新型离子液体电解质的合成及在锂二次电池中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
离子液体具有一系列独特的性质,包括不易挥发、不易燃、好的热稳定性、好的化学和电化学稳定性和高的离子电导率,众多研究者对其都产生了浓厚的兴趣。在本论文中,首先制备了不对称三烷基锍类、胍类和含功能团胍类三大系列新型离子液体,并研究了这些离子液体的物理及电化学性质,包括熔点、热稳定性、粘度、电导率和电化学窗口;又将两种胍阳离子离子液体和一种含醚基功能团胍阳离子离子液体作为新型电解质应用于锂二次电池中。
     制备出9种新的二(三氟甲基磺酰)亚胺不对称三烷基锍阳离子离子液体,并对它们的物理及电化学性能进行了研究。所有离子液体在室温下都为液态,在这些憎水性离子液体中,部分离子液体显示出低粘度和低熔点的特性。S223TFSI、S221TFSI和S123TFSI在25℃时粘度分别为33、36和39 mPa s。离子液体粘度与温度的关系在所研究的温度范围内(25-80℃)符合Arrhenius模型。离子液体的热分解温度在275-315℃的范围之内轻微地变化;它们的电化学稳定性和热稳定性使其有希望成为可应用在电化学器件中的电解质。
     制备出16种新的以二(三氟甲基磺酰)亚胺为阴离子的小尺寸胍阳离子离子液体,并对它们的物理及电化学性能进行了研究。离子液体的热分解温度在380-425℃的范围之内轻微地变化。其中12种离子液体在室温下都为液态,cg12TFSI、cg22TFSI和cg13TFSI在25℃时粘度分别为46、45和52 mPa s。12种离子液体的粘度、电导率与温度的关系在所研究的温度范围内(25-80℃)符合VTF模型。9种阳离子不含环状结构的离子液体与三种阳离子中含环状结构的离子液体相比,具有更好的电化学稳定性;1g23TFSI和1g33TFSI的电化学窗口最宽,其值为4.3 V(25℃)。
     合成出8种由含醚基功能团(甲基乙基醚基)或酯基功能团(乙酸甲酯基)的胍阳离子和TFSI-阴离子组成的离子液体,并对它们的物理及电化学性能进行了研究。所有离子液体在室温下都为液态,它们都具有低的熔点。4种含酯基功能团的胍阳离子离子液体的热分解温度在380-425℃的范围之内,明显低于其他4种含醚基功能团的胍阳离子离子液体。cg1(2o1)TFSI和cg2(2o1)TFSI的25℃时粘度分别为46和48 mPa s。离子液体的粘度、电导率与温度的关系在所研究的温度范围内(25-80℃)符合VTF模型。醚基或酯基功能团的引入并没有明显改变胍阳离子离子液体的电化学稳定性,其中1g1ETFSI的电化学窗口最宽(25℃时4.4 V)。
     两种胍阳离子离子液体(1g13TFSI和1g22TFSI)被选择作为新的电解质应用在锂二次电池中。这两种离子液体的还原电位约为0.7 V vs. Li/Li+,然而在无添加剂的含0.3 mol kg-1 LiTFSI的两种离子液体电解质中,被观察到在镍工作电极表面有锂沉积和溶解。这两种离子液体电解质的Li/LiCoO2电池,在0.2 C的充放电倍率下,具有好的容量和循环性能。随着倍率从0.2 C增加到1.0 C,两种离子液体电解质的放电容量明显降低。
     一种含醚基功能团的胍阳离子离子液体(1g1(2o1)TFSI)被选择作为新的电解质应用在锂二次电池中。含有不同浓度LiTFSI的离子液体电解质的粘度和电导率被研究。尽管这种离子液体的还原电位约为0.7 V vs. Li/Li+,在不同浓度LiTFSI的离子液体电解质中,被观察到在镍工作电极表面有锂沉积和溶解。利用锂金属对称电池的交流阻抗测试,研究锂金属与离子液体电解质的界面。在0.2 C的充放电倍率下,锂盐的浓度对该离子液体电解质的Li/LiCoO2电池的容量和循环性能有明显的影响。随着倍率从0.2 C增加到1.5 C,离子液体电解质的放电容量降低,含0.75 mol kg-1 LiTFSI的电解质具有较好的倍率性能
Ionic liquids (ILs) have attracted great interests of many researchers due to their unique characteristics, including nonvolatility, nonflammability, good thermal stability, great chemical and electrochemical stability and high ionic conductivity. And they can be used as safety electrolytes for lithium secondary batteries. In this thesis, three serials of new asymmetrical trialkylsulfonium, guanidinium and functionalized guanidinium ILs have been prepared. And physical and electrochemical properties of these products, including melting point, thermal stability, viscosity, conductivity and electrochemical window have been investigated. Two guanidinium ILs and one ether-functionalized guanidinium IL have been used as new electrolytes for lithium secondary batteries.
     Nine new ILs based on small asymmetric trialkylsulfonium cations with TFSI- anion have been prepared. Physical and electrochemical properties of these products have been investigated. All the products were liquids at room temperature, and some of these hydrophobic ionic liquids showed low-viscosity and low-melting point characteristics. The viscosities of S223TFSI, S221TFSI and S123TFSI were 33, 36 and 39 mPa s at 25℃, respectively. The viscosities of these ILs were well fit by the Arrhenius model over the temperature range studied (25-80℃). The thermal decomposition temperatures of these ILs slightly changed in the range of 275-315℃. Electrochemical and thermal stabilities of these ILs permitted them to become promising electrolytes used in electrochemical devices.
     Sixteen new guanidinium ILs based on small cations and TFSI- anion were prepared. Physical and electrochemical properties of these products have been investigated. Twelve products were liquids at room temperature. The thermal decomposition temperatures of these products slightly changed in the range of 380-425 oC. The viscosities of cg22TFSI, cg12TFSI and cg13TFSI were 45, 46 and 52 mPa s at 25℃, respectively. The viscosities and conductivities of the twelve ILs were well fit by the VTF model over the temperature range studied (25-80℃). Nine guanidinium ILs without cyclic structure had better electrochemical stability than three ILs with cyclic structure. 1g23TFSI and 1g33TFSI had the widest electrochemical windows (4.3 V at 25℃).
     Eight new functionalized guanidinium ILs based on small cations containing ether group (methoxyethyl group) or ester group (methyl acetate goup) and TFSI- anion have been synthesized. Physical and electrochemical properties of these products have been investigated. All the products were liquids at room temperature, and they had low melting points. The thermal decomposition temperatures of the 4 ILs with ester group were in the range of 300-345℃, which were obviously lower than the other 4 guanidinium ILs with ether group. The viscosities of cg1(2o1)TFSI and cg2(2o1)TFSI were 46 and 48 mPa s at 25℃, respectively. The viscosities and conductivities of these ILs were well fit by the VTF model over the temperature range studied (25-80℃). The ether and ester group could not remarkably affect the electrochemical stability, and 1g1ETFSI had the widest electrochemical window (4.4 V at 25℃).
     Two ILs based on guanidinium cations and TFSI- anion (1g13TFSI and 1g22TFSI)were chosen to be used in lithium secondary batteries as new electrolytes. The cathodic limiting potentials of the two ILs were 0.7 V versus Li/Li+. However, the lithium plating and striping on Ni electrode could been observed in the two IL electrolytes containing 0.3 mol kg-1 of LiTFSI without additive. Li/LiCoO2 cells using the two IL electrolytes without additive showed good capacity and cycle property at the current rate of 0.2 C. Discharge capacity for the two IL electrolytes decreased obviously with the increasing of the current rate from 0.2 C to 1.0 C.
     One IL based on ether-functionalized guanidinium cations and TFSI- anion (1g1(2o1)TFSI) were chosen to be used in lithium secondary batteries as new electrolyte. The viscosity and conductivity of IL electrolytes with different concentrations of LiTFSI have been investigated. Although the cathodic limiting potentials of this ILs were 0.7 V versus Li/Li+, the lithium plating and striping on Ni electrode could been observed in these IL electrolytes with different concentrations of LiTFSI. The interfaces between lithium metal and the IL electrolytes were also investigated by impedance spectroscopy method with lithium metal symmetrical cells. The concentrations of lithium salt had obvious effect to the capacity and cycle property of Li/LiCoO2 cells using the IL electrolytes at the current rate of 0.2 C. Discharge capacity for the two IL electrolytes decreased with the increasing of the current rate from 0.2 C to 1.5 C, and the electrolyte with 0.75 mol kg-1 of LiTFSI owned better rate performance.
