锂过量过渡金属氧化物锂离子电池正极材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用氢氧化物共沉淀前驱体高温固相反应制备了层状LixNi1/3Co1/3Mn1/3O2(0.95≤x<1.20)正极材料,应用ICP-OES、AAS对材料进行了成分分析,并采用XRD、晶格精修、SEM、DSC以及充放电测试表征了Li:(Ni+Co+Mn)比对材料结构和性能的影响。结果表明:x≥1.00时,随x值的增大,峰I003/I104的比值R、首次放电比容量及DSC峰值温度均呈现先增后减的趋势,并在x=1.05附近具有极大值;晶格精修表明阳离子混排率呈现先减后增的趋势,在x=1.08附近具有最小混排率。证明了阳离子混排对晶格参数、电性能和热稳定性存在重要影响。
     首次发现Li1+x[Ni0.4Co0.2Mn0.4]O2(x>0)系列材料中的大部分材料具有微波吸收特性。并应用其中的具有极强微波吸收特性的Li1.19Ni0.4Co0.2Mn0.4O2材料作为引发剂,首次成功地应用微波合成方法制备得到了Li1.05Ni1/3Co1/3Mn1/3O2材料。并对其相关性能进行了测试,结果显示微波法合成的Li1.05Ni1/3Co1/3Mn1/3O2材料具有良好的电化学性能和热稳定性能。
     首次成功地应用微波合成法制备了Li1.2+x[Ni0.25Mn0.75]0.8-xO2 (0≤x≤4/55)系列材料,并首次研究了过量Li+效应对Li1.2Ni0.2Mn0.6O2 (x=0)电化学性能的影响。XRD测试表明所合成样品均为a-NaFeO2结构,属R-3m空间群。随着锂含量的增加所得样品的晶格常数呈现线性递减趋势,这说明所得材料是性质均一的固溶体的。这预示着过量的Li+可能已经嵌入到Li1.2Ni0.2Mn0.6O2 (x=0)的过渡金属层中,并随着Ni2+逐渐向Ni3+的转变形成Li1.2+x[Ni0.25Mn0.75]0.8-xO2 (0≤x≤4/55)系列固溶体材料。应用XPS光电子能谱对所得样品进行扫描,发现随着锂含量的增加,Li1.2+x[Ni0.25Mn0.75]0.8-xO2 (0≤x≤4/55)系列材料中开始出现Ni3+并逐渐增多。充放电循环测试显示Li1.2+x[Ni0.25Mn0.75]0.8-xO2 (0≤x≤4/55)系列材料的首次充放电曲线、首次充放电效率以及循环性能都各不相同。Li1.2Ni0.2Mn0.6O2 (x=0)在2.0~4.8V电压范围内循环,首次放电比容量为219mAh/g,随着锂含量x的增大,首次放电比容量逐渐减低,但材料的循环性能得到了显著地提高。
The layered cathode material of LixNi1/3Co1/3Mn1/3O2 (0.95≤x<1.20) has been prepared by using the co-precipitated (Ni1/3Co1/3Mn1/3)(OH)2 and Li2CO3 through solid reaction, ICP-OES and AAS were applied to analyze their compositions; XRD, Rietveld refinement, SEM, DSC and charge-discharge test were employed to characterize LixNi1/3Co1/3Mn1/3O2’s structure and performances. The results show that the ratio of I003/I104, the first discharge capacity and the highest peak temperature of DSC curves were all increasing first and then decreasing when 1.00≤x<1.20 and got their maximal value around x=1.05. Rietveld refinement shows that the ratio of cation mixing decreased firstly and then increased as 1.00≤x<1.20, and possessed the minimal value around x=1.08. Therefore, the cation mixing is a key factor which will affect the electrochemical performance, crystal cell parameter and thermal stability of the LixNi1/3Co1/3Mn1/3O2 cathode material.
     Most of Li1+x[Ni0.4Co0.2Mn0.4]O2(x>0)materials have firstly been found could absorb microwave. Thus, Li1.05Ni1/3Co1/3Mn1/3O2 was firstly prepared by a new simple microwave heating method using Li1.19Ni0.4Co0.2Mn0.4O2 as microwave absorber. The sample has excellent electrochemical properties and thermal stability.
     Li1.2+x[Ni0.25Mn0.75]0.8-xO2 (0≤x≤4/55) was firstly prepared by a new simple microwave heating method and the effect of extra Li+ content on electrochemistry of Li1.2Ni0.2Mn0.6O2 (x=0) was firstly revealed. X-ray diffraction identified that they had layered a-NaFeO2 structure (space group R-3m). Linear variation of lattice constant as a function of x value supported the formation of solid solution, that is, extra Li+ is possibly incorporated in structure of layered Li1.2Ni0.2Mn0.6O2 (x=0), accompanying oxidization of Ni2+to Ni3+ to form Li1.2+x[Ni0.25Mn0.75]0.8-xO2 (0≤x≤4/55). This was confirmed by X-ray photoelectron spectroscopy that Ni3+ appeared and increased in content with increasing x value. Charge-discharge tests showed that Li1.2+x[Ni0.25Mn0.75]0.8-xO2 (0≤x≤4/55) truly displayed different electrochemical properties (different initial charge-discharge plots, capacities and cycleability). Li1.2Ni0.2Mn0.6O2 (x=0) in this work delivered the highest discharge capacity of 219mAh/g between 4.8 and 2.0 V. Increasing Li content (x value in Li1.2+x[Ni0.25Mn0.75]0.8-xO2 reduced charge-discharge capacities, but significantly enhancing cycleability.
引文
[1]吴宇平,戴晓兵,马军,锂离子电池——应用于实践,北京:化学工业出版社,2004.1~81
    [2]M. S. Whittingham, Electrical energy storage and intercalation chemistry, Science, 1976, 192(4244):1126~1127
    [3]K. Mizushima, P. C. Jones, J. B. Goodenough, et al, LixCoO2 (0    [4]D. W. Murphy, F. J. Disalvo, J. N. Carides, et al, Topochemical reactions of rutile realated structures with lithium, Materials Research Bulletin, 1978, 13:1395~1402
    [5]M. Lazzart, B. Scrosati, A cyclable lithium organic electrolyte cell based on two intercalation electrodes, Journal of the Electrochemical Society, 1980, 127:733~774
    [6]M. Mohri, N. Yanagisawa, Y. Tajima, Rechargeable lithium battery based on pyrolytic carbon as a negative electrode, Journal of Power Sources, 1989, 26:545~551
    [7]郭炳焜,徐徽,王先友等,锂离子电池,长沙:中南大学出版社,2003.3~66
    [8]T. Nagaura, K. Tozawa, Lithium ion rechargeable battery, Prog. Batteries Solar Cells, 1990, 9:209
    [9]吴宇平,万春荣,姜长印,锂离子二次电池,北京:化学工业出版社,2002.8~100
    [10]苏力宏,乔生儒,肖军等,锂离子电池的发展趋势,电源技术应用,2004,7(2):110~113
    [11] Y. Nishi, The development of lithium ion secondary batteries, The Chemical Record, 2001, 1:406~413
    [12]张勇,胡信国,张翠芬,新型化学电源的电极反应原理,电池工业,2004,9(1):33~36
    [13]李平,浅谈锂离子电池的结构和特性,电池新技术专集,2003,3:7~8
    [14]J. M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries, Nature, 2001, 414(6861):359~367
    [15]王海明,郑绳楦,刘兴顺,锂离子电池的特点及应用,电气时代,2004,3:132~134
    [16]R. Hitchcock, Explanation of common battery technologies seen in the computer industry, Batteries, 2007,
    [17]I. Buchmann, Batteries in a portable world-a handbook on rechargeable batteries for nono-engineers, 2nd Edition ed, Cadex Electronics Inc, 2001, p300
    [18]刘彦龙,中国电池产业发展现状,第28届全国化学与物理电源学术年会大会报告,广州:中国化学与物理电源行业协会等,2009
    [19]唐致远,刘春艳,徐国祥,锂离子电池的产品现状及其发展前景,河北化工,2001,1:6~7
    [20]汪继强,新型锂离子电池发展、应用现状及前景展望,电子元器件应用,2001,1:2~6
    [21]汪继强,锂离子蓄电池技术进展及市场前景,电源技术,1996,20(4):147~151
    [22]汪继强,我国锂电池发展回顾与展望,第28届全国化学与物理电源学术年会大会报告,广州:中国化学与物理电源行业协会等,2009
    [23]杨裕生,评奥巴马的下一代电池和电动车计划,第28届全国化学与物理电源学术年会大会报告,广州:中国化学与物理电源行业协会等,2009
    [24]颜剑,苏玉长,苏继桃等,锂离子电池负极材料的研究进展,电池工业,2006,11(4):277~281
    [25]马荣骏,锂离子电池负极材料的研究及应用进展,有色金属,2008,60(2):38~45
    [26]刘涛,杜荣斌,孔学军,锂离子二次电池非碳负极材料的研究进展,稀有金属与硬质合金,2009,37(3):59~64
    [27]N. Imanishi, H. Kashiwagi, T. Ichikawa, et al, Charge-discharge characteristics of Mesophase-Pitch-based carbon-fibers for lithium cells, Journal of the Electrochemical Society, 1993, 140(2):315~320
    [28]M. Endo, Y. Nishimura, T. Takahashi, et al, Lithium storage behavior for various kinds of carbon anodes in li ion secondary battery, Journal of Physics and Chemistry of Solids, 1996, 57(6-8):725~728
    [29]S. K. Woo, K. Chung, B. L. Chae, et al, Studies on heat treated MPCF anodes in Li ion batteries, Microchemical Journal, 2002, 72:185~192
    [30]Y. X. Wang, N. Shinichiro, U. Makoto, et al, Theoretical studies to understand surface chemistry on carbon anodes for lithium-ion batteries reduction mechanisms of ethylene carbonate, Journal of the American Chemical Society, 2002, 124(16):4408~4421
    [31]S. S. Zhang, T. R. Jow, K. Amine, et al, LiPF6-EC-EMC electrolyte for Li-ion battery, Journal of Power Sources, 2002, 107(1):18~23
    [32]T. Ohzuku, Y. Iwakoshi, K. Sawai, Formation of lithium-graphite intercalation compounds innonaqueous electrolytes and their application as a negative electrode for a lithium ion (shuttlecock) cell, Journal of the Electrochemical Society, 1993, 140(8):2490~2496
    [33]T. Zheng, J. N. Reimers, J. R. Dahn, Effect of turbostratic disorder in graphitic carbon hosts on the intercalation of lithium, Physical Review B, 1995, 51(2):734~741
    [34]C. Menachem, E. Peled, L. Burstein, Characterization of modified NG7 graphite as an improved anode for lithium-ion batteries, Journal of Power Sources, 1997, 68(2):277~282
    [35]J. R. Dahn, Phase diagram of LixC6, Physical Review B, 1991, 44(17):9170~9177
    [36]D. Aurbach, Y. Ein-Eli, O. Chusid, et al, The correlation between the surface chemistry and the performance of Li-carbon anodes for rechargeable“Rocking Chair”type batteries, Journal of the Electrochemical Society, 1994, 141:603~610
    [37]M. Winter, J. O. Besenhard, P. Novak, et al, Insertion electrode materials for rechargeable lithium batteries, Advanced Materials,1998, 10:725~763
    [38]I. Roman, N. Petr, In situ investigation of the electrochemical redunction of carbonate electrolyte solutions at graphite electrodes, Journal of the Electrochemical Society, 1998, 145(4):1081~1087
    [39]Y. P. Wu, R. Holze, Anode materials for lithium ion batteries obtained by mild and uniformly controlled oxidation of natural graphite, Journal of Solid State Electrochemistry, 2003, 8(1):73~78
    [40]王钊,磷酚醛树脂包覆球形天然石墨作为锂离子电池负极材料:[硕士学位论文],吉林;东北师范大学,2009
    [41]H. H. Zheng, Y. B. Fu, H. C. Zhang, et al, Potassium salts, Electrochemical and Solid-State Letters, 2006, 9(3):A115~A119
    [42]V. Basker, D. Anand, H. Bala, et al, Study of Sn-coated graphite as anode material for secondary lithium-ion batteries, Journal of the Electrochemical Society, 2002, 149(6):A675~A681
    [43]D. Aurbach, B. Markovsky, A. Nimberger, et al, Electrochemical li-insertion processes into carbons produced by milling graphitic powders: the impact of the carbons’surface chemistry, Journal of the Electrochemical Society, 2002, 149(2):A152~A161
