S. Grugeon, L. Dupont, J. M. Tarascon, Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries, [J]. Nature, 2000,407:496
    [2]H. Li, G. Richiter, J. Maier, Reversible formation and decomposition of LiF clusters using transition metal fluorides as precursors and their application in rechargeable Li batteries, Adv. Mater.,2003,15:736
    [3]Y. Wang, Z. W. Fu, X.L. Yue, Q.Z. Qin, Electrochemical Reactivity Mechanism of Ni3N with Lithium, [J]. J. Electrochem. Soc.,2004,151:E162-E167
    [4]J. Jamnik, J. Maier, Nanocrystallinity effects in lithium battery materials, Aspects of nano-ionics. Part IV, [J]. Phys. Chem. Chem. Phys.,2003,5:5215
    [5]Y.F. Zhukovskii, P. Balaya, E.A. Kotomin, J. Maier, Evidence for Interfacial-Storage Anomaly in Nanocomposites for Lithium Batteries from First-Principles Simulations, [J]. Phys. Rev. Lett.2006,96:058302-1-4
    [6]E. Bekaert, P. Balaya, S. Murugavel, J. Maier, M. Menetrier,6Li MAS NMR investigation of electrochemical lithiation of RuO2:evidence for an interfacial storage mechanism, [J]. Chem. Mater.2009,21:856-861
    [7]X.Q. Yu, J.P. Sun, K. Tang, H. Li, X.J. Huang, L. Dupont, J. Maier, Reversible lithium storage in LiF/Ti nanocomposites, [J]. Phys. Chem. Chem. Phys.2009,11: 9497-9503
    [8]H. Li, P. Balaya, J. Maier, Li-storage via heterogeneous reaction in selected binary metal fluorides and oxides, [J]. J. Electrochem. Soc.2004,151(11):A1878-A1885
    [9]G. Gachot, S. Grugeon, M. Armand, S. Pilard, P. Guenot, J.M. Tarascon, S. Laruelle, Deciphering the mult-step degradation mechanism of carbon-based electrolyte in Li batteries, [J]. J. Power Source,2008,178:409-421
    [10]Y. Zeng, L. Li, H. Li, X. Huang, L. Chen, TG-MS analysis of thermal decomposable components in the SEI film on Cr2O3 powder anode in Li-ion batteries [J].2009,15: 91-96
    [11]D. Saha, S.G. Deng, Hydrogen adsorption on ordered mesoporous carbons doped with Pd, Pt, Ni and Ru, [J]. Langmuir,2009,25:12550-12560
    [12]O. Loebich, C. Raub, Reactions between some alkali and platinum group metals, [J]. J. Platinum Metals Rev.1981,25:113-120
    [13]O. Delmer, Size and morphology effects on the cell voltage of Li-Batteries:Case study of RuO2, Dissertation,2009, Max Planck Institute for Solid State Research
    [14]Y.Hu, E. Ruckenstein, Highly effective Li2O/Li3N with ultrafast kinetics for H2 storage, [J]. Ind. Eng. Chem. Res.2004,43,2464

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700