引文
1. Welton T. Room-temperature ioic liquids. Solvents for synthesis and catalysis. Chem. Rev., 1999, 99 (8), 2071-2083.
    2. Holbrey J. D., Seddon K. R. Ionic liquids. Clean Products Process, 1999, 1 (4), 223-236.
    3. Wasserscheid P., Keim W. Ionic liquids - new solutions for transition metal catalysis. Angew. Chem. Int. Ed., 2000, 39 (21), 3772-3789.
    4. Buzzeo M. C., Evans R. G., Compton R. G. Non-haloaluminate room-temperature ionic liquids in electrochemistry-a review. ChemPhysChem., 2004, 5 (8), 1106-1120.
    5. Dupont J., Souza R. F. de, Suarez P. A. Z. Ionic Liquid (Molten Salt) Phase Organometallic Catalysis, Chem. Rev., 2002, 102(10), 3667-3695.
    6. Rogers R. D., Seddon K. R. Ionic liquids-Solvents of the future? Science, 2003, 302 (5646), 792-793.
    7. Handy S. T. Greener solvents: room temperature ionic liquids from biorenewable sources. Chem. Eur. J., 2003, 9 (13), 2938-2944.
    8. Miao W. S., Chan T. H. Ionic-liquid-supported synthesis: a novel liquid-phase strategy for organic synthesis. Acc. Chem. Res., 2006, 39, 897-908.
    9. Anderson J. L., Dixon J. K., Brennecke J. F. Solubility of CO2, CH4, C2H6, C2H4, O2, and N2 in 1-Hexyl-3-methylpyridinium bis(trifluoromethylsulfonyl)imide: comparison to other ionic liquids. Acc. Chem. Res., 2007, 40, 1208-1216.
    10. Lewandowski A., Galiński M. Carbon-ionic liquid double-layer capacitors. J. Phys. Chem. Solids, 2004, 65 (2-3), 281-286.
    11. Sato T., Masuda G., Takagi K. Electrochemical properties of novel ionic liquids for electric double layer capacitor applications. Electrochim. Acta, 2004, 49 (21), 3603-3611.
    12. Baker G. A., Baker S. N., Pandey S., et al. An analytical view of ionic liquids. Analyst, 2005, 130 (6), 800-808.
    13. Ohno H. Electrochemical Aspects of Ionic Liquids, John Wiley & Sons, Inc., New Jersey, 2005.
    14. Wang P., Wenger B., Baker R. H., et al. Charge separation and efficient light energy conversion in sensitized mesoscopic solar cells based on binary ionic liquids. J. Am. Chem. Soc., 2005, 127 (18), 6850-6856.
    15. Endres F., Abedin S. Z. E. Air and water stable ionic liquids in physical chemistry. Phys. Chem. Chem. Phys., 2006, 8 (18), 2101-2116.
    16. Ritchie A., Howard W. Recent developments and likely advances in lithium-ion batteries. J. Power Sources, 2006, 162 (2), 809-812.
    17. Galiński M., Lewandowski A., Stepniak I. Ionic liquids as electrolytes. Electrochim. Acta, 2006, 51 (26), 5567-5580.
    18. MacFarlane D. R., Forsyth M., Howlett P. C., et al. Ionic liquids in electrochemical devices and processes: managing interfacial electrochemistry. Acc. Chem. Res., 2007, 40, 1165-1173.
    19. MacFarlane D. R., Pringle J. M., Johansson K. M., et al. Lewis base ionic liquids. Chem. Commun., 2006, (18), 1905-1917.
    20. Fernicola A., Scrosati B., Ohno H. Potentialities of ionic liquids as new electrolyte media in advanced electrochemical devices. Ionics, 2006, 12 (2), 95-102.
    21. Kuang D., Wang P., Ito S., et al. Stable mesoscopic dye-sensitized solar cells based ontetracyanoborate ionic liquid electrolyte. J. Am. Chem. Soc., 2006, 128 (24), 7732-7733.
    22. Anderson J. L., Armstrong D. W., Wei G. T. Ionic liquids in analytical chemistry. Anal Chem. 2006, 78 (9), 2893-2902.
    23. Duranda J., Teumaa E., Gómez M. Ionic liquids as a medium for enantioselective catalysis. C. R. Chimie, 2007, 10 (3), 152-177.
    24. Hurley F., Wier J. P. Electrodeposition of metals form fused quaternary ammonium salts, J. Electrochem. Soc., 1951, 98, 203-206.
    25. Yoke J.T., Weiss J.F., Tallen G. Reactions of triethylamine with copper(I) and copper(II) halides. Inorg. Chem., 1963, 2 (6), 1210-1216.
    26. Swain C.G., Ohno A., Roe D.K., et al. Tetrahexylammonium benzoate, a liquid salt at 25 degree., a solvent for kinetics or electrochemistry. J. Am. Chem. Soc., 1967, 89 (11), 2648-2649.
    27. Chum H.L., Koch V.R., Miller L.L., et al. Electrochemical scrutiny of organometallic iron complexes and hexamethylbenzene in a room temperature molten salt. J. Am. Chem. Soc., 1975, 97 (11), 3264-3265.
    28. Gate J., Gilbert B., R. A. Osteryoung. Raman spectra of molten aluminum chloride: 1-butylpyridinium chloride systems at ambient temperatures. Inorg. Chem., 1978, 17 (10), 2728-2729.
    29. Robinson J., Osteryoung R. A. An electrochemical and spectroscopic study of some aromatic hydrocarbons in the room temperature molten salt system aluminum chloride-n-butylpyridinium chloride. J. Am. Chem. Soc., 1979, 101 (2), 323-327.
    30. Wilkes J. S., Levisky J. A., Wilson R. A., et al. Dialkylimidazolium chloroaluminate melts: a new class of room-temperature ionic liquids for electrochemistry, spectroscopy and synthesis. Inorg. Chem., 1982, 21 (3), 1263-1264.
    31. Scheffer T. B., Hussey C. L., Seddon K. R., et al. Molybdenum chloro complexes in room-temperature chloroaluminate ionic liquids: stabilization of hexachloromolybdate(2-) and hexachloromolybdate(3-). Inorg. Chem., 1983, 22 (15), 2099-2100.
    32. Laher T. M., Hussey C. L. Copper(I) and copper(II) chloro complexes in the basic aluminum chloride-1-methyl-3-ethylimidazolium chloride ionic liquid. Inorg. Chem., 1983, 22 (22), 3247-3251.
    33. Scheffler T. B., Hussey C. L. Electrochemical study of tungsten chloro complex chemistry in the basic aluminum chloride-1-methyl-3-ethylimidazolium chloride ionic liquid. Inorg. Chem., 1984, 23 (13), 1926-1932.
    34. Appleby D., Hussey C. L., Seddon K. R., et al. Room-temperature ionic liquids as solvents for electronic absorption spectroscopy of halide complexes. Nature, 1986, 323, 614-616.
    35. Dent A. J., Seddon K. R., Welton T. The structure of halogenometallate complexes dissolved in both basic and acidic room-temperature halogenoaluminate (III) ionic liquids, as determined by EXAFS. J. Chem. Soc. Chem. Commun., 1990, 315-316.
    36. Wilkes J. S., Zaworotko M, J. Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids, J. Chem. Soc., 1992, 965-967.
    37. Davis, Jr J. H. Task-specific ionic liquids. Chem. Lett. 2004, 33 (9), 1072-1077.
    38. Fei Z. F., Geldbach T. J., Zhao D. B., et al. From dys-function to bis-function: on the design and applications of functionalised ionic liquids. Chem. Eur. J., 2006, 12 (8), 2122-2130.
    39. Bates E. D.; Mayton R. D., Ntai I., et al. CO2 capture by a task-specific ionic liquid. J. Am.Chem. Soc., 2002, 124 (6), 926-927.
    40. Itoh H., Naka K., Chujo Y. Synthesis of gold nanoparticles modified with ionic liquid based on the imidazolium cation. J. Am. Chem. Soc., 2004 (10), 126, 3026-3027.
    41. Visser A. E., Swatloski R. P., Reichert W. M., et al. Task-specific ionic liquids incorporating novel cations for the coordination and extraction of Hg2+ and Cd2+: synthesis, characterization, and extraction studies. Environ. Sci. Technol., 2002, 36 (11), 2523-2529.