    [44]R. Holze, Y. P. Wu, Novel composite anode materials for lithium ion batteries with low sensitivity towards humidity, Journal of the Electrochemical Society, 2003, 8(1):66~72
    [45]S. Flandrois, B. Simom, Carbon materials for lithium-ion rechargeable batteries, Carbon, 1999, 37(2):165~180
    [46]K. Sato, M. Noguchi, A. Demachi, N. Oki, et al, Amechanism of lithium storage in disordered carbons, Science, 1994, 264(5158):556~558
    [47]Gauthier, Michel, Surface modified redox compounds and composite electrode obtain them, Canada Patent, 2506104, 2006-06-11
    [48]I. Shigeo, O. Tsumoru, Electrode for lithium ion secondary batteries, lithium ion secondary battery using thesame, and method for manufacturing the battery, US Patent, 20070072083, 2007-03-29
    [49]W. J. Weydanz, B. M. Way, T. V. Buoren, et al, Bechavior of nitrogen-substituted carbon (N2C1-2)I n Li/Li(N2C1-2)6 cell, Journal of the Electrochemical Society, 1994, 141(5):900~907
    [50]J. S. Xue, J. R. Dahn, An epoxy-silane approach to prepare anode materials for rechargeable LIB, Journal of the Electrochemical Society, 1995, 142(9):2927~2935
    [51]T. Shodai, Y. Sakurai, T. Suzuk, Electrochemical study of Li4Ti5O12 as negative electrode for Li-ion polymer rechargeable batteries, Solid State Ionics, 2005, 128(3):85~88
    [52]叶静雅,锂离子电池负极材料Li4Ti5O12的固相合成和电化学性能研究:[硕士学位论文],浙江;浙江大学,2008
    [53]Y. Takeda, J. Yang, Electrochemical impedance spectroscopy study of SnO and nano-SnO anodes in lithium rechargeable batteries, Journal of Power Sources, 2001, 97~98(2):244~249
    [54]J. Yang, Y. Takeda, N. Imanishi, et al, Dispersion of Sn and SnO on carbon anodes, Electrochimica Acta, 2007, 52(6):2659~2663
    [55]I. W. Grey, P. Bordet, C. Li, et al, Phase stability and non-stoichiometry in M-phase solid solutions in the system LiO0.5-Nb2.5-TiO2, Journal of Solid State Electrochemistry, 2004, 177(3):660~669
    [56]P. Poizot, S. Laruelle, S. Grugeon, et al, Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries, Nature, 2000, 407:496~499
    [57]Y. N. Zhou, H. Zhang, M. Z. Xue, The electrochemistry of nano-structured In2O3 with lithium, Journal of Power Sources, 2006, 162(2):1373~1378
    [58]J. Hu, H. Li, X. J. Huang, et al, Improve the electrochemical performances of Cr2O3 anode for lithium ion batteries, Solid State Ionics, 2006, 177(26~32):2791~2799
    [59]T. S. Kang, W. S. Chae, K. J. Kim, Nano structured tin for use as a negative electrode material inli-ion batteries, Journal of the Electrochemical Society, 2005, 152(1):67~71
    [60]Z. Peng, Z. Shi, M. Liu, A novel tin-based nanocomposite oxide as negative-electrode materials for Li-ion batteries, Chemical Communications, 2006, 27(6):2125~2129
    [61]D. Larcher, G. Sudant, J. B. Lerche, et al, On the aggregation of TiO2 composite galsses caused by the reversible reaction with Lithium, Journal of the Electrochemical Society, 2006, 153(1):234~238
    [62]G. Zhang, K. L. Huang, S. Q. Liu, et al, Comparison of the electrochemical performance of mesoscopic Cu2Sb, SnSb and Sn/Sb alloy powders, Journal of Alloys and Compounds, 2006, 426(1~2):432~437
    [63]M. Winter, J. O. Besenhard, Electrochemical lithiation of tin and tin-based intermetallics and composites, Electrochimica Acta, 1999, 45(1~2):31~50
    [64]P. J. Zuo, G. Yin, J. Zhao, et al, Electrochemical reaction of the SiMn/C composite for anode in lithium ion batteries, Electrochimica Acta, 2006, 52(4):1527~1531
    [65]Q. Y. Li, S. J. Hu, H. Q. Wang, et al, Study of copper foam-supported Sn thin film as a high-capacity anode for lithium-ion batteries, Electrochimica Acta, 2009, 54(24):5884~5888
    [66]J. H. Ahn, Y. J. Kim, G. X. Wang, Electrochemical properties of SnO2 nanowires prepared by a simple heat treatment of Sn-Ag alloys, Journal of Alloys and Compounds, 2009, 483(1~2):422~424
    [67]L. Zou, L. Gan, F. Y. Kang, et al, Sn/C non-woven film prepared by electrospinning as anode materials for lithium ion batteries, Journal of Power Sources, 2010, 195(4):1216~1220
    [68]J. Hassoun, A. Fernicola, M.A. Navarra, et al, An advanced lithium-ion battery based on a nanostructured Sn-C anode and an electrochemically stable LiTFSi-Py24TFSI ionic liquid electrolyte, Journal of Power Sources, 2010, 195(2):574~579
    [69]H. Konno, T. Kasashima, K. Azumi, Application of Si-C-O glass-like compounds as negative electrode materials for lithium hybrid capacitors, Journal of Power Sources, 2009, 191(2):623~627
    [70]K. M. Lee, Y. S. Lee, Y. W. Kim, et al, Electrochemical characterization of Ti-Si and Ti-Si-Al alloy anodes for Li-ion batteries produced by mechanical ball milling, Journal of Alloys and Compounds, 2009, 472(1~2):461~465
    [71]N. Ding, J. Xu, Y. X. Yao, et al, Improvement of cyclability of Si as anode for Li-ion batteries, Journal of Power Sources, 2009, 192(2):644~651
    [72]Z. B. Sun, X. D. Wang, X. P. Li, et al, Electrochemical properties of melt-spun Al-Si-Mn alloy anodes for lithium-ion batteries, Journal of Power Sources, 2008, 182(1):353~358
    [73]吴大勇,刘昌炎,锂离子电池隔膜研究进展,新材料产业,2006,9:48~53
    [74]崔振宇,聚偏氟乙烯多孔膜结构及其聚合物锂离子电池隔膜的性能:[博士学位论文],浙江;浙江大学,2008
    [75]S. L. Li, X. P. Ai, H. X. Yang, et al, A polytriphenylamine-modified separator with reversible overcharge protection for 3.6V-class lithium-ion battery, Journal of Power Sources, 2009, 189(1):771~774
    [76]J. Y. Kim, Y. Lee, D. Y. Lim, Plasma-modified polyethylene membrane as a separator for lithium-ion polymer battery, Electrochimica. Acta, 2009, 54(14):3714~3719
    [77]D. Djian, F. Alloin, S. Martinet, et al, Macroporous poly(vinylidene fluoride) membrane as a separator for lithium-ion batteries with high charge rate capacity, Journal of Power Sources, 2009, 187(2):575~580
    [78]J. Y. Sohn, J. S. Im, S. J. Gwon, et al, Preparation and characterization of a PVDF-HFP/PEGDMA-coated PE separator for lithium-ion polymer battery by electron beam irradiation, Radiation Physics and Chemistry, 2009, 78(7~8):505~508
    [79]J. Y. Lee, Y. M. Lee, B. Bhattacharya, et al, Separator grafted with siloxane by electron beam irradiation for lithium secondary batteries, Electrochimica Acta, 2009, 54(18):4312~4315
    [80]J. Y. Lee, B. Bhattacharya, Y. C. Nho, et al, New separator prepared by electron beam irradiation for high voltage lithium secondary batteries, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2009, 267(14):2390~2394
    [81]任小龙,刘渝洁,冯勇刚等,电池隔膜制造方法研究进展,绝缘材料,2007,40(6):36~38
    [82]T. H. Cho, M. Anaka, H. Onishi, et al, Battery performances and thermal stability of polyaerylonitrile nano-fiber-based nonwoven separators for Li-ion battery, Journal of Power Sources, 2008, 181(1):155~160
    [83]G. Cheruvally, J. K. Kim, J. W. Choi, et al, Electrospun polymer membrane activated with room temperature ionic liquid:Novel polymer electrolytes for lithium batteries, Journal of Power Sources, 2007, 172(2):863~869
    [84]D. Bansal, B. Meyer, M. Salomon, Gelled membranes for Li and Li-ion batteries prepared by electrospinning, Journal of Power Sources, 2008, 178(2):848~851
    [85]K. Xu, Nonaqueous liquid electrolytes for lithium-based rechargeable batteries, Chemical Reviews, 2004, 104(10):4303~4417
    [86]胡伟跃,锂离子电池非水电解液的行为研究:[博士学位论文],湖南;中南大学,2005
    [87]M. S. Ding, Liquid phase boundaries, dielectric constant, and viscosity of PC-DEC and PC-EC binary carbonates, Journal of the Electrochemical Society, 2003, 150(4):A455~A462
    [88]Z. K. Liu, Thermodynamic modeling of organic carbonates for lithium batteries, Journal of the Electrochemical Society, 2003, 150(3):A359~A365
    [89]K. Hayashi, Y. Nemoto, S. Tobishima, et al, Mixed solvent electrolyte for high voltage lithium metal secondary cells, Electrochimica Acta, 1999, 44(14):2337~2344
    [90]J. S. Gnanaraj, E. Zinigrad, M. D. Levi, et al, A comparison among LiPF6, LiPF3(CF2CF3)3(LiFAP), and LiN(SO2CF2CF3)2(LiBETI) solutions: electrochemical and thermal studies, Journal of Power Sources, 2003, 119~121:799~804
    [91]H. J. Gores, JMG. Barthel, Non-aqueous electrolyte solutions: New materials for devices and process based on recent applied researched, Pure and Applied Chemistry, 1999, 67(6):919~924
    [92]U. Makoto, I. Kazuhiko,M. Shichiro, et al, Electrochemical properties of organic liquid electrolytes based on quaternary onium salts for electrical double-layer capacitors, Journal of the Electrochemical Society, 1994, 141(11):2989~2996
    [93]George E. Blomgren, Electrolytes for advanced batteries, Journal of Power Sources, 1999, 81~82:112~118
    [94]J. M. Tarascon, D. Guyoard, New electrolyte compositions stable over the 0 to 5V voltage range and compatible with the Li1+xMn2O4/carbon Li-ion cells, Solid State Ionics, 1994, 69(3~4):293~305
    [95]J. T. Dudley, D. P. Wilkinson, G. Tohoms, et al, Conductivity of electrolytes for rechargeable lithium batteries, Journal of Power Sources, 1991, 35(1):59~82