    42. Miao W., Chan T. H. Ionic-liquid-supported peptide synthesis demonstrated by the synthesis of Leu5-enkephalin. J. Org. Chem., 2005, 70 (8), 3251-3255.
    43. Cole A. C., Jensen J. L., Ntai I., et al. Novel br?nsted acidic ionic liquids and their use as dual solvent?catalysts. J. Am. Chem. Soc., 2002, 124 (21), 5962-5963.
    44. Fei Z.F., Ang W.H., Zhao D.B., et al. Revisiting ether-derivatized imidazolium-based ionic liquids. J. Phys. Chem. B, 2007, 111 (34), 10095-10108.
    45. Pernak J., Sobaszkiewicz K., Flaczyk J. F. Ionic liquids with symmetrical dialkoxymethyl-substituted imidazolium cations. Chem. Eur. J., 2004, 10 (14), 3479-3485.
    46. Henderson W. A., Young V. G., Jr., Fox D. M., et al. Alkyl vs. alkoxy chains on ionic liquid cations. Chem. Commun., 2006, 3708-3710.
    47. Liu Q. B., Janssen M. H. A., Rantwijk F. V., et al. Room-temperature ionic liquids that dissolve carbohydrates in high concentrations. Green. Chem., 2005, 7, 39-42.
    48. Branco L. C., Rosa J. N., Ramos J. J. M., et al. Preparation and characterization of new room temperature ionic liquids. Chem. Eur. J., 2002, 8 (16), 3671-3677.
    49. Kimizuka N., Nakashima T. Spontaneous self-assembly of glycolipid bilayer membranes in sugar-philic ionic liquids and formation of ionogels. Langmuir, 2001, 17 (22), 6759-6761.
    50. Zhou Z. B., Matsumoto H., Tatsumi K. Low-Melting, low-viscous, hydrophobic ionic liquids: 1-alkyl(alkyl ether)-3-methylimidazolium perfluoroalkyltrifluoroborate. Chem. Eur. J., 2004, 10 (24), 6581-6591.
    51. Xu W., Wang L. M., Nieman R. A., et al. Ionic liquids of chelated orthoborates as model ionic glassformers. J. Phys. Chem. B, 2003, 107 (42), 11749-11756.
    52. Matsumoto H., Yanagida M., Tanimoto K., et al. Highly conductive room temperature molten salts based on small trimethylalkylammonium cations and bis(trifluoromethylsulfonyl)imide. Chem. Lett., 2000, 29 (8), 922-923.
    53. Zhou Z. B., Matsumoto H., Tatsumi K. A new class of hydrophobic ionic liquids: trialkyl(2-methoxyethyl)ammonium perfluoroethyltrifluoroborate. Chem. Lett., 2004, 33 (7), 886-887.
    54. Zhou Z. B., Matsumoto H., Tatsumi K. Low-melting, low-viscous, hydrophobic ionic liquids: Aliphatic quaternary ammonium salts with perfluoroalkyltrifluoroborates. Chem. Eur. J., 2005, 11 (2), 752-766.
    55. Matsumoto H., Sakaebe H., Tatsumi K. Preparation of room temperature ionic liquids based on aliphatic onium cations and asymmetric amide anions and their electrochemical properties as a lithium battery electrolyte. J. Power sources, 2005, 146 (1-2), 45-50.
    56. Tsunashima K., Sugiya M. Physical and electrochemical properties of low-viscosity phosphonium ionic liquids as potential electrolytes. Electrochem. Commun., 2007, 9 (9), 2353-2358.
    57. Zhou Z. B., Matsumoto H., Tatsumi K. Cyclic quaternary ammonium ionic liquids with perfluoroalkyltrifluoroborates: Synthesis, characterization, and properties. Chem. Eur. J.,2006, 12 (8), 2196-2212.
    58. Zhao D. B., Fei Z. F., Scopelliti R., et al. Synthesis and characterization of ionic liquids incorporating the nitrile functionality. Inorg. Chem., 2004, 43 (6), 2197-2205.
    59. Zhao D. B., Fei Z. F., Geldbach T. J., et al. Nitrile-functionalized pyridinium ionic liquids: synthesis, characterization, and their application in carbon?carbon coupling reactions. J. Am. Chem. Soc., 2004, 126 (48), 15876-15882.
    60. Zhang Q. H., Li Z. P., Zhang J., et al. Physicochemical properties of nitrile-functionalized ionic liquids. J. Phys. Chem. B, 2007, 111 (11), 2864-2872.
    61. Lee J. S., Quan N. D., Hwang J. M., et al. Ionic liquids containing an ester group as potential electrolytes. Electrochem. Commun., 2006, 8 (3), 460-464.
    62. Lall S. I., Mancheno D., Castro S., et al. Polycations. Part X. LIPs, a new category of room temperature ionic liquid based on polyammonium salts. Chem. Commun., 2000, (24), 2413-2414.
    63. Ito K., Nishina N., Ohno H. Enhanced ion conduction in imidazolium-type molten salts. Electrochim. Acta, 2000, 45 (8), 1295-1298.
    64. Anderson J. L., Ding R., Ellern A., et al. Structure and propertoies of high stability geminal dicationic ionic liquids. J. Am. Chem. Soc., 2005, 127 (2), 593-604.
    65. Han X., Armstrong D. W., Using geminal dicationic ionic liquids as solvents for high-temperature organic reactions. Org. Lett., 2005, 7(19), 4205-4208.
    66. Armstrong D. W., Anderson J. High stability diionic liquid salts. US Pat 2006/0025598 A1, 2006.
    67. Gao Y., Twamley B., Shreeve J. M. The first (ferrocenylmethyl)imidazolium and (ferrocenylmethyl)triazolium room temperature ionic liquids. Inorg. Chem., 2004, 43 (11), 3406-3412.
    68. Omotowa B. A., Phillips B. S., Zabinski, J. S., et al. Phosphazene-based ionic liquids: synthesis, temperature-dependent viscosity, and effect as additives in water lubrication of silicon nitride ceramics, Inorg. Chem., 2004, 43 (17), 5466-5471.
    69. Xiao J. C., Shreeve J. M. Synthesis of 2,2'-biimidazolium-based ionic liquids: use as a new reaction medium and ligand for palladium-catalyzed suzuki cross-coupling reactions. J. Org. Chem., 2005, 70 (8), 3072-3078.
    70. Omotowa B. A., Shreeve J. M. Triazine-based polyfluorinated triquaternary liquid salts: synthesis, characterization, and application as solvents in rhodium(I)-catalyzed hydroformylation of 1-octene. Organometallics, 2004, 23 (4), 783-791.
    71. Jin C. M., Twamley B., Shreeve J. M. Low-melting dialkyl- and bis(polyfluoroalkyl)-substituted 1,1'-methylenebis(imidazolium) and 1,1'-methylenebis- -(1,2,4-triazolium) bis(trifluoromethanesulfonyl)amides: ionic liquids leading to bis(N-heterocyclic carbene) complexes of palladium. Organometallics, 2005, 24 (12), 3020-3023.
    72. Jin C. M., Ye C., Phillips B. S., et al. Polyethylene glycol functionalized dicationic ionic liquids with alkyl or polyfluoroalkyl substituents as high temperature lubricants. J. Mater. Chem., 2006, 16 (16), 1529-1535.
    73. Wang R., Jin C. M., Twamley B., et al. Syntheses and characterization of unsymmetric dicationic salts incorporating imidazolium and triazolium functionalities. Inorg. Chem., 2006, 45 (16), 6396-6403.
    74. Zhang Z., Yang L., Lou S., et al. Ionic liquids based on aliphatic tetraalkylammonium dications and TFSI anion as potential electrolytes. J. Power Sources, 2007, 167, 217-222.
    75. Zhang Z., Zhou H., Yang L., et al. Both imidazolium and aliphatic ammonium-based asymmetrical dicationic ionic liquids as potential electrolytes additives applied to lithium ion batteries, Electrochim. Acta, 2008, 53, 4833-4838.
    76. Ohno H., Functional design of ionic liquids. Bull. Chem. Soc. Jpn., 2006, 79 (11), 1665-1680.
    77. Yoshizawa M., Hirao M., Akita K. I., et al. Ion conduction in zwitterionic-type molten salts and their polymers. J. Mater. Chem., 2001, 11 (4), 1057-1062.