    [96]M. Ue, S. Mori, Mobility and ionic association of lithium-salts in a Propylene Carbonate-Ethyl Methyl Carbonate Mixed-Solvent, Journal of the Electrochemical Society, 1995, 142(8):2577~2581
    [97]M. Ue, Mobility and ionic association of lithium and quaternary Ammoniu-Salts in Propylene Carbonate and Gamma-Butyrolactone, Journal of the Electrochemical Society, 1994, 141(12):3336~3342
    [98]K. J. Feng, X. P. Ai, Y. L. Cao, et al, Possible use of non-flammable phosphonate ethers as pure electrolyte solvent for lithium batteries, Journal of Power Sources, 2008, 177(1):194~198
    [99]R. Holomb, W. Xu, H. Markusson, et al, Vibrational spectroscopy and ab initio studies of lithium bis(oxalato) borate (LiBOB) in different solvents, Journal of Physical Chemistry A, 2006, 110(40):11467~11472
    [100]H. W. Pu, X. M. Wang, C. R. Wan, et al, LiBOB-based electrolyte for lithium batteries, Progress in Chemistry, 2006, 18(12):1703~1709
    [101]许杰,王周成,杨勇,锂蓄电池有机电解液添加剂研究进展,电源技术,2008,32(11):800~803
    [102]Y. S. Chen, C. C. Hu, Y. Y. Li, The importance of heat evolution during the overcharge process and the protection mechanism of electrolyte additives for prismatic lithium ion batteries, Journal of Power Sources, 2008, 181(1):69~73
    [103]Z. X. Zhang, H. Y. Zhou, L. Yang, et al, Asymmetrical dicationic ionic liquids based on both imidazolium and aliphatic ammonium as potential electrolyte additives applied to lithium secondary batteries, Electrochimica Acta, 2008, 53(14):4833~4838
    [104]S. L. Li, X. P. Ai, J. K. Feng, et al, Diphenylamine: A safety electrolyte additive for reversible overcharge protection of 3.6 V-class lithium ion batteries, Journal of Power Sources, 2008, 184(2):553~556
    [105]L. F. Li, B. Xie, H. S. Lee, et al, Studies on the enhancement of solid electrolyte interphase formation on graphitized anodes in LiX-carbonate based electrolytes using Lewis acid additives for lithium-ion batteries, Journal of Power Sources, 2009, 189(1):539~542
    [106]B. Wang, Q. T. Qu, L. C. Yang, et al, 2-Phenylimidazole as an additive to prevent the co-intercalation of propylene carbonate in organic electrolyte for lithium-ion batteries, Journal of Power Sources, 2009, 189(1):757~760
    [107]L. F. Li, H. S. Lee, H. Li, et al, A pentafluorophenylboron oxalate additive in non-aqueous electrolytes for lithium batteries, Electrochemistry Communications, 2009, 11(12):2296~2299
    [108]S. Y. Chen, Z. X. Wang, H. L. Zhao, et al, A novel flame retardant and film-forming electrolyte additive for lithium ion batteries, Journal of Power Sources, 2009, 187(1):229~232
    [109]J. K. Feng, Y. L. Cao, X. P. Ai, et al, Tri-(4-methoxythphenyl) phosphate: A new electrolyte additive with both fire-retardancy and overcharge protection for Li-ion batteries, Electrochimica Acta, 2008, 53(28):8265~8268
    [110]E. G Shim, T. H. Nam, J. G. Kim, Diphenyloctyl phosphate as a flame-retardant additive in electrolyte for Li-ion batteries, Journal of Power Sources, 2008, 175(1):533~539
    [111]H. S. Lee, X. Sun, X. Q. Yang, Synthesis of cyclic azaether compounds and studies of their use as anion receptors in nona-queous lithium halide salts solution, Journal of the Electrochemical Society, 2000, 147(1):9~14
    [112]J. H. Shin, P. Basak, J. B. Kerr, et al, Rechargeable Li/LiFePO4 cells using N-methyl-N-butyl pyrrolidinium bis(trifluoromethane sulfonyl)imide–LiTFSI electrolyte incorporating polymer additives, Electrochimica Acta, 2008, 54(2):410~414
    [113]L. Wang, D. Ofer, W. Bowden, et al, Stability of lithium ion spinel cells, Journal of the Electrochemical Society, 2000, 147(11):4023~4028
    [114]K. Abe, K. Miyoshi, T. Hattori, et al, Functional electrolytes: Synergetic effect of electrolyte additives for lithium-ion battery, Journal of Power Sources, 2008, 184(2):449~455
    [115]施志聪,杨勇,聚阴离子型锂离子电池正极材料研究进展,化学进展,2005,17(4):604~613
    [116]A. K. Padhi, K. S. Nanjundaswamy, J. B. Goodenough, et al, Phospho-olivines as positive-electrode materials for rechargeable lithium batteries, Journal of the Electrochemical Society, 1997, 144(4):1188~1194
    [117]K. S. Nanjundaswamy, A. K. Padhi, J. B. Goodenough, Synthesis redox potential evaluation and electrochemical characteristics of NASICON-related-3D framework compounds, Solid State Ionics, 1996, 92(1~2):1~10
    [118]A. K. Padhi, K. S. Nanjundaswamy, C. Masquelier, et al, Effect of structure on the Fe3+/Fe2+ redox couple in iron phosphate, Journal of the Electrochemical Society, 1997, 144(5):1609~1613
    [119]A. K. Padhi, K. S. Nanjundaswamy, C. Masquelier, et al, Mapping of transition metal redox energies in phosphates with NASICON structure by lithium intercalation, Journal of the Electrochemical Society, 1997, 144(8):2581~2586
    [120]A. Yamada, S. C. Chung, K. Hinokuma, Optimized LiFePO4 for lithium battery cathodes, Journal of the Electrochemical Society, 2001, 148(3):A224~A229
    [121]S. Y. Chung, J. T. Bloking, Y. M. Chiang, Electronically conductive phosphor-olivines as lithium storage electrodes, Nature Materials, 2002, 1(2):123~128
    [122]K. Rissouli, K. Benkhouja, J. R. Ramos-Barrado, et al, Electrical conductivity in lithium orthophosphates, Materials Science and Engineering B, 2003, 98(3):185~189
    [123]F. Badway, F. Cosandey, N. Pereira, et al, Carbon metal fluoride nanocomposites-High-capacity reversible metal fluoride conversion materials as rechargeable positive electrodes for Li batteries, Journal of the Electrochemical Society, 2003, 150(10):A1318~A1327
    [124]H. Kawaia, M. Nagatab, H. Kageyamac, et al, 5V lithium cathodes based on spinel solid solutions Li2Co1+xMn3-xO8:-1≤x≤1, Electrochimica Acta, 1999, 45(1~2):315~327
    [125]O. Garcia-Moreno, M. Alvarez-Vega, F. Garcia-Alvarado, et al, Influence of the structure on the electrochemical performance of lithium transition metal phosphates as cathodic materials in rechargeable lithium batteries: A new high-pressure form of LiMPO4 (M=Fe and Ni), Chemistry of Materials, 2001, 13(5):1570~1576
    [126]K. Amine, H. Yasuda, M. Yamachi, Olivine LiCoPO4 as 4.8 V electrode material for lithium batteries, Electrochemical and Solid-State Letters, 2000, 3(4):178~179
    [127]S. Patoux, C. Wurm, M. Morcrette, et al, A comparative structural and electrochemical study of monoclinic Li3Fe2(PO4)3 and Li3V2(PO4)3, Journal of Power Sources, 2003, 119:278~284
    [128]M. Y. Saidi, J. Barker, N. Huang, et al, Performance characteristics of lithium vanadium phosphate as a cathode material for lithium-ion batteries, 2003, 119:266~272
    [129]D. Morgan, G. Ceder, M. Y. Saidi, et al, Experimental and computational study of the structure and electrochemical properties of monoclinic LixM2(PO4)3 compounds, Journal of Power Sources, 2003, 119:755~759
    [130]B. A. Azmi, T. Ishihara, H. Nishiguchi, et al, Vanadyl phosphates Of VOPO4 as a cathode of Li-ion rechargeable batteries, 2003, 119:273~277
    [131]S. Patoux, C. Masquelier, Lithium insertion into titanium phosphates, silicates, and sulfates, Chemistry of Materials, 2002, 14(12):5057~5068
    [132]S. Patoux, C. Masquelier, Chemical and electrochemical insertion of lithium into two allotropic varieties of NbPO5, Chemistry of Materials, 2002, 14(5):2334~2341
    [133]M. Manickam, K. Minato, M. Takataz, Lithium insertion into NASICON frameworks, Journal of the Electrochemical Society, 2003, 150(8):A1085~A1089
    [134]M. Manickam, Lithium-free transition metal phosphate cathode for Li secondary batteries, Journal of Power Sources, 2003, 113(1):179~183
    [135]C. Wurm, M. Morcrette, G. Rousse, et al, Lithium insertion/extraction into/from LiMX2O7 compositions (M = Fe, V; X = P, As) prepared via a solution method, Chemistry of Materials, 2002, 14(6):2701~2710
    [136]Y. Uebou, S. Okada, J. Yamaki, Electrochemical insertion of lithium and sodium into (MoO2)2P2O7, Journal of Power Sources, 2003, 115(1):119~124
    [137]S. Okada, S. Sawa, Y. Uebou, et al, Charge-discharge mechanism of LiCoPO4 cathode for rechargeable lithium batteries, Electrochemistry, 2003, 71(12):1136~1138
    [138]A. Yamada, M. Hosoya, S. C. Chung, Olivine-type cathodes achievements and problems, Journal of Power Sources, 2003, 119:232~238
    [139]A. S. Andersson, J. O. Thomas, B. Kalska, et al, Thermal stability of LiFePO4-based cathodes, Electrochemical and Solid-State Letters, 2000, 3(2):66~68
    [140]M. Takahashi, S. Tobishima, K. Takei, et al, Reaction behavior of LiFePO4 as a cathode material for rechargeable lithium batteries, Solid State Ionics, 2002, 148(3~4):283~289
    [141]N. Iltchev, Y. K. Chen, S. Okada, et al, LiFePO4 storage at room and elevated temperatures, Journal of Power Sources, 2003, 119:749~754