    78. Ohno H., Yoshizawa M., Ogihara W. A new type of polymer gel electrolyte: zwitterionic liquid/polar polymer mixture. Electrochim. Acta, 2003, 48 (14-16), 2079-2083.
    79. Yoshizawa M., Ohno H. Anhydrous proton transport system based on zwitterionic liquid and HTFSI. Chem. Commun., 2004, 10 (16), 1828-1829.
    80. Yoshizawa M., Ohno H. A new family of zwitterionic liquids arising from a phase transition of ammonium inner salts containing an ether bond, Chem. Lett., 2004, 33 (12), 1594-1595.
    81. Narita A., Shibayama W., Ohno H. Structural factors to improve physico-chemical properties of zwitterions as ion conductive matrices. J. Mater. Chem., 2006, 16 (15), 1475-1482.
    82. Tiyapiboonchaiya C., Pringle J. M., Sun J., et al. The zwitterion effect in high-conductivity poluelectrolyte materials. Nature Materials, 2004, 3, 29-32.
    83. Byrne N., Howlett P. C., MacFarlane D. R., et al. The zwitterions effect in ionic liquids: towards practical rechargeable lithium-metal batteries. Adv. Mater., 2005, 17, 2497-2501.
    84. Nakamoto H., Watanabe M. Br?nsted acid-based ionic liquids for fuel cell electrolytes. Chem. Commun., 2007, 2539-2541.
    85. Belieres J. P., Angell C. A. Protic ionic liquids: preparation, characterization, and proton free energy level representation. J. Phys. Chem. B, 2007, 111, 4926-4937.
    86. Bonh?te P., Dias A. P., Papageorgion N., et al. Hydrophobic, Highly conductive ambient-temperature molten salts. Inorg. Chem., 1996, 35 (5), 1168-1178.
    87. Namboodiri V. V., Varma R. S. An improved preparation of 1,3-dialkylimidazolium tetrafluroborate ionic liquids using microwaves. Tetrahedron Letters, 2002, 43, 5381-5383.
    88. Varma R. S., Namboodiri V. V. An expeditious solvent-free route to ionic liquids using microwaves. Chem. Commun., 2001, 643-644.
    89. Lévêque J. M., Luche J. L., Pétrier C., et al. An improved preparation of ionic liquids by ultrasound. Green Chem., 2002, 4, 357-360.
    90. Gordon J. E., Rao G. N. S. Fused organic salts. 8. properties of molten straight-chain isomers of tetra-n-pentylammonium salts. J. Am. Chem. Soc., 1978, 100 (24), 7445-7454.
    91. Sesto R. E. D., Corley C., Robertson A., et al. Tetraalkylphosphonium-based ionic liquids. J. Organomet. Chem., 2005, 690 (10), 2536-2542.
    92. MacFarlane D. R., Meakin P., Sun J., et al. Pyrrolidinium imides: a new family of molten salts and conductive plastic crystal phases. J. Phys. Chem. B, 1999, 103, 4164-4170.
    93. Ngo H. L., LeCompte K., Hargens L., et al. Thermal properties of imidazolium ionic liquids. Thermochim. Acta. 2000, 357-358, 97-102.
    94. Pringle J. M., Golding J., Forsyth C. M. et al. Physical trends and structural features in organic salts of the thiocyanate anion. J. Mater. Chem., 2002, 12 (12), 3475-3480.
    95. Matsumot H., Matsuda T., Miyazaki Y. Room temperature molten salts based ontrialkylsulfonium cations and bis(trifluoromethylsulfonyl)imide. Chem. Lett., 2000, 1430-1431.
    96. MacFarlane D. R., Golding J., Forsyth S., et al. Low viscosity ionic liquids based on organic salts of the dicyanamide anion. Chem. Commun., 2001, (16), 1430-1431.
    97. Yoshida Y., Muroi K., Otsuka A., et al. 1-Ethyl-3-methylimidazolium based ionic liquids containing cyano groups: synthesis, characterization, and crystal structure. Inorg. Chem. 2004, 43 (4), 1458-1462.
    98. Tokuda H., Hayamizu K., Ishii K., et al. Physicochemical properties and structures of room temperature ionic liquids. 1. variation of anionic species. J. Phys. Chem. B 2004, 108 (42), 16593-16600.
    99. Hagiwara R., Ito Y. Room temperature ionic liquids of alkylimidazolium cations and fluoroanions. J. Fluorine Chem., 2000, 105 (2), 221-227.
    100. Hagiwara R., Matsomoto K., Nakamori Y., et al. Physicochemical properties of 1,3-dialkylimidazolium fluorohydrogenate room-temperature molten salts. J. Electrochem. Soc., 2003, 150 (12), D195-D199.
    101. Hayamizu K., Aihara Y., Arai S., et al. Diffusion, conductivity and DSC studies of a polymer gel electrolyte composed of cross-linked PEO,γ-butyrolactone and LiBF4. Solid State Ionics, 1998, 107(1-2), 1-12.
    102. Hayamizu K., Aihara Y., Arai S., et al. Pulse-Gradient Spin-Echo 1H, 7Li, and 19F NMR Diffusion and Ionic Conductivity Measurements of 14 Organic Electrolytes Containing LiN(SO2CF3)2. J. Phys. Chem. B., 1999, 103 (3), 519-524.
    103. Every H., Bishop A. G., Forsyth M., et al. Ion diffusion in molten salt mixtures. Electrochim. Acta, 2000, 45 (8), 1279-1284.
    104. Tokuda H., Hayamizu K., Ishii K., et al. Physicochemical properties and structures of room temperature ionic liquids. 2. variation of alkyl chain length in imidazolium cation. J. Phys. Chem. B, 2005, 109 (13), 6103-6110.
    105. Buzzeo M. C., Hardacre C., Compton R. G. Extended electrochemical windows made accessible by room temperature ionic liquid/organic solvent electrolyte systems. ChemPhysChem., 2006, 7 (1), 176-180.
    106. Schr?der U., Wadhawan J. D., Compton R. G., et al. Water-induced accelerated ion diffusion: voltammetric studies in 1-methyl-3-[2,6-(S)-dimethylocten-2-yl]imidazolium tetrafluoroborate, 1-butyl-3-methylimidazolium tetrafluoroborate and hexafluorophosphate ionic liquids. New J. Chem., 2000, 24 (12), 1009-1015.
    107. Earle M. J., Esperanca J. M. S. S., Gilea M. A., et al. The distillation and volatility of ionic liquids. Nature, 2006, 439 (7078), 831-834.
    108. Paulechka Y. U., Zaitsau D. H., Kabo G. J., et al. Vapor pressure and thermal stability of ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide. Thermochim. Acta, 2005, 439 (1-2), 158-160.
    109. Wasserscheid P. Chemistry: volatile times for ionic liquids. Nature, 2006, 439 (7078), 797.
    110. Quarmby I. C., Mantz R. A., Goldenberg I. M., et al. Stoichiometry of latent acidity in buffered chloroaluminate ionic liquids. Anal. Chem., 1994, 66 (21), 3558-3561.
    111. Quarmby I. C., Osteryoung R. A. Latent acidity in buffered chloroaluminate ionic liquids. J. Am. Chem. Soc., 1994, 116 (6), 2649-2650.
    112. Nishida T., Tashiro Y., Yamamoto M. Physical and electrochemical properties of1-alkyl-3-methylimidazolium tetrafluoroborate for electrolyte. J. Fluorine Chem., 2003, 120 (2), 135-141.
    113. Fung Y. S., Zhou R. Q. Room temperature molten salt as medium for lithium battery. J. Power Sources, 1999, 81-82, 891-895.
    114. Ui K., Minami T., Ishikawa K., et al. Development of non-flammable lithium secondary battery with ambient-temperature molten salt electrolyte performance of binder-free carbon-negative electrode. J. Power Sources, 2005, 146 (1-2), 698-702.
    115. Ui K., Yamamoto K., Ishikawa K., et al. Development of non-flammable lithium secondary battery with room-temperature ionic liquid electrolyte: Performance of electroplated Al film negative electrode. J. Power Sources, 2008, 183, 347-350.
    116. Matsumoto H., Sakaebe H. N-Methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl)imide (PP13-TFSI)– novel electrolyte base for Li battery. Electrochem. Commun., 2003, 5, 594-598.