    [142]A. S. Andersson, B. Kalska, L. Haggstrom, et al, Lithium extraction/insertion in LiFePO4: an X-ray diffraction and Mossbauer spectroscopy study, Solid State Ionics, 2001, 130(1~2):41~52
    [143]G. Arnold, J. Garche, R. Hemmer, et al, Fine-particle lithium iron phosphate LiFePO4 synthesized by a new low-cost aqueous precipitation technique, Journal of Power Sources, 2003, 119:247~251
    [144]H. Huang, S. C. Yin, L. F. Nazar, Approaching theoretical capacity of at room temperature at high rates, Electrochemical and Solid-State Letters, 2001, 4(10):A107~A172
    [145]S. Y. Chung, J. T. Bloking, Y. M. Chiang, From our readers - On the electronic conductivity of phosphoolivines as lithium storage electrodes - Reply, Nature Materials, 2003, 2(11):702~703
    [146]S. Y. Chung, I. D. Kim, S. G. L. Kang, Strong nonlinear current-voltage behaviour in perovskite-derivative calcium copper titanate, Nature Materials, 200, 4(11):774~778
    [147]M. Takahashi, S. Tobishima, K. Takei, et al, Characterization of LiFePO4 as the cathode material for rechargeable lithium batteries, Journal of Power Sources, 2001, 97~98:508~511
    [148]F. Gao, Z. Y. Tang, H. J. Xue, Preparation and characterization of nao-particle LiFePO4 and LiFePO4/C by spray-drying and post-annealing method, Electrochimica Acta, 2007, 53(4):1939~1944
    [149]S. Y. Lim, C. S. Yoon, J. P. Cho, Synthesis of nanowire and hollow LiFePO4 cathode for high-performance lithium batteries, Chemistry of Material, 2008, 20(14):4560~4564
    [150]B. Kang, G. Ceder, Battery materials for ultrafast charging and discharging, Nature, 2009, 458(7235):190~193
    [151]S. Okada, S. Sawa, M. Egashira, et al, Cathode properties of phoshpo-olivien for lithium secondary batteries, Journal of Power Sources, 2001, 97~98:430~432
    [152]H. G. Li, H. Azuma, M. Tohda, LiMnPO4 as the cathode for lithium batteries, 2002, Electrochemical and Solid-State Letters, 2002, 5(6):A135~A137
    [153]A. Yamada, Y. Takei, H. Koizumi, et al, Electrochemical, magnetic, and structural investigation of the Lix(MnyFe1-y)PO4 olivine phases, Chemistry of Materials, 2006, 18:804~813
    [154]T. Nakamura, K. Sakumoto, S. Seki, et al, Apparent diffusion constant and electrochemical reaction in LiFe1-xMnxPO4 olivine cathodes, Journal of the Electrochemical Society, 2007, 154:A1118~A1123
    [155]S. Tomoyuki, O. Shigeto, D. Takayuki, et al, Cathodic performance of LiMn1-xMxPO4 (M = Ti, Mg and Zr) annealed in an inert atmosphere, Electrochimica Acta, 2009, 54(11):3145~3151
    [156]Y. R. Wang, Y. F. Yang, Y. B. Yang, et al, Enhanced electrochemical performance of unique morphological LiMnPO4/C cathode material prepared by solvothermal method, Solid State Communications, 2010, 150(1~2):81~85
    [157]T. N. L. Doan, Z. Bakenov, I. Taniguchi, Preparation of carbon coated LiMnPO4 powders by a combination of spray pyrolysis with dry ball-milling followed by heat treatment, Advanced Powder Technology, In Press, Uncorrected Proof, Available online 5 December 2009
    [158]D. Wang, H. Buqa, M. Crouzet, High-performance, nano-structured LiMnPO4 synthesized via a polyol method, Journal of Power Sources, 2009, 189(1):624~628
    [159]K. Amine, H. Yasuda, M. Yamachi, Olivine LiMePO4 (Me: Co, Cu) as 4.8V and 2V positive electrodes materials for lithium batteries, Lithium Batteries, Proceedings: Electrochemical Society Series, 2000, 99(25):311~325
    [160]J. Wolfenstine, J. Allen, Ni3+/Ni2+ redox potential in LiNiPO4, Journal of Power Sources, 2005, 142(1~2):389~390
    [161]J. Wolfenstine, J. Read, J. L. Allen, Effect of carbon on the electronic conductivity and discharge capacity LiCoPO4, Journal of Power Sources, 2007, 163(2):1070~1073
    [162]D. W. Han, Y. M. Kang, R. Z. Yin, et al, Effects of Fe doping on the electrochemical performance of LiCoPO4/C composites for high power-density cathode materials, Electrochemistry Communications, 2009, 11(1):137~140
    [163]H. H. Li, J. Jin, J. P. Wei, et al, Fast synthesis of core-shell LiCoPO4/C nanocomposite via microwave heating and its electrochemical Li intercalation performances, Electrochemistry Communications, 2009, 11(1):95~98
    [164]A. Eyten, A. Abouimrane, M. Armand, et al, Electrochemical performance of Li2FeSiO4 as a new Li-battery cathode material, Electrochemistry Communications, 2005, 7(2):156~160
    [165]P. Larsson, R. Ahuia, A. Eyten, et al, An ab initio study of the Li-ion battery cathode material Li2FeSiO4, Electrochemistry Communications, 2006, 8(5):797~800
    [166]A. Eyten, S. Kamali, L. Haggstrom, et al, The lithium exatraction/insertion mechanism in Li2FeSiO4, Journal of Materials Chemistry, 2006, 16(23):2266~2272
    [167]A. Eyten, M. Stjerndahl, H. Rensmo, et al, Surface characterization and stability phenomena in Li2FeSiO4 studied by PEX/XPS, Journal of Materials Chemistry, 2006, 16(34):3483~3488
    [168]R. Dominko, D. E. Conte, D. Hanzel, et al, Impact of synthesis conditions on the structure and performance of Li2FeSiO4, Journal of Power Sources, 2008, 178(2):842~847
    [169]Z. L. Gong, Y. X. Li, G. N. He, et al, Nanostructured Li2FeSiO4 electrode material synthesized through hydrothermal-assisted sol-gel process, Electrochemical and Solid-State Letters, 2008, 178(2):842~847
    [170]R. Dominko, M. Bele, M. Gaberscek, et al, Structure and electrochemical performance of Li2MnSiO4 and Li2FeSiO4 as potential Li-battery cathode materials, Electrochemistry Communications, 2006, 8(2):217~222
    [171]Y. X. Li, Z. L. Gong, Y. Yang, Synthesis and characterization of Li2MnSiO4/C nanocomposite cathode material for lithium ion batteries, Journal of Power Sources, 2007, 174(2):528~532
    [172]R. Dominko, M. Bele, A. Kokalg, et al, Li2MnSiO4 as a potential Li-battery cathode material, Journal of Power Sources, 2007, 174(2):457~461
    [173]A. Kokalj, R. Dominko, G. Mali, et al, Beyond one-electron reaction in Li cathode materials: Designing Li2MnxFe1-xSiO4, Chemistry of Materials, 2007, 19(15):3633~3640
    [174]R. Dominko, I. Arcon, A. Codre, et al, In-situ XAS study on Li2MnSiO4 and Li2FeSiO4 cathode materials, Journal of Power Sources, 2009, 189(1):51~58
    [175]Y. S. Meng, A. Elena, M. Dompablo, First principles computational materials design for energy storage materials in lithium ion batteries, Energy & Environmental Science, 2009, 2(6):589~609
    [176]S. Q. Wu, Z. Z. Zhu, Y. Yang, et al, Structural stabilities, electronic structures and lithium deintercalation in LixMSiO4 (M = Mn, Fe, Co, Ni): A GGA and GGA plus U study, Computational Materials Science, 2009, 44(4):1243~1251
    [177]Z. L. Gong, Y. X. Li, Y. Yang, Synthesis and characterization of as a cathode material for lithium-ion batteries, Electrochemical and Solid-State Letters, 2006, 9(12):A542~A544
    [178]R. Dominko, LixMSiO4 (M = Mn and/or Fe) cathode material, Journal of Power Sources, 2008, 184(2):462~468
    [179]A. R. West, F. P. Glasser, Preparation and crystal chemistry of some tetrahedral Li3PO4-type compounds, Journal of Solid State Chemistry, 1972, 4:20~28
    [180]C. Lyness, B. Delobel, A. R. Armstrong, et al, The lithium intercalation compound Li2CoSiO4 and its behavior as a positive electrode for lithium batteries, Chemical Communications, 2007, 46:4890~4892
    [181]A.P. Tang, X. Y. Wang, G. R. Xu, et al, Chemical diffusion coefficient of lithium ion in Li3V2(PO4)3 cathode material, Materials Letters, 2009, 63(27):2396~2398
    [182]J. W. Wang, J. Liu, G. L. Yang, et al, Electrochemical performance of Li3V2(PO4)3/C cathode material using a novel carbon source, Electrochimica Acta, 2009, 54(26):6451~6454
    [183]S. K. Zhong, L. T. Liu, J. Q. Liu, et al, High-rate characteristic of F-substitution Li3V2(PO4)3 cathode materials for Li-ion batteries, Solid State Communications, 2009, 149(39~40):1679~1683
    [184]J. C. Zheng, X. H. Li, Z. X. Wang, et al, Characteristics of xLiFePO4·y Li3V2(PO4)3 electrodes for lithium batteries, Ionics, 2009, 15(6):753~759
    [185]Y. H. Chen, Y. M. Zhao, C. N. An, et al, Preparation and electrochemical performance studies on Cr-doped Li3V2(PO4)3 as cathode materials for lithium-ion batteries, Electrochimica Acta, 2009, 54(24):5844~5850
    [186]M. M. Thackeray, W. I. F. David, P. G. Bruce, et al, Lithium insertion into manganese spinels, Materials Research Bulletin, 1983, 18(4):461~472
    [187]A. S. Wills, N. P. Raju, J. E. Greedan, Low-temperature structure and magnetic properties of the spinel LiMn2O4: A frustrated antiferromagnet and cathode material, Chemistry of Materials, 1999, 11(6):1510~1518
    [188]J. Barker, R. Pynenburg, R. Koksbang, Determination of thermodynamic, kinetic and interfacial properties for the Li//LixMn2O4 system by electrochemical techniques, Journal of Power Sources, 1994, 52(2):185~192
    [189]M. M. Thackeray, Manganese oxides for lithium batteries, Progress in Solid State Chemistry, 1997, 25(1):1~71