    117. Sakaebe H., Matsumoto H., Tatsumi K. Discharge-charge properties of Li/LiCoO2 cell using room temperature ionic liquids (RTILs) based on quaternary ammonium cation– Effect of the structure. J. Power Sources, 2005, 146, 693-697.
    118. Sakaebe H., Matsumoto H., Tatsumi K. Application of room temperature ionic liquids to Li battery. Electrochim. Acta, 2007, 53, 1048-1054.
    119. Pyun S. I., Kim S. W., Shin H. C. Lithium transport through Li1+δ[Ti2-yLiy]O4 (y=0;1/3 )electrodes by analyzing current transients upon large potential steps. J. Power Sources, 1999, 81-82, 248-254.
    120. Nakagawa H., Izuchi S., Kuwana K., et al. Liquid and polymer gel electrolytes for lithium batteries composed of room-temperature molten salt doped by lithium salt. J. Electrochem. Soc., 2003, 150 (6), A695-A670.
    121. Garcia B., Lavallée S., Perron G., et al. Room temperature molten salts as lithium battery electrolyte. Electrochim. Acta, 2004, 49 (26), 4583-4588.
    122. Diaw M., Chagnes A., CarréB., et al. Mixed ionic liquid as electrolyte for lithium batteries. J. Power Sources, 2005, 146 (1-2), 682-684.
    123. Chagnes A., Diaw M., CarréB., et al. Imidazolium-organic solvent mixtures as electrolytes for lithium batteries. J. Power Sources, 2005, 145 (1), 82-88.
    124. Egashira M., Todo H., Yoshimoto N., et al. Functionalized imidazolium ionic liquids as electrolyte components of lithium batteries. J. Power Sources, 2007, 174, 560-564.
    125. Zhao L., Yamaki J., Egashira M. Analysis of SEI formed with cyano-containing imidazolium-based ionic liquid electrolyte in lithium secondary batteries. J. Power Sources, 2007, 174, 352-358.
    126. Bazito F. F. C., Kawano Y., Torresi R. M. Synthesis and characterization of two ionic liquids with emphasis on their chemical stability towards metallic lithium. Electrochim. Acta, 2007, 52, 6427-6437.
    127. Seki S., Kobayashi Y., Miyashiro H., et al. Lithium secondary batteries using modified-imidazolium room-temperature ionic liquid. J. Phys. Chem. B, 2006, 110 (21), 10228-10230.
    128. Seki S., Ohno Y., Kobayashi Y., et al. Imidazolium-based room-temperature ionic liquid for lithium secondary batteries. J. Electrochem. Soc., 2007, 154 (3), A173-A177.
    129. Hayashi K., Nemoto Y., Akuto K., et al. Alkylated imidazolium salt electrolyte for lithiumcells. J. Power Sources, 2005, 146, 689-692.
    130. Matsumoto H., Sakaebe H., Tatsumi K., et al. Fast cycling of Li/LiCoO2 cell with low-viscosity ionic liquids based on bis(fluorosulfonyl)imide [FSI]-. J. Power Sources, 2006, 160, 1308-1313.
    131. Guerfi A., Duchesne S., Kobayashi Y., et al. LiFePO4 and graphite electrodes with ionic liquids based on bis(fluorosulfonyl)imide [FSI]- for Li-ion batteries. J. Power Sources, 2008, 175, 866-873.
    132. Holzapfel M., Jost C., Novák P. Stable cycling of graphite in an ionic liquid based electrolyte. Chem. Commun., 2004, 2098-2099.
    133. Holzapfel M., Jost C., Schwab A. P. , et al. Stabilisation of lithiated graphite in an electrolyte based on ionic liquids: an electrochemical and scanning electron microscopy study. Carbon, 2005, 43 (7), 1488-1498.
    134. Ishikawa M., Sugimoto T., Kikuta M., et al. Pure ionic liquid electrolytes compatible with a graphite carbon negative electrode in rechargeable lithium-ion batteries. J. Power Sources, 2006, 162, 658-662.
    135. Sugimoto T., Kikuta M., Ishiko E., et al. Ionic liquid electrolytes compatible with graphitized carbon negative without additive and their effects on interfacial properties. J. Power Sources, 2008, 183, 436-440.
    136. Sugimoto T., Atsumi Y., Kikuta M., et al. Ionic liquid electrolyte systems based on bis(fluorosulfonyl)imide for lithium-ion batteries. J. Power Sources, 2009, 189, 802-805.
    137. Lee S. Y., Yong H. H., Lee Y. J., et al. Two-cation competition in ionic-liquid-modified electrolytes for lithium ion batteries. J. Phys. Chem. B, 2005, 109, 13663-13667.
    138. Markevich E., Baranchugov V., Aurbach D. On the possibility of using ionic liquids as electrolytes solutions for rechargeable 5 V Li ion batteries. Electrochem. Commun. 2006, 8, 1331-1334.
    139. Wang J., Chew S. Y., Zhao Z. W., et al. Sulfur-mesoporous carbon composites in conjunction with a novel ionic liquid electrolyte for lithium rechargeable batteries. Carbon, 2008, 46, 229-235.
    140. Egashira M., Okada S., Yamaki J., et al. The preparation of quaternary ammonium-based ionic liquid containing a cyano group and its properties in a lithium battery electrolyte. J. Power Sources, 2004, 138, 240-244.
    141. Egashira M., Nakagawa M., Watanabe I., et al. Cyano-containing quaternary ammonium-based ionic liquid as a‘co-solvent’for lithium battery electrolyte. J. Power Sources, 2005, 146, 685-688.
    142. Egashira M., Nakagawa M., Watanabe I., et al. Charge-discharge and high temperature reaction of LiCoO2 in ionic liquid electrolytes based on cyano-substituted quaternary ammonium cation. J. Power Sources, 2006, 160, 1387-1390.
    143. Seki S., Kobayashi Y., Miyashiro H., et al. Reversibility of lithium secondary batteries using a room-temperature ionic liquid mixture and lithium metal. Electrochem. Solid-State Lett., 2005, 8 (11), A577-A578.
    144. Seki S., Ohno Y., Miyashiro H., et al. Quaternary ammonium room-temperature ionic liquid/lithium salt binary electrolytes: electrochemical study. J. Electrochem. Soc., 2008, 155 (6) A421-A427.
    145. Tsunashima K., Yonekawa F., Sugiya M. A lithium battery electrolyte based on aroom-temperature Phosphonium ionic liquid. Chem. Lett., 2008, 37 (3), 314-315.
    146. Seki S., Kobayashi Y., Miyashiro H., et al. Highly reversible lithium metal secondary battery using a room temperature ionic liquid/lithium salt mixture and a suface-coated cathode active material. Chem. Commun., 2006, 544-545.
    147. Tsunashima K., Yonekawa F., Sugiya M. Lithium sencondary batteries using a lithium nickelate-based cathode and phosphonium ionic liquid electrolytes. Electrochem. Solid-State Lett., 2009, 12 (3), A54-A57.
    148. Katayama Y., Yukumoto M., Miura T. Electrochemical intercalation of lithium into graphite in room-temperature molten salt containing ethylene carbonate. Electrochem. Solid-State Lett., 2003, 6 (5), A96-A97.
    149. Sato T., Maruo T., Marukane S., et al. Ionic liquids containing carbonate solvent as electrolytes for lithium ion cells. J. Power Sources, 2004, 138, 253-261.
    150. Zheng H., Jiang K., Abe T., et al. Electrochemical intercalation of lithium into a natural graphite anode in quaternary ammonium-based ionic liquid electrolytes. Carbon, 2006, 44, 203-210.
    151. Zheng H., Li B., Fu Y., et al. Compatibility of quaternary ammonium-based ionic liquid electrolytes with electrodes in lithium ion batteries. Electrochem. Acta, 2006, 52, 1556-1562.
    152. Taggougui M., Diaw M., Carre B., et al. Solvents in salt electrolyte: Benefits and possible use as electrolyte for lithium-ion battery. Electrochem. Acta, 2008, 53, 5496-5502.
    153. Shin J. Henderson W. A., Scaccia S., et al. Solid-state Li/LiFePO4 polymer electrolyte batteries incorporating an ionic liquid cycled at 40℃. J. Power Sources, 2006, 156, 560-566.
    154. Fernicola A., Croce F., Scrosati B., et al. LiTFSI-BEPyTFSI as an improved ionic liquid electrolyte for rechargeable lithium batteries. J. Power Sources, 2007, 174, 342-348.