    [190]W. I. F. David, M. M. Thackeray, J. B. Goodenough, et al, Structure refinement of the spinel-related phases Li2Mn2O4 and Li0.2Mn2O4, Journal of Solid State Chemistry, 1987, 67(2):316~323
    [191]A. Yamada, M. Tanaka, Jahn-Teller structure phase transition around 280K in Li2Mn2O4, Materials Research Bulletin, 1995, 30:715~721
    [192]R. J. Gummow, A. D. Kock, M. M. Thackeray, Improved capacity retention in rechargeable 4V lithium/lithium-manganese oxide (spinel) cells, Solid States Ionics, 1994, 69:59~67
    [193]D. H. Jang, Y. J. Shin, S. M. Oh, Dissolution of spinel oxides and capacity losses in 4V Li/LixMn2O4 cells, Journal of the Electrochemical Society, 1996, 143(7):2204~2210
    [194]D. Guyomard, J. M. Tarascon, Li metal-free rechargeable LiMn2O4/Carbon cells: Their understanding and optimization, Journal of the Electrochemical Society, 1992, 139(4):937~947
    [195]D. Guyomard, J. M. Tarascon, The carbon/Li1+xMn2O4 system, Solid States Ionics, 1994, 69:227~237
    [196]C. Y. Wang, S. G. Lu, S. R. Kan, et al, Enhanced capacity retention of Co and Li doubly doped LiMn2O4, Journal of Power Sources, 2009, 189(1):607~610
    [197]G. Singh, S. L. Gupta, R. Prasad, et al, Suppression of Jahn-Teller distortion by chromium and magnesium doping in spinel LiMn2O4: A first-principles study using GGA and GGA+U, Journal of Physics and Chemistry of Solids, 2009, 70(8):1200~1206
    [198]Z. X. Yang, W. S. Yang, D. G. Evans, et al, The effect of a Co–Al mixed metal oxide coating on the elevated temperature performance of a LiMn2O4 cathode material, Journal of Power Sources, 2009, 189(2):1147~1153
    [199]K. Du, G. R. Hu, Z. D. Peng, et al, Synthesis of spinel LiMn2O4 with manganese carbonate prepared by micro-emulsion method, Electrochimica Acta, In Press, Corrected Proof, Available online 5 November 2009
    [200]X. F. Li, Y. L. Xu, C. L. Wang, Novel approach to preparation of LiMn2O4 core/LiNixMn2-xO4 shell composite, Applied Surface Science, 2009, 255(11):5651~5655
    [201]H. J. Yue, X. K. Huang, D. P. Lv, Hydrothermal synthesis of LiMn2O4/C composite as a cathode for rechargeable lithium-ion battery with excellent rate capability, Electrochimica Acta, 2009, 54(23):5363~5367
    [202]M.H. Fu, K.L. Huang, S.Q. Liu, et al, Lithium difluoro(oxalato)borate/ethylene carbonate + propylene carbonate + ethyl(methyl) carbonate electrolyte for LiMn2O4 cathode, Journal of Power Sources, 2010, 195(3):862~866
    [203]Y. K. Li, R. X. Zhang, J. S. Liu, et al, Effect of heptamethyldisilazane as an additive on the stability performance of LiMn2O4 cathode for lithium-ion battery, Journal of Power Sources, 2009, 189(1):685~688
    [204]张丽,燃烧合成锂离子电池正极材料LiNi0.5Mn1.5O4的工艺研究:[硕士学位论文],广西;广西大学,2008
    [205]孙强,锂离子电池正极材料LiNi0.5Mn1.5O4的合成、性能与氧缺陷研究:[硕士学位论文],湖南;中南大学,2008
    [206]范玉凯,锂离子电池正极材料LiNi0.5Mn1.5O4尖晶石的制备及电化学性能研究:[硕士学位论文],浙江;浙江大学,2007
    [207]D. Gryffroy, R. E. Vaudenberghe, Cation distribution, cluster structure and ionic ordering of the spinel series LiNi0.5Mn1.5-xTixO4 and LiNi0.5-yMgyMn1.5O4, Journal of Physics and Chemistry of Solids, 1992, 53(6):777~784
    [208]Y. Idemoto, H. Natal, N. Koura, Crystal structure and cathode performance dependence on oxygen content of LiNi0.5Mn1.5O4 as a cathode material for secondary lithium batteries, Journal of Power Sources, 2003, 119(6):125~129
    [209]J. H. Kim, C. S. Yoon, S. T. Myung, Phase transitions in Li1-δNi0.5Mn1.5O4 during cycling at 5 V, Electrochemical and Solid-State Letters, 2004, 7(7):A216~A220
    [210]J. H. Kim, S. T. Myung, C. S. Yoon, et al, Comparative study of LiNi0.5Mn1.5O4-δand LiNi0.5Mn1.5O4 cathodes having two crystallographic s structure: Fd3m and P4332, Chemistry of Materials, 2004, 16(5):906~914
    [211]M. Kunduraci, G. G. Amatucci, Synthesis and characterization of nanostructured 4.7V LixMn1.5Ni0.5O4 spinels for high-power lithium-ion batteries, Journal of the Electrochemical Society, 2006, 153(7):A1345~A1352
    [212]M. Kunduraci, J. F. Al-Sharab, G. G. Amatucci, High-power nanostructured LiMn2-xNixO4 high-voltage lithium-ion battery electrode materials :electrochemical impact of electronic conductivity and morphology, Chemistry of Materials, 2006, 18(15):3585~3592
    [213]M. Kunduraci, G. G. Amatucci, Effect of oxygen non-stoichiometry and temperature on cation ordering in LiMn2-xNixO4 (0.50≥x≥0.36) spinels, Journal of Power Sources, 2007, 165(1):359~367
    [214]Q. Sun, X. H. Li, Z. X. Wang, et al, Synthesis and electrochemical performance of 5V spinel LiNi0.5Mn1.5O4 prepared by solid-state reaction, Transactions of Nonferrous Metals Society of China, 2009, 19(1):176~181
    [215]Z. Y. Chen, H. L. Zhu, S. Ji, et al, Performance of LiNi0.5Mn1.5O4 prepared by solid-state reaction, Journal of Power Sources, 2009, 189(1):507~510
    [216]H. M. Wu, C. V. Rao, B. Rambabu, Electrochemical performance of LiNi0.5Mn1.5O4 prepared by improved solid state method as cathode in hybrid supercapacitor, Materials Chemistry and Physics, 2009, 116(2~3):532~535
    [217]Y. K. Fan, J. M. Wang, X. B. Ye, et al, Physical properties and electrochemical performance of LiNi0.5Mn1.5O4 cathode material prepared by a coprecipitation method, Meterials Chemistry and Physics, 2007, 103(1):19~23
    [218]Q. Sun, Z. X. Wang, X. H. Li, et al, Comparison of LiNi0.5Mn1.5O4 cathode materials prepared by different coprecipitation methods, Transactions of Nonferrous Metals Society of China, 2007, 17:S917~S922
    [219]T. F. Yi, Y. R. Zhu, R. S. Zhu, Density functional theory study of lithium intercalation for 5V LiNi0.5Mn1.5O4 cathode materials, Solid State Ionics, 2008, 179(38):2132~2136
    [220]G. D. Du, Y. N. NuLi, J. Yang, et al, Fluorine-doped LiNi0.5Mn1.5O4 for 5V cathode materials of lithium-ion battery, Materials Research Bulletin, 2008, 43(12):3607~3613
    [221]R. K. Katiyar, R. Singhal, K. Asmar, et al, High voltage spinel cathode materials for high energy density and high rate capability Li ion rechargeable batteries, Journal of Power Sources, 2009, 194(1):526~530
    [222]N. Amdouni, K. Zaghib, F. Gendron, et al, Magnetic properties of LiNi0.5Mn1.5O4 spinels prepared by wet chemical methods, Journal of Magnetism and Magnetic Materials, 2009, 309(1):100~105
    [223]D. Li, A. Ito, K. Kobayakawa, et al, Electrochemical characteristics of LiNi0.5Mn1.5O4 prepared by spray drying and postannealing, Electrochim Acta, 2007, 52(5):1919~1924.
    [224]S. H. Park, S. W. Oh, S. H. Kang, et al, Comparative study of different crystallographic structure of LiNi0.5Mn1.5O4-δcathodes with wide operation voltage (2.0-5.0V), Electrochimica Acta, 2007, 52(25):7226~7230
    [225]Y. S. Lee, Y. K. Sun, S. Ota, et al, Preparation and characterization of nano-crystalline LiNi0.5Mn1.5O4 for 5 V cathode material by composite carbonate process, Electrochemistry Communications, 2002, 4(12):989~994
    [226]J. H. Kim, S. T. Myung, Y. K. Sun, Molten salt synthesis of LiNi0.5Mn1.5O4 spinel for 5V class cathode material of Li-ion secondary battery, Electrochim Acta, 2004, 49(2):219-227
    [227]S. T, Myung, S. Komaba, N. Kumagai, et al, Nano-crystalline LiNi0.5Mn1.5O4 synthesized by emulsion drying method, Electrochimica Acta, 2002, 47(15):2543~2549
    [228]L. Zhang, X. Y. Lv, Y. X. Wen, et al, Carbon combustion synthesis of LiNi0.5Mn1.5O4 and its use as a cathode material for lithium ion batteries, Journal of Alloys and Compounds, 2009, 480(2):802~805
    [229]W. F. Fan, M. Z. Qu, G. C. Peng, et al, Electrochemical Properties of LiNi0.5Mn1.5O4 as 5V Cathode Materials Synthesized through Self-Combustion Reaction(SCR), Chinese Journal of Inorganic Chemistry, 2009, 25(1):124~128
    [230]J. M. Amarilla, R. M. Raojas, f. Pico, et al, Nanosized LiMYMn2-YO4(M=Cr, Co and Ni) spinels synthesized by a sucrose-aided combustion method structural characterization and electrochemical properties, Journal of Power Sources, 2007, 174(2):1212~1217
    [231]S. H. Oh, S. H. Jeon, WI. Cho, et al, Synthesis and characterization of the metal-doped high-voltage spinel LiNi0.5Mn1.5O4 by mechanochemical process, Journal of Alloys and Compounds, 2008, 452(2):389~396
    [232]龚正良,聚阴离子型硅酸盐锂离子电池正极材料研究:[博士学位论文],福建;厦门大学,2007
    [233]G. T. K. Fey, C. L. Hsiao, P. Muralidharan, Thermal and electrochemical behavior of yttria-stabilized zirconia coated LiCoO2 during overcharge tests, Journal of Power Sources, 2009, 189(1):837~840
    [234]J. M. Chen, Y. D. Cho, C. L. Hsiao, et al, Electrochemical studies on LiCoO2 surface coated with Y3Al5O12 for lithium-ion cells, Journal of Power Sources, 2009, 189(1):279~287
    [235]Q. T. Zhang, G. C. Peng, G. P. Wang, et al, Effect of mesoporous carbon containing binary conductive additives in lithium ion batteries on the electrochemical performance of the LiCoO2 composite cathodes, Solid State Ionics, 2009, 180(9~10):698~702
    [236]M. C. Rao, O. M. Hussain, Synthesis and electrochemical properties of Ti doped LiCoO2 thin film cathodes, Journal of Alloys and Compounds, In Press, Corrected Proof, Available online 5 November 2009
    [237]A. Sakuda, A. Hayashi, M. Tatsumisago, Electrochemical performance of all-solid-state lithium secondary batteries improved by the coating of Li2O-TiO2 films on LiCoO2 electrode, Journal of Power Sources, 2009, 195(2):599~603
    [238]T. F. Yi, J. Shu, C. B. Yue, et al, Enhanced cycling stability of microsized LiCoO2 cathode by Li4Ti5O12 coating for lithium ion battery, Materials Research Bulletin, In Press, Corrected Proof, Available online 24 November 2009
    [239]J. W. Lee, S. M. Park, H. J. Kim, Enhanced cycleability of LiCoO2 coated with vanadium oxides, Journal of Power Sources, 2009, 188(2):583~587
    [240]N. S. Choi, Y. B. Lee, S. S Kim, et al, Improving the electrochemical properties of graphite/LiCoO2 cells in ionic liquid-containing electrolytes, Journal of Power Sources, 2009, 195(8):2368~2371
    [241]K. Dokko, N. Nakata, K. Kanamura, High rate discharge capability of single particle electrode of LiCoO2, Journal of Power Sources, 2009, 189(1):783~785
    [242]P. Ghosh, S. Mahanty, R. N. Basu, Lanthanum-doped LiCoO2 cathode with high rate capability, Electrochimica Acta, 2009, 54(5):1654~1661
    [243]H. Wang, Z. Q. Deng, M. C. Chen, Effects of SrO/Li2O/La2O3/Ta2O5/TiO2-coating on electrochemical performance of LiCoO2, Journal of Rare Earths, 2009, 27(2):234~239
    [244] W. D. Yang, C. Y. Hsieh, H. J. Chuang, et al, Preparation and characterization of nanometric-sized LiCoO2 cathode materials for lithium batteries by a novel sol–gel method, Ceramics International, 2010, 36(1):135~140
    [245] Y. H. Shin, S. M. Koo, D. S. Kim, et al, Continuous hydrothermal synthesis of HT-LiCoO2 in supercritical water, The Journal of Supercritical Fluids, 2009, 50(3):250~256
    [246]D. S. Kim, C. K. Lee, H. Kim, Preparation of nano-sized LiCoO2 powder by the combination of sonication and modified Pechini process, Solid State Sciences, 2009, 12(1)45~49
    [247]H. S. Liu, Z. R. Zhang, Z. L. Gong, et al, Origin of deterioration for LiNiO2 cathode material during storage in air, Electrochemical and Solid-State Letters, 2004, 7(7):A190~A193
    [248]Y. S. Lee, Y. K. Sun, K. S. Nahm, Synthesis and characterization of LiNiO2 cathode material prepared by an adiphic acid-assisted sol-gel method for lithium secondary batteries, Solid State Ionics, 1999, 118(1~2):159~168
    [249]H. Arai, M. Tsuda, K. Saito, et al, Structural and thermal characteristics of nickel dioxide derived from LiNiO2, Journal of Solid State Chemistry, 2002, 163(1):340~349
    [250]S. W. Woo, S. T. Myung, H. Bang, et al, Improvement of electrochemical and thermal properties of Li[Ni0.8Co0.1Mn0.1]O2 positive electrode materials by multiple metal (Al, Mg) substitution, Electrochimica Acta, 2009, 54(15):3851~3856
    [251]Y. C. Zhang, C. Y. Wang, Cycle-life characterization of automotive Lithium-ion batteries with LiNiO2 cathode, Journal of the Electrochemical Society, 2009, 156(7):A527~A535
    [252]X. R. Deng, G. R. Hu, K. Du, et al, Synthesis and electrochemical properties of Co, Mn-coated LiNiO2 lithium-ion battery cathode materials, Materials Chemistry and Physics, 2008, 109(2~3):469~474
    [253] X. Lai, D. J. Gao, J. Bi, et al, Synthesis of LiNiO2 thin film in LiOH solution by hydrothermal method, Journal of Alloys and Compounds, 2009, 487(1~2):L30~L32
    [254]J. H. Lim, H. Bang, K. S. Lee, et al, Electrochemical characterization of Li2MnO3-Li[Ni1/3Co1/3Mn1/3]O2-LiNiO2 cathode synthesized via co-precipitation for lithium secondary batteries, Journal of Power Sources, 2009, 189(1):571~575
    [255]K. S. Ryu, S. H. Lee, Y. J. Park, Effects of Co3(PO4)2 coatings on LiNi0.8Co0.16Al0.04O2 cathodes during application of high current, Journal of Applied Electrochemistry, 2008, 38(10):1385~1390
    [256]G. Ceder, S. K. Mishra, The stability of orthorhombic and monoclinic-layered LiMnO2, Electrochemical and Solid-State Letters, 1999, 2(11):550~552
    [257]A. R. Armstrong, P. G. Bruce, Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries, Nature, 1996, 381(6582):499~500
    [258]F. Capitaine, P. Gravereau, C. Delmas, A new variety of LiMnO2 with a layered structure, Solid State Ionics, 1996, 89(3~4):197~202
    [259]R. J. Chen, P. Zavalij, M. S. Whittingham, Hydrothermal synthesis and characterization of K chi MnO2 center dot gamma H2O, Chemistry of Materials, 1996, 8(6):1275~1280
    [260]X. L. Li, D. J. Liu, D. W. Zhang, et al, One-step synthesis and electrochemical behavior of LiMnO2 and its composite from MnO2 in the presence of glucose, Journal of Physics and Chemistry of Solids, 2009, 70(6):936~940
    [261]Y. He, R. H. Li, X. K. Ding, et al, Hydrothermal synthesis and electrochemical properties of orthorhombic LiMnO2 nanoplates, Journal of Alloys and Compounds, In Press, Corrected Proof, Available online 4 December 2009
    [262]Q. Liu, Y. X. Li, Z. L. Hu, et al, One-step hydrothermal routine for pure-phased orthorhombic LiMnO2 for Li ion battery application, Electrochimica Acta, 2008, 53(24):7298~7302
    [263]F. Zhou, X. M. Zhao, Y. Q. Liu, et al, Size-controlled hydrothermal synthesis and electrochemical behavior of orthorhombic LiMnO2 nanorods, Journal of Physics and Chemistry of Solids, 2008, 69(8):2061~2065
    [264]Z. Su, Z. W. Lu, X.P. Gao, et al, Preparation and electrochemical properties of indium- and sulfur-doped LiMnO2 with orthorhombic structure as cathode materials, Journal of Power Sources, 2009, 189(1):411~415
    [265]S. S. Shin, Y. K. Sun, K. Amine, Synthesis and electrochemical properties of Li[Li(1-2x)/3NixMn(2-x)/3]O2 as cathode materials for lithium secondary batteries, Journal of Power Sources, 2002, 112(2):634~638
    [266]J. H. Kim, Y. K. Sun, Electrochemical performance of Li[LixNi(1-3x)/2Mn(1+x)/2]O2 cathode materials synthesized by a sol-gel method, Journal of Power Sources, 2003, 119~121:166~170
    [267]Y. S. Hong, Y. J. Park, K. S. Ryu, et al, Charge/discharge behavior of Li[Ni0.20Li0.20Mn0.60]O2 and Li[Co0.20Li0.27Mn0.53]O2 cathode materials in lithium secondary batteries, Solid State Ionics, 2005, 176(11~12):1035~1042
    [268]C. H. Lei, J. Bare?o, J. G. Wen, et al, Local structure and composition studies of Li1.2Ni0.2Mn0.6O2 by analytical electron microscopy, Journal of Power Sources, 2008, 178(1):422~433
    [269]T. Ohzuku, Y. Makimura, Layered lithium insertion material of LiNi1/3Co1/3Mn1/3O2 for lithium-ion batteries, Chemistry Letters, 2001, 7:642~643
    [270]K. M. Shaju, G. V. S. Rao, B. V. R. Chowdari, Performance of layered LiNi1/3Co1/3Mn1/3O2 as cathode for Li-ion batteries, Electrochimica Acta, 2002, 48(2):145~151
    [271]T. H. Cho, S. M. Park, M. Yoshio, et al, Effect of synthesis condition on the structural and electrochemical properties of LiNi1/3Co1/3Mn1/3O2 prepared by carbonate co-precipitation method, Journal of Power Sources, 2005, 142(1~2):206~312
    [272]N. Yabuuchi, T. Ohzuku, Novel lithium insertion material of LiNi1/3Co1/3Mn1/3O2 for advanced lithium-ion batteries, Journal of Power Sources, 2003, 119~121:171~174
    [273]Y. W. Tsai, B. J. Hwang, G. Ceder, et al, In-situ X-ray absorption spectroscopic study on variation of electronic transitions and local structure of LiNi1/3Co1/3Mn1/3O2 cathode material during electrochemical cycling, Chemistry of Materials, 2005, 17(12):3191~3199
    [274]Y. Makimura, I. Tanaka, H. Adachi, et al, Systematic research on insertion materials based on superlattice models in a phase triangle of LiCoO2-LiNiO2-LiMnO2, Journal of the Electrochemical Society, 2004, 150(9):A1499~A1506
    [275]B. J. Hwang, Y. W. Tsai, D. Carlier, et al, A combined computational/experimental study on LiNi1/3Co1/3Mn1/3O2, Chemistry of Materials, 2003, 15:3676~3680
    [276]Y. Koyama, N. Yabuucbi, I. Tanaka, et al, Solid-state chemistry of LiNi1/3Co1/3Mn1/3O2 for advanced Lithium-ion batteries, Journal of the Electrochemical Society, 2004, 150(10):A1545~A1551
    [277]Z. H. Lu, D. D. Macnei, J. R. Dahn, New layered cathode materials Li[NixLi(1/3-2x/3)Mn(2/3-x/3)]O2 for lithium ion batteries, Electrochemical and Solid-State Letters, 2001, 4(11):A191~A194
    [278]W. S. Yoon, C. P. Grey, M. Balasubramanian, et al, Combined NMR and XAS study on local environments and electronic structures of electrochemically Li-ion deintercalated Li1-xNi1/3Co1/3Mn1/3O2 electrode system, Electrochemical and Solid-State Letters, 2004, 7(3):A53~A55
    [279]Y. Koyama, I. Tanaka, H. Adachi, et al, Crystal and electronic structure of superstructural Li1-xNi1/3Co1/3Mn1/3O2 (0≤x≤1), Journal of Power Sources, 2003, 119~121:644~648
    [280]P. S. Whitfield, I. J. Davidson, L. M. D. Cranswick, et al, Investigation of possible superstructure and cation disorder in the lithium battery cathode material LiMn1/3N1/3Co1/3O2 using neutron and anomalous dispersion powder diffraction, Solid State Ionics, 2005, 176(5~6):463~471