    155. Appetecchi G. B., Montanino M., Balducci A., et al. Lithium insertion in graphite from ternary ionic liquid-lithium salt electrolytes I. electrochemical characterization of the electrolytes. J. Power Sources, 2009, 192 (2), 599-605.
    156. Nakagawa H., Fujino Y., Kozono S., et al. Application of nonflammable electrolyte with room temperature ionic liquids (RTILs) for lithium-ion cells. J. Power Sources, 2007, 174, 1021-1026.
    157. Yuan L. X., Feng J. K., Ai X. P., et al. Improved dischargeability and reversibility of sulfur cathode in a novel ionic liquid electrolyte. Electrochem. Commun. 2006, 8, 610-614.
    158. Baranchugov V., Markevich E., Pollak E., et al. Amorphous silicon thin films as a high capacity anodes for Li-ion batteries in ionic liquid electrolytes. Electrochem. Commun. 2007, 9, 796-800.
    159. Chou S. L., Wang J. Z., Sun J. Z., et al. High capacity, safety, and Enhanced cyclability of lithium metal battery using a V2O5 nanomaterial cathode and room temperature ionic liquid electrolyte. Chem. Mater., 2008, 20 (22), 7044-7051.
    160. Wang J. Z., Chou S. L., Chew S. Y., et al. Nickel sulfide cathode in combination with an ionic liquid-based electrolyte for rechargeable lithium batteries. Solid State Ionics, 2008, 179, 2379-2382.
    161. Borgel V., Markevich E., Aurbach D., et al. On the application of ionic liquids for rechargeable Li batteries: High voltage systems. J. Power Sources, 2009, 189 (1), 331-336.
    162. Vega J. A., Zhou J., Kohl P. A. Electrochemical comparison and deposition of lithium and potassium from phosphonium- and ammonium-TFSI ionic liquids. J. Electrochem. Soc.,2009, 155 (4), A253-A259.
    163. Tsunashima K., Sugiya M. Electrochemical behavior of lithium in room-temperature phosphonium ionic liquids as lithium battery electrolytes. Electrochem. Solid-State Lett., 2008, 11 (2), A17-A19.
    164. Josip C., Thanthrimudalige D. J. D. Electrolytes for lithium rechargeable cells. US6326104B1, 2001-12-04.
    165. Lebdeh Y. A., Abouimrane A., Alarco P. J., et al. Ionic liquids and plastic crystalline phase of pyrazolium imide salts as electrolytes for rechargeable lithium-ion batteries. J. Power Sources, 2006, 154 (1), 255-261.
    166. Yang L., Zhang Z. X., Gao X. H.,et al. Asymmetric sulfonium-based molten salts with TFSI? or PF6? anion as novel electrolytes. J. Power Sources, 2006, 162 (1), 614-619.
    167. Luo S., Zheng Z., Yang L. Lithium secondary batteries using an asymmetric sulfonium-based room temperature ionic liquid as a potential electrolyte. Chinese Science Bulletin, 2008, 53 (9), 1337-1342.
    168. Nguyen D. Q., Hwang J., Lee J. S., et al. Multi-functional zwitterionic compounds as additives for lithium battery electrolytes. Electrochem. Commun., 2007, 9 (1), 109-114.
    169. Nguyen D. Q., Bae H. W., Jeon E. H., et al. Zwitterionic imidazolium compounds with high cathodic stability as additives for lithium battery electrolytes. J. Power Sources, 2008, 183, 303-309.
    1. Sakaebe H., Matsumoto H. N-methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl) imide (PP13-TFSI)-Novel electrolyte base for Li battery. Electrochem. Commun., 2003, 5 (7), 594-598.
    2. Nakagawa H., Izuchi S., Kuwana K., et al. Liquid and polymer gel electrolytes for lithium batteries composed of room-temperature molten salt doped by lithium salt. J. Electrochem. Soc., 2003, 150 (6), A695-A700.
    3. Kuang D., wang P., Ito S., et al. Stable mesoscopic dye-sensitized solar cells based on tetracyanoborate ionic liquid electrolyte. J. Am. Chem. Soc., 2006, 128 (24), 7732-7733.
    4. Mazille F., Fei Z., Kuang D., et al. Influence of ionic liquids bearing functional groups in dye-sensitized solar cells. Inorg. Chem., 2006, 45 (4),1585-1590.
    5. Ue M., Takeda M., Toriumi A., et al. Application of low-viscosity ionic liquid to the electrolyte of double-layer capacitors. J. Electrochem. Soc., 2003, 150 (4), A499-A502.
    6. Sato T., Masuda G., Takagi K. Electrochemical properties of novel ionic liquids for electric double layer capacitor applications. Electrochim. Acta., 2004, 49 (21), 3603-3611.
    7. Susan M. A. B. H., Noda A., Mitsushima S., et al. Br?nsted acid–base ionic liquids and their use as new materials for anhydrous proton conductors. Chem. Commun., 2003, 938-939.
    8. Noda A., Susan M. A. B. H., Kubo K., et al. Br?nsted acid?base ionic liquids as proton-conducting nonaqueous electrolytes. J. Phys. Chem. B, 2003, 107 (17), 4024-4033.
    9. Bonh?te P., Dias A. P., Papageorigiou N., et al. Hydrophobic, Highly conductive ambient-temperature molten salts. Inorg. Chem., 1996, 35 (5), 1168-1178.
    10. Tokuda H., Hayamizu K., Ishii K., et al. Physicochemical properties and structures of room temperature ionic liquids. 1. Variation of Anionic Species. J. Phys. Chem. B, 2004, 108 (42), 16593-16600.
    11. MacFarlane D. R., Meakin P., Sun J., et al. Pyrrolidinium imides: a new family of molten salts and conductive plastic crystal phases. J. Phys. Chem. B, 1999, 103 (20), 4164-4170.
    12. Sun J., Forsyth M., MacFarlane D. R. Room-Temperature molten salts based on the quaternary ammonium ion. J. Phys. Chem. B, 1998, 102 (44), 8858-8864.
    13. Zhou Z. B., Matsumoto H., Tatsumi K. Cyclic quaternary ammonium ionic liquids with perfluoroalkyltrifluoroborates: synthesis, characterization, and properties. Chem. Eur. J., 2006, 12 (8), 2196-2212.
    14. Crosthwaite J. M., Muldoon M. J., Dixon J. K., et al. Phase transition and decomposition temperatures, heat capacities and viscosities of pyridinium ionic liquids. J. Chem. Thermodynamics, 2005, 37(6), 559-568.
    15. Bradaric C. J., Downard A., Kennedy C., et al. Industrial preparation of phosphonium ionic liquids. Green Chem., 2003, 5, 143-152.
    16. Keglevich G., Baan Z., Hermecz I., et al. The phosphorus aspects of green chemistry: The use of quaternary phosphonium salts and 1,3-dialkylimidazolium hexafluorophosphates in organic synthesis. Curr. Org. Chem., 2007, 11 (1), 107-126.
    17. Ma M., Johnson K. E. Some physicochemical characteristics of molten salts derived from trimethylsulfonium bromide. Can. J. Chem., 1995, 73 (4), 593-598.
    18. Xiao L., Johnson K. E. Ionic liquids derived from trialkylsulfonium bromides: Physicochemical properties and potential applications. Can. J. Chem., 2004, 82 (4), 491-498.
    19. Stegemann H., Rohde A., Reiche A., et al. Room temperature molten polyiodides. Electrochim. Acta, 1992, 37 (3), 379-383.
    20. Paulsson H., Hagfeldt A., Kloo L., et al. Molten and solid trialkylsulfonium iodides and their polyiodides as electrolytes in dye-sensitized nanocrystalline solar cells. J. Phys. Chem. B, 2003, 107 (49), 13665-13670.
    21. Gerhard D., Alpaslan S. C., Gores H. J., et al. Trialkylsulfonium dicyanamides - a new family of ionic liquids with very low viscosities. Chem. Commun., 2005, 5080-5082.
    22. Barisci J. N., Wallace G. G., MacFarlane D. R.,et al. Investigation of ionic liquids as electrolytes for carbon nanotube electrodes. Electrochem. Commun., 2004, 6 (1), 22-27.
    23. Matsumoto H., Matsuda T., Miyazaki Y. Room temperature molten salts based on trialkylsulfonium cations and bis(trifluoromethylsulfonyl)imide. Chem. Lett., 2000, 12, 1430-1431.
    24. Matsumoto H., Sakaebe H., Tatsumi K. Preparation of room temperature ionic liquids based on aliphatic onium cations and asymmetric amide anions and their electrochemical properties as a lithium battery electrolyte. J. Power Sources, 2005, 146 (1-2), 45-50.
    25. Okoturo O. O., VanderNoot T. J. Temperature dependence of viscosity for room temperature ionic liquids. J. Electroanal. Chem., 2004, 568 (1-2), 167-181.
    26. Yang L., Zhang Z. X., Gao X. H., et al. Asymmetric sulfonium-based molten salts with TFSI? or PF6? anion as novel electrolytes. J. Power Sources, 2006, 162 (1), 614-619.
    27. Gordon J.E., Rao G.N.S. Fused organic salts. 8. properties of molten straight-chain isomers of tetra-n-pentylammonium salts. J. Am. Chem. Soc., 1978, 100 (24), 7445-7454.
    28. Sesto R. E. D., Corley C., Robertson A., et al. Tetraalkylphosphonium-based ionic liquids. J. Organomet. Chem., 2005, 690 (10), 2536-2542.
    29. Matsumoto H., Yanagida M., Tanimoto K., et al. Highly conductive room temperature molten salts based on small trimethylalkylammonium cations and bis(trifluoromethylsulfonyl)imide. Chem. Lett., 2000, 29(8), 922-923.
    30. Xu W., Cooper E. I., Angell C. A. Ionic Liquids: ion mobilities, glass temperatures, and fragilities. J. Phys. Chem. B, 2003, 107 (25), 6170-6178.
    31. Yoshizawa M., Xu W., Angell C. A. Ionic liquids by proton transfer: vapor pressure, conductivity, and the relevance ofΔpKa from aqueous solutions. J. Am. Chem. Soc., 2003, 125 (50), 15411-15419.
    32. Tsunashima K., Sugiya M. Physical and electrochemical properties of low-viscosity phosphonium ionic liquids as potential electrolytes. Electrochem. Commun., 2007, 9 (9), 2353-2358.
    1. Bonh?te P., Dias A. P., Papageorigiou N., et al. Hydrophobic, highly conductive ambient-temperature molten salts. Inorg. Chem., 1996, 35 (5), 1168-1178.
    2. Tokuda H., Hayamizu K., Ishii K., et al. Physicochemical properties and structures of room temperature ionic liquids. 1. variation of anionic species. J. Phys. Chem. B, 2004, 108 (42), 16593-16600.
    3. MacFarlane D. R., Meakin P., Sun J., et al. Pyrrolidinium imides: A new family of molten salts and conductive plastic crystal phases. J. Phys. Chem. B, 1999, 103 (20), 4164-4170.
    4. Sun J., Forsyth M., MacFarlane D. R. Room-temperature molten salts Based on the quaternary ammonium ion. J. Phys. Chem. B, 1998, 102 (44), 8858-8864.
    5. Zhou Z. B., Matsumoto H., Tatsumi K. Cyclic quaternary ammonium ionic liquids with perfluoroalkyltrifluoroborates: synthesis, characterization, and properties. Chem. Eur. J., 2006, 12 (8), 2196-2212.
    6. Crosthwaite J. M., Muldoon M. J., Dixon J. K., et al. Phase transition and decomposition temperatures, heat capacities and viscosities of pyridinium ionic liquids. J. Chem. Thermodynamics, 2005, 37 (6), 559-568.
    7. Fang S., Yang L., Wei C., et al. Low-viscosity and low-melting point asymmetric trialkylsulfonium based ionic liquids as potential electrolytes. Electrochem. Commun., 2007, 9 (11), 2696-2702.
    8. Tsunashima K., Sugiya M. Physical and electrochemical properties of low-viscosity phosphonium ionic liquids as potential electrolytes. Electrochem. Commun., 2007, 9 (9), 2353-2358.
    9. Gros P., Perchec P. L., Senet J. P. Reaction of epoxides with chlorocarbonylated compounds catalyzed by hexaalkylguanidinium chloride. J. Org. Chem., 1994, 59 (17), 4925-4930.
    10. Schlama T., Gouverneur V., Valleix A., et al. One-Step Synthesis of Chiral Guanidinium Salts from Phosgeniminium Salts. J. Org. Chem., 1997, 62 (12), 4200-4202.
    11. Xie H., Zhang S., Duan H. An ionic liquid based on a cyclic guanidinium cation is an efficient medium for the selective oxidation of benzyl alcohols. Tetrahedron Lett., 2004, 45 (9), 2013-2015.
    12. Xie H., Duan H., Li S., et al. The effective synthesis of propylene carbonate catalyzed by silica-supported hexaalkylguanidinium chloride. New J. Chem., 2005, 29, 1199-1203.
    13. Branco L. C., Gois P. M. P., Lourenco N. M. T., et al. Simple transformation of crystalline chiral natural anions to liquid medium and their use to induce chirality. Chem. Commun., 2006, 2371-2372.
    14. Gao Y., Arritt S. W., Twamley B., et al. Guanidinium-Based Ionic Liquids. Inorg. Chem., 2005, 44 (6), 1704-1712.
    15. Mateus N. M. M., Branco L. C., Lourenco N. M. T., et al. Synthesis and properties of tetra-alkyl-dimethylguanidinium salts as a potential new generation of ionic liquids. Green Chem., 2003, 5, 347-352.
    16. Kulkarni P. S., Branco L. C., Crespo J. G., et al. Comparison of physicochemical properties of new ionic liquids based on imidazolium, quaternary ammonium, and guanidinium cations. Chem. Eur. J., 2007, 13 (30), 8478-8488.
    17. Wang P., Zakeeruddin S. M., Gr?tzel M., et al. Novel room temperature ionic liquids ofhexaalkyl substituted guanidinium salts for dye-sensitized solar cells. Appl. Phys. A, 2004, 79 (1) 73-77.
    18. Schuchardt U., Vargas R. M., Gelbard G. Alkylguanidines as catalysts for the transesterification of rapeseed oil. J. Mol. Catal. A-Chem., 1995, 99 (2), 65-70.
    19. Gordon J. E., Rao G. N. S. J. Fused organic salts. 8. Properties of molten straight-chain isomers of tetra-n-pentylammonium salts. Am. Chem. Soc., 1978, 100 (24), 7445-7454.
    20. Sesto R. E. D., Corley C., Robertson A., et al. Tetraalkylphosphonium-based ionic liquids. J. Organomet. Chem., 2005, 690 (10), 2536-2542.
    21. Matsumoto H., Yanagida M., Tanimoto K., et al. Highly conductive room temperature molten salts based on small trimethylalkylammonium cations and bis(trifluoromethylsulfonyl)imide Chem. Lett., 2000, 29 (8), 922-923.
    22. Matsumoto H., Sakaebe H., Tatsumi K. Preparation of room temperature ionic liquids based on aliphatic onium cations and asymmetric amide anions and their electrochemical properties as a lithium battery electrolyte. J. Power Sources, 2005, 146 (1-2), 45-50.
    23. Bazito F. F. C., Kawano Y., Torresi R. M. Synthesis and characterization of two ionic liquids with emphasis on their chemical stability towards metallic lithium. Electrochim. Acta, 2007, 52 (23), 6427-6437.
    24. Okoturo O. O., VanderNoot T. J. Temperature dependence of viscosity for room temperature ionic liquids. J. Electroanal. Chem., 2004, 568, 167-181.
    1. Bonh?te P., Dias A. P., Papageorigiou N., et al. hydrophobic, highly conductive ambient-temperature molten salts. Inorg. Chem., 1996, 35 (5), 1168-1178.
    2. Tokuda H., Hayamizu K., Ishii K., et al. Physicochemical properties and structures of room temperature ionic liquids. 1. Variation of anionic species. J. Phys. Chem. B, 2004, 108 (42), 16593-16600.
    3. MacFarlane D. R., Meakin P., Sun J., et al. Pyrrolidinium imides: A new family of molten salts and conductive plastic crystal phases. J. Phys. Chem. B, 1999, 103 (20), 4164-4170.
    4. Sun J., Forsyth M., MacFarlane D. R. Room-temperature molten salts based on the quaternary ammonium ion. J. Phys. Chem. B, 1998, 102 (44), 8858-8864.