    [281]樊勇利,唐致远,王瑞忠等,锂离子电池正极材料Li-Ni-Co-Mn-O化合物研究,电源技术,2006,30(5):414~418
    [282]黄原君,苏光耀,雷钢铁等,多元复合正极材料LiMn1/3N1/3Co1/3O2的研究进展,材料导报,2006,20:285~587
    [283]陈宏伟,习小明,湛中魁,锂离子电池正极材料层状LiMn1/3N1/3Co1/3O2的研究进展,矿业工程,2006,26(1):68~70
    [284]刘永欣,马晓华,邱玮丽等,锂离子电池正极材料LiMn1/3N1/3Co1/3O2的研究进展,电池,2005,35(5):398~400
    [285]田华,锂离子电池正极材料LiMn1/3N1/3Co1/3O2的合成及性能研究:[硕士学位论文],广西;桂林工学院,2008
    [286]张微,锂离子电池正极材料球形LiMn1/3N1/3Co1/3O2的制备与性能研究,[硕士学位论文],湖北;武汉理工大学,2009
    [287]Z. X. Wang, Y. C. Sun, L. Q. Chen, et al, Electrochemical characterization of positive electrode material Li(Ni1/3Co1/3Mn1/3)O2 and compatibility with electrolyte for lithium-ion batteries, Journal of the Electrochemical Society, 2004, 151(6):A914~A921
    [288]Y. J. Shin, Y. S. Hong, W. J. Choi, et al, Investigation on the microscopic features of layered oxide Li[Ni1/3Co1/3Mn1/3]O2 and their influences on the cathode properties, Solid State Ionics, 2006, 177(5~6):515~521
    [289]S. C. Zhang, X. P. Qiu, Z. Q. He, et al, Nanoparticled Li(Ni1/3Co1/3Mn1/3)O2 as cathode material for high-rate lithium-ion batteries, Journal of Power Sources, 2006, 153(2):350~353
    [290]S. Jouanneau, J. R. Dahn, Preparation, structure and thermal stability of new NixCo1-2xMnx(OH)2 (0≤x≤1/2) phase, Chemistry of Materials, 2003, 15(2):495~498
    [291]应皆荣,姜长印,万春荣等,锂离子电池正极材料高密度球形镍钴锰酸锂的制备方法,中国专利,申请号:200410103486.8
    [292]Y. M. Todorov, K. Numata, Effects of the Li: (Mn+Co+Ni) molar ratio on the electrochemical properties of LiMn1/3Co1/3Ni1/3O2 cathode material, Electrochimica Acta, 2004, 50(2~3):495~499
    [293]I. Belharouak, Y. K. Sun, J. Liu, et al, Li(Ni1/3Co1/3Mn1/3)O2 as a suitable cathode for high power applications, Journal of Power Sources, 2003, 123(2):247~252
    [294]X. F. Luo, X. Y. Wang, L. Liao, et al, Effects of synthesis conditions on the structural and electrochemical properties of layered Li[Ni1/3Co1/3Mn1/3]O2 cathode material via the hydroxide co-precipitation method LIB SCITECH, Journal of Power Sources, 2006, 161(1):601~605
    [295]T. H. Cho, S. M. Park, M. Yoshio, Preparation of layered Li[Ni1/3Mn1/3CO1/3]O2 as a cathode for lithium secondary battery by carbonate coprecipitation method, Chemistry Letters, 2004, 33(6):704~705
    [296]H. B. Ren, Y. H. Huang, Y. H. Wang, et al, Effects of different carbonate precipitators on LiNi1/3Co1/3Mn1/3O2 morphology and electrochemical performance, Materials Chemistry and Physics, 2009, 117(1):41~45
    [297]T. H. Cho, Y. Shiosaki, H. Noguchi, Preparation and characterization of layered LiNi1/3Co1/3Mn1/3O2 as a cathode material by an oxalate co-precipitation method, Journal of Power Sources, 2006, 159(2):1322~1327
    [298]H. Tian, N. Q. YE, D. Liu, et al, Effects of synthesis conditions on the structural and electrochemical properties of layered LiNi1/3Co1/3Mn1/3O2 cathode material via oxalate co-precipitation method, Rare Metals, 2008, 27(6):575~579
    [299]C. F. Zhang, P. Yang, X. DAI, Synthesis of LiNi1/3Co1/3Mn1/3O2 cathode material via oxalate precursor, Transactions of Nonferrous Metals Society of China, 2009, 19(3):635~641
    [300]J. Li, Z.R. Zhang, X.J. Guo, et al, The studies on structural and thermal properties of delithiated LixNi1/3Co1/3Mn1/3O2 (0    [301]Y. S. He, Z. F. Ma, X. Z. Liao, et al, Synthesis and characterization of submicron-sized LiNi1/3Co1/3Mn1/3O2 by a simple self-propagating solid-state metathesis method, Journal of Power Sources, 2007, 163(2):1053~1058
    [302]D. C. Li, T. Muta, L. Q. Zhang, Effect of synthesis method on the electrochemical performance of LiNi1/3Co1/3Mn1/3O2, Journal of Power Sources, 2004, 132(1~2):150~155
    [303]J. Guo, L. F. Jiao, H. T. Yuan, et al, Effect of synthesis condition on the structural and electrochemical properties of Li[Ni1/3Co1/3Mn1/3]O2 prepared by the metal acetates decomposition method, Electrochimica Acta, 2006, 51(18):3731~3735
    [304]D. C. Li, H. Noguchi, M. Yoshio, Electrochemical characteristics of LiNi0.5-xMn0.5-xCo2xO2 (0    [305]D. C. Li, Y. Kato, K. Kobayakawa, et al, Preparation and electrochemical characteristics of LiNi1/3Co1/3Mn1/3O2 coated with metal oxides coating, Journal of Power Sources, 2006, 160(2):1342~1348
    [306]S. Patoux, M. M. Doe, Direct synthesis of LiNi1/3Co1/3Mn1/3O2 from nitrate precursors, Electrochemistry Communications, 2004, 6(8):767~772
    [307]M. Sathiya, A. S. Prakash, K. Ramesha, et al, Rapid synthetic routes to prepare LiNi1/3Co1/3Mn1/3O2 as a high voltage, high-capacity Li-ion battery cathode material, Materials Research Bulletin, 2009, 44(10):1990~1994
    [308]P. Samarasingha, D. H. Tran-Nguyen, M. Behm, et al, LiNi1/3Co1/3Mn1/3O2 synthesized by the Pechini method for the positive electrode in Li-ion batteries: Material characteristics and electrochemical behaviour, Electrochimica Acta, 2008, 539270:7995~8000
    [309]H. Xia, H. L. Wang, W. Xiao, et al, Properties of LiNi1/3Co1/3Mn1/3O2 cathode material synthesized by a modified Pechini method for high-power lithium-ion batteries, Journal of Alloys and Compounds, 2009, 480(2):696~701
    [310]S. H. Park, C. S. Yoon, S. G. Kang, et al, Synthesis and structural characterization of layered LiNi1/3Co1/3Mn1/3O2cathode materials by ultrasonic spray pyrolysis method, Electrochimica Acta, 2004, 49(40:557~563
    [311]D. G. Tong, Q. Y. Lai, N. N. Wei, et al, Synthesis of LiNi1/3Co1/3Mn1/3O2 as a cathode material for lithium ion battery by water-in-oil emulsion method, Materials Chemistry and Physics, 2005, 94(2~3):423~428
    [312]X. Li, Y. J. Wei, H. Ehrenberg, et al, Characterizations on the structural and electrochemical properties of LiNi1/3Co1/3Mn1/3O2 prepared by a wet-chemical process, Solid State Ionics, 2008, 178(39~40):1969~1974
    [313]C. H. Lu, Y. K. Lin, Microemulsion preparation and electrochemical characteristics of LiNi1/3Co1/3Mn1/3O2 powders, Journal of Power Sources, 2009, 189(1):40~44
    [314]胡学山,刘兴泉,LiNi1/3Co1/3Mn1/3O2的制备及电化学性能,电源技术,2006,30(3):183~186
    [315]H. B. Ren, Y. R. Wang, D. C. Li, et al,Synthesis of LiNi1/3Co1/3Mn1/3O2 as a cathode material for lithium battery by the rheological phase method, Journal of Power Sources, 2008, 178(1):439~444
    [316]吴青端,叶茂,李宇展等,从电解NiCoMn合金出发制备锂离子电池正极材料LiNi1/3Co1/3Mn1/3O2,南开大学学报(自然科学版),2005,38(5):48~51
    [317]Y. H. Ding, P. Zhang, Z. L. Long, et al,The morphology, structure and electrochemical properties of LiNi1/3Co1/3Mn1/3O2 prepared by electrospun method, Journal of Alloys and Compounds, 2008, 462(1~2):340~342
    [318]Y. H. Ding, P. Zhang, Z. L. Long, et al, Morphology and electrochemical properties of Al doped LiNi1/3Co1/3Mn1/3O2 nanofibers prepared by electrospinning, Journal of Alloys and Compounds, 2009, (1~2):507~510
    [319]A. Hirano, K. Kanie, T. Ichikawa, et al, Neutron diffraction study on layered rocksalt Li1-xNi1-xO2 at high temperature, Solid State Ionics, 2002, 152:207~216
    [320]T. Ohzuku, A. Ueda, M. Nagayama, Electrochemistry and structural chemistry of LiNiO2 (R3m) for 4 voltage secondary lithium cells, Journal of the Electrochemical Society, 1993, 140:1862~1869
    [321]J. Choi, A. Manthirm, Comparison of the electrochemical behaviors of stoichiometric LiNi1/3Co1/3Mn1/3O2 and lithium excess Li1.03(Ni1/3Co1/3Mn1/3)0.97O2, Electrochemical and Solid-State Letters, 2004, 7(10):A365~A368
    [322]J. M. Kim, H. T. Chung, Role of transition metals in layered Li[Ni, Co, Mn]O2 under electrochemical operation, Electrochimica Acta, 2004, 49(21):3573~3580
    [323]G. H. Kim, S. T. Myung, H. J.Bang, et al, Synthesis and electrochemical properties of Li[Ni1/3Co1/3Mn(1/3-x)Mgx]O2-yFy via coprecipitation, Electrochemical and Solid-State Letters, 2004, 7(12):A477~A480
    [324]G. H. Kim, S. T. Myung, H. S. Kim, et al, Synthesis of spherical Li[Ni(1/3-z)CO(1/3-z)Mn(1/3-z)Mgz]O2 as positive electrode material for lithium-ion battery, Electrochimica Acta, 2006, 5l(12):2447~2453
    [325]Y. Fujii, H. Miura, N. Suzuki, et al, Structural and electrochemical properties of LiNi1/3Co1/3Mn1/3O2-LiMg1/3Co1/3Mn1/3O2 solid solutions, Solid State Ionics, 2007, 178(11~12):849~857
    [326]Y. S. Meng, Y. W. Wu, B. J. Hwang, Combining Ab into computation with experiments for designing new electrode materials for advanced lithium batteries: LiNi1/3Fe1/6Co1/6Mn1/3O2, Journal of the Electrochemical Society, 2004, 151(8):A1134~A1140
    [327]D. T. Liu, Z. X. Wang, L. Q. Chen, Comparison of structure and electrochemistry of Al- and Fe-doped LiNi1/3Co1/3Mn1/3O2, Electrochimica Acta, 2006, 51(20):4199~4203
    [328]Y. K. Lin, C. H. Lu, Preparation and electrochemical properties of layer-structured LiNi1/3Co1/3Mn1/3-yAlyO2, Journal of Power Sources, 2009, 189(1):353~358
    [329]檀柏杉,韩恩山,李鹏,LiNi1/3Co1/4Mn1/3M1/12O2 (M=Al, Ti)的性能研究,电池,2005,35(4):259~260.
    [330]S. H. Park, S. W. Oh, Y. K. Sun, Synthesis and structural characterization of layered Li[Ni1/3+xCo1/3Mn1/3-2xMox]O2 cathode materials by ultrasonic spray pyrolysis, Journal of Power Sources, 2005, 146(1~2):622~625
    [331]J. Guo, J. F. Jiao, H. T. Yuan, et al, Effect of structural and electrochemical properties of different Cr-doped contents of Li[Ni1/3Mn1/3Co1/3]O2, Electrochimica Acta, 2006, 51(28):6275~6280
    [332]R. Guo, P. S. Shi, X. Q. Cheng, et al, Effect of Ag additive on the performance of LiNi1/3Co1/3Mn1/3O2 cathode material for lithium ion battery, Journal of Power Sources, 2009, 189(1):2~8
    [333]Y. H. Ding, P. Zhang, Y. Jiang, et al, Effect of rare earth elements doping on structure and electrochemical properties of LiNi1/3Co1/3Mn1/3O2 for lithium-ion battery, Solid State Ionics, 2007, 178(13~14):967~971
    [334]M. Kageyama, D. C. Li, K. C. Kobayakawa, et al, Structural and electrochemical properties of LiNi1/3Co1/3Mn1/3O2-xFx prepared by solid state reaction, Journal of Power Sources, 2006, 157(1):494~500
    [335]L. Liao, X. Y. Wang, X. F. Luo, et al,Synthesis and electrochemical properties of layered Li[Ni0.333Co0.333Mn0.293Al0.04]O2-zFz cathode materials prepared by the sol-gel method, Journal of Power Sources, 2006, 160(1):657~661
    [336]黄原君,高德淑,李朝晖等,LiNi1/3Co1/3Mn1/3O2的Si/F复合掺杂及电化学性能,无机化学学报,2007,23(3):466~472
    [337]H. S. Kim, M. Z. Kong, K. Kim, et al, Effect of carbon coating on LiNi1/3Co1/3Mn1/3O2 cathode material for lithium secondary batteries, Journal of Power Sources, 2007, 171(2):917~921
    [338]R. Guo, P. F. Shi, X. Q. Cheng, et al, Synthesis and characterization of carbon-coated LiNi1/3Co1/3Mn1/3O2 cathode material prepared by polyvinyl alcohol pyrolysis route, Journal of Alloys and Compounds, 2009, 473(1~2):53~59
    [339]S. T. Myung, K. Izumi, S. Komaba, et al, Role of alumina coating on Li-Ni-Co-Mn-O particles as positive electrode material for lithium-ion batteries, Chemistry of Materials, 2005, 17(14):3695~3704
    [340]Y. Kim, H. Kim, S. W. Martin, Synthesis and electrochemical characteristics of Al2O3-coated LiNi1/3Co1/3Mn1/3O2 cathode materials for lithium ion batteries, Electrochimica Acta, 2006, 52(3):1316~1322
    [341]Z. Yang, X. H. Li, Z. X. Wang, et al, Surface modification of spherical LiNi1/3Co1/3Mn1/3O2 with A12O3 using heterogeneous nucleation process, Transactions of Nonferrous Metals Society of China, 2007, 17(6):1319~1323
    [342]S. B. Jang, S. H. Kang, K. Amine, et al, Synthesis and improved electrochemical performance of Al(OH)3-coated LiNi1/3Co1/3Mn1/3O2 cathode materials at elevated temperature, Electrochimica Acta, 2005, 50(20):4168~4173
    [343]S. K. Hu, G. H. Cheng, M. Y. Cheng, et al, Cycle life improvement of ZrO2-coated spherical LiNi1/3Co1/3Mn1/3O2 cathode material for lithium ion batteries, Journal of Power Sources, 2009, 188(2):564~569
    [344]J. G. Li, L. Wang, Q. Zhang, et al, Electrochemical performance of SrF2-coated LiNi1/3Co1/3Mn1/3O2 cathode materials for Li-ion batteries, Journal of Power Sources, 2009, 190(1):149~153
    [345]J. M. Kim, H. T. Chung, The first cycle characteristics of Li[Ni1/3Co1/3Mn1/3]O2 charged up to 4.7 V, Electrochimica Acta, 2004, 49(6): 937~944
    [346]J. O. Kiggans, C. R. Hubband, R. R. Steele, et al, Characterization of silicon nitride synthesized by microwave heating, in Ceramic Transactions, Microwaves, Theory, and Applications in Materials Processing, Annual meeting and exposition of the American Ceramic Society, Westerville, Ohio, USA, 1991:267~272
    [347]I. Ahmed, R. Dalton, Unique application of microwave energy to the processing of ceramic materials, Microwave Power and Electromagnetic Energy, 1991, 26(3):128~134
    [348]D. M. P. Ningos, D. Baghurst, Applications of microwave dielectric heating effects to synthetic problems in chemistry, Chemical Society Reviews, 1991(2):47~52
    [349]Y. L. Tian, D. L. Johnson, M. E. Brodwin, Ultrafine microstructure of Al2O3 produced by microwave sintering, Ceramic Powder Science, 1988(2):925~931
    [350]H. W. Yan, X. J. Huang, H. Li, et al, Electrochemical study on LiCoO2 synthesized by microwave energy, Solid State Ionics, 1998, 113~115:11~15
    [351]Z. L. Liu, B. Guo, S. H. Chan, et al, Pt and Ru dispersed on LiCoO2 for hydrogen generation from sodium borohydride solutions, Journal of Power Sources, 2008, 176(1):306~311
    [352]B. L. He, W. J. Zhou, S. J. Bao, et al, Preparation and electrochemical properties of LiMn2O4 by the microwave-assisted rheological phase method, Electrochimica Acta, 2007, 52(9):3286~3293
    [353]Y. P. Fu, Y. H. Su, C. H. Lin, et al, Comparison of the microwave-induced combustion and solid-state reaction for the synthesis of LiMn2O4 powder and their electrochemical properties, Ceramics International, 2009, 35(8):3463~3468
    [354]X. F. Guo, H. Zhan, Y. H. Zhou, Rapid synthesis of LiFePO4/C composite by microwave method, Solid State Ionics, 2009, 180(4~5):386~391
    [355]H. L. Zou, G. H. Zhang, P. K. Shen, Intermittent microwave heating synthesized high performance spherical LiFePO4/C for Li-ion batteries, Materials Research Bulletin, 2010, 45(2):149~152
    [356]H. H. Li, J. Jin, J. P. Wei, et al, Fast synthesis of core-shell LiCoPO4/C nanocomposite via microwave heating and its electrochemical Li intercalation performances, Electrochemistry Communications, 2009, 11(1):95~98
    [357]D. W. Han, Y. M. Kang, R. Z. Yin, et al, Effects of Fe doping on the electrochemical performance of LiCoPO4/C composites for high power-density cathode materials, Electrochemistry Communications, 2009, 11(1):137~140
    [358]S. T. Yang, H. Y. Yue, Y. H. Yin, et al, Microwave-assisted synthesis of LiNi0.5Co0.5O2 cathode material for lithium batteries using PAM as template, Electrochimica Acta, 2006, 51(23):4971~4976
    [359]周晓东,微波加热在固相反应及烧结中的应用,昆明冶金高等专科学校学报,2006,22(1):55~58,87
    [360]K. S. Lee, S. T. Myung, J. Prakash, et al, Optimization of microwave synthesis of Li[Ni0.4Co0.2Mn0.4]O2 as a positive electrode material for lithium batteries, Electrochimica Acta, 2008, 53(7):3065~6074
    [361]X. J. Liu, G. Y. Zhu, K. Yang, A mixture of LiNi1/3Co1/3Mn1/3O2 and LiCoO2 as positive active material of LIB for power application, Journal of Power Sources, 2007, 174(2):1126~1130
    [362]金慧芬,王荣,高俊奎,商业化锂离子电池的热稳定性研究,电源技术,2007,31(1):23~25,33
    [363]Z. H. Lu, D. D. MacNeil, J. R. Dahn, Layered Li[NixCo1–2xMnx]O2 cathode materials for lithium-ion batteries, Electrochemical and Solid-State Letters, 2001, 4(12):A200~A203
    [364]D. D. MacNeil, Z. Lu, J. R. Dahn, Structure and electrochemistry of Li[NixCo1-2xMnx]O2 (0≤x≤1/2), Journal of the Electrochemical Society, 2002, 149(10):A1332~A1336
    [365]T. Ohzuku, Y. Makimura, Layered lithium insertion material of LiNi1/2Mn1/2O2: A possible alternative to LiCoO2 for advanced lithium-ion batteries, Chemistry Letters, 2001, 8:744~745
    [366]Y. Makimura, T. Ohzuku, Lithium insertion material of LiNi1/2Mn1/2O2 for advanced lithium-ion batteries, Journal of Power Sources, 2003, 119:156~160
    [367]Z. H. Lu, J. R. Dhan, Understanding the Anomalous Capacity of Li/Li[NixLi(1/3–2x/3)Mn(2/3–x/3)]O2 Cells Using In Situ X-Ray Diffraction and Electrochemical Studies, Journal of the Electrochemical Society, 2002, 149(7):A815~A822
    [368]J. S. Kim, C. S. Johnson, J. T. Vaughey, et al, Electrochemical and structural properties of xLi2M'O3 center dot 1-xLiMn0.5Ni0.5O2 eIectrodes for lithium batteries (M' = Ti, Mn, Zr; 0≤x≤0.3), Chemistry of Materials, 2004, 16(10):1996~2006
    [369]M. M. Thackeray, S. H. Kang, C. S. Johnson, et al, Comments on the structural complexity of lithium-rich Li1+xM1-xO2 electrodes (M = Mn, Ni, Co) for lithium batteries, Electrochemistry Communications, 2006, 8(9):1531~1538
    [370]M. M. Thackeray, S. H. Kang, C. S. Johnson, et al, Li2MnO3-stabilized LiMO2 (M = Mn, Ni, Co) electrodes for lithium-ion batteries, 2007, Journal of Materials Chemistry, 2007, 17(30):3112~3125
    [371]A. D. Robertson, P. G. Bruce, Overcapacity of Li[NixLi1/3-2x/3Mn2/3-x/3]O2 electrodes, Electrochemical and Solid-State Letters, 2004, 7(9):A294~A298
    [372]A. R. Armstrong, M. Holzapfel, P. Novak, et al, 2006, Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2, Journal of the American Chemical Society, 2006, 128(26):8694~8698
    [373]Y. S. Hong, Y. J. Park, X. L. Wu, et al, Synthesis and Electrochemical Properties of Nanocrystalline Li[Ni0.20Li0.20Mn0.60]O2, Electrochemical and Solid-State Letters, 2003, 6(8):A166~A169
    [374]S. H. Kang, Y. K. Sun, K. Amine, Electrochemical and Ex Situ X-Ray Study of Li(Li0.2Ni0.2Mn0.6)O2 Cathode Material for Li Secondary Batteries, Electrochemical and Solid-State Letters, 2003, 6(9):A183~A186
    [375]L. Q. Zhang, X. Q. Wang, T. Muta, The effects of extra Li content, synthesis method, sintering temperature on synthesis and electrochemistry of layered LiNi1/3Mn1/3Co1/3O2, Journal of Power Sources, 2006, 162(1):629~635
    [376]V. Massarotti, M. Bini, D. Capsoni, et al, Ab initio structure determination of Li2MnO3 from X-ray powder diffraction data, Journal of Applied Crystallography, 1997, 30:123~127
    [377]M. Nakayama, K. Watanabe, H. Ikuta, et al, Grain size control of LiMn2O4 cathode material using microwave synthesis method, Solid State Ionics, 2003, 164(1~2):35~42
    [378]K. M. Shaju, G. V. S. Rao, B. V. R. Chowdari, X-ray photoelectron spectroscopy and electrochemical behaviour of 4 V cathode, Li(Ni1/2Mn1/2)O2, Electrochimica Acta, 2003, 48(11):1505~1514
    [379]A. F. Carley, S. D. Jackson, J. N. OShea, et al, Formation and characterization of Ni3+ - an X-ray photoelectron spectroscopic investigation of potassium-doped Ni(110)-O, Surface Science, 1999, 440(3):L868-L874
    [380]K. Amine, H. Tukamoto, H. Yasuda, et al, A new three-volt spinel Li1+xMn1.5Ni0.5O4 for secondary lithium batteries, Journal of the Electrochemical Society, 1996, 143(5):1607~1613
    [381]R. D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallographica, 1976, A32:751~767:
    [382]L. Q. Zhang, K. Takada, N. Ohta, et al, layered (1-x-y)LiNi1/2Mn1/2O2·x Li[Li1/3Mn2/3]O2·y LiCoO2 (0≤y≤0.3 and x+y=0.5) Cathode Materials, Journal of the Electrochemical Society, 2005, 152(1):A171~A178
    [383]J. Gao, J. Kim, A. Manthiram, High capacity Li[Li0.2Mn0.54Ni0.13Co0.13]O2–V2O5 composite cathodes with low irreversible capacity loss for lithium ion batteries, Electrochemistry Communications, 2009, 11(1):84~86
    [384]Q. Zhong, A. Bonakdarpour, M. Zhang, et al, Synthesis and electrochemistry of LiNixMn2-xO4, Journal of the Electrochemical Society, 1997, 144(1):205~213
    [385]X. L. Wu, S. B. Kim, Improvement of electrochemical properties of LiNi0.5Mn1.5O4 spinel, Journal of Power Sources, 2002, 109(1):53~57
    [386]Y. Sun, Z. Wang, X. J. Huang, et al, Synthesis and electrochemical performance of spinel LiMn2-x-yNixCryO4 as 5V cathode materials for lithium ion batteries, Journal of Power Sources, 2004, 132(1~2):161~165

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700