    5. Crosthwaite J. M., Muldoon M. J., Dixon J. K., et al. Phase transition and decomposition temperatures, heat capacities and viscosities of pyridinium ionic liquids. J. Chem. Thermodyn., 2005, 37 (6), 559-568.
    6. Fang S., Yang L.,? Wei C., et al. Low-viscosity and low-melting point asymmetric trialkylsulfonium based ionic liquids as potential electrolytes. Electrochem. Commun., 2007, 9 (11), 2696-2702.
    7. Bradaric C. J., Downard A., Kennedy C., et al. Industrial preparation of phosphonium ionic liquids. Green Chem., 2003, 5, 143-152.
    8. Davis, Jr J. H. Task-specific ionic liquids. Chem. Lett. 2004, 33 (9), 1072-1077.
    9. Fei Z. F., Geldbach T. J., Zhao D. B., et al. From dys-function to bis-function: on the design and applications of functionalised ionic liquids. Chem. Eur. J., 2006, 12 (8), 2122-2130.
    10. Fei Z. F., Ang W. H., Zhao D. B., et al. Revisiting ether-derivatized imidazolium-based ionic liquids. J. Phys. Chem. B, 2007, 111 (34), 10095-10108.
    11. Pernak J., Sobaszkiewicz K., Flaczyk J. F. Ionic liquids with symmetrical dialkoxymethyl-substituted imidazolium cations. Chem. Eur. J., 2004, 10 (14), 3479-3485.
    12. Henderson W. A., Young V. G., Jr., Fox D. M., et al. Alkyl vs. alkoxy chains on ionic liquid cations. Chem. Commun., 2006, 3708-3710.
    13. Liu Q. B., Janssen M. H. A., Rantwijk F. V., et al. Room-temperature ionic liquids that dissolve carbohydrates in high concentrations. Green. Chem., 2005, 7, 39-42.
    14. Branco L. C., Rosa J. N., Ramos J. J. M., et al. Preparation and characterization of new room temperature ionic liquids. Chem. Eur. J., 2002, 8 (16), 3671-3677.
    15. Kimizuka N., Nakashima T., Spontaneous self-assembly of glycolipid bilayer membranes in sugar-philic ionic liquids and formation of ionogels. Langmuir, 2001, 17 (22), 6759-6761.
    16. Zhou Z. B., Matsumoto H., Tatsumi K. Low-Melting, low-viscous, hydrophobic ionic liquids: 1-alkyl(alkyl ether)-3-methylimidazolium perfluoroalkyltrifluoroborate. Chem. Eur. J., 2004, 10 (24), 6581-6591.
    17. Xu W., Wang L. M., Nieman R. A., et al. Ionic liquids of chelated orthoborates as model ionic glassformers. J. Phys. Chem. B, 2003, 107 (42), 11749-11756.
    18. Matsumoto H., Yanagida M., Tanimoto K., et al. Highly conductive room temperature molten salts based on small trimethylalkylammonium cations and bis(trifluoromethylsulfonyl)imide. Chem. Lett., 2000, 29 (8), 922-923.
    19. Zhou Z. B., Matsumoto H., Tatsumi K. A new class of hydrophobic ionic liquids: trialkyl(2-methoxyethyl)ammonium perfluoroethyltrifluoroborate. Chem. Lett., 2004, 33 (7),886-887.
    20. Zhou Z. B., Matsumoto H., Tatsumi K. Low-melting, low-viscous, hydrophobic ionic liquids: Aliphatic quaternary ammonium salts with perfluoroalkyltrifluoroborates. Chem. Eur. J., 2005, 11 (2), 752-766.
    21. Matsumoto H., Sakaebe H., Tatsumi K. Preparation of room temperature ionic liquids based on aliphatic onium cations and asymmetric amide anions and their electrochemical properties as a lithium battery electrolyte. J. Power sources, 2005, 146 (1-2), 45-50.
    22. Tsunashima K., Sugiya M. Physical and electrochemical properties of low-viscosity phosphonium ionic liquids as potential electrolytes. Electrochem. Commun., 2007, 9 (9), 2353-2358.
    23. Zhou Z. B., Matsumoto H., Tatsumi K. Cyclic quaternary ammonium ionic liquids with perfluoroalkyltrifluoroborates: Synthesis, characterization, and properties. Chem. Eur. J., 2006, 12 (8), 2196-2212.
    24. Ramos J. J. M., Afonso C. A., Branco L. C. Glass transition relaxation and fragility in two room temperature ionic liquids. J. Therm. Anal. Cal., 2003, 71 (2), 659-666.
    25. Sato T., Masuda G., Takagi K. Electrochemical properties of novel ionic liquids for electric double layer capacitor applications. Electrochim. Acta, 2004, 49 (21), 3603-3611.
    26. Zhao D. B., Fei Z. F., Scopelliti R., et al. Synthesis and characterization of ionic liquids incorporating the nitrile functionality. Inorg. Chem., 2004, 43 (6), 2197-2205.
    27. Zhao D. B., Fei Z. F., Geldbach T. J., et al. Nitrile-functionalized pyridinium ionic liquids: synthesis, characterization, and their application in carbon?carbon coupling reactions. J. Am. Chem. Soc., 2004, 126 (48), 15876-15882.
    28. Zhang Q. H., Li Z. P., Zhang J., et al. Physicochemical properties of nitrile-functionalized ionic liquids. J. Phys. Chem. B, 2007, 111 (11), 2864-2872.
    29. Egashira M., Okada S., Yamaki J., et al. The preparation of quaternary ammonium-based ionic liquid containing a cyano group and its properties in a lithium battery electrolyte. J. Power Sources, 2004, 138 (1-2), 240-244.
    30. Egashira M., Todo H., Yoshimoto N., et al. Functionalized imidazolium ionic liquids as electrolyte components of lithium batteries. J. Power Sources, 2007, 174 (2), 560-564.
    31. Lee J. S., Quan N. D., Hwang J. M., et al. Ionic liquids containing an ester group as potential electrolytes. Electrochem. Commun., 2006, 8 (3), 460-464.
    32. Gros P., Perchec P. L., Senet J.P. Reaction of epoxides with chlorocarbonylated compounds catalyzed by hexaalkylguanidinium chloride. J. Org. Chem., 1994, 59 (17), 4925-4930.
    33. Schlama T., Gouverneur V., Valleix A., et al. One-step synthesis of chiral guanidinium salts from phosgeniminium salts. J. Org. Chem., 1997, 62 (12), 4200-4202.
    34. Xie H. B., Zhang S. B., Duan H. F. An ionic liquid based on a cyclic guanidinium cation is an efficient medium for the selective oxidation of benzyl alcohols. Tetrahedron Lett., 2004, 45 (9), 2013-2015.
    35. Xie H. B., Duan H. F., Li S. H. et al. The effective synthesis of propylene carbonate catalyzed by silica-supported hexaalkylguanidinium chloride. New J. Chem., 2005, 29, 1199-1203.
    36. Branco L. C., Gois P. M. P., Lourenco N.M.T., et al. Simple transformation of crystalline chiral natural anions to liquid medium and their use to induce chirality. Chem. Commun., 2006, 2371-2372.
    37. Gao Y., Arritt S. W., Twamley B., et al. Guanidinium-Based Ionic Liquids. Inorg. Chem., 2005,44 (6), 1704-1712.
    38. Fang S., Yang L., Wei C., et al. Ionic liquids based on guanidinium cations and TFSI anion as potential electrolytes. Electrochim. Acta, 2009, 54 (6), 1752-1756.
    39. Fang S., Yang L., Wang J., et al. Guanidinium-based ionic liquids as new electrolytes for lithium battery. J. Power Sources, (in press).
    40. Schuchardt U., Vargas R. M., Gelbard G. Alkylguanidines as catalysts for the transesterification of rapeseed oil. J. Mol. Catal. A Chem., 1995, 99 (2), 65-70.
    41. Wang P., Zakeeruddin S. M., Gr?tzel M., et al. Novel room temperature ionic liquids of hexaalkyl substituted guanidinium salts for dye-sensitized solar cells. Appl. Phys. A, 2004, 79 (1), 73-77.
    42. Gordon J. E., Rao G. N. S. Fused organic salts. 8. Properties of molten straight-chain isomers of tetra-n-pentylammonium salts. J. Am. Chem. Soc., 1978, 100 (24), 7445-7454.
    43. Sesto R. E. D., Corley C., Robertson A., et al. Tetraalkylphosphonium-based ionic liquids. J. Organomet. Chem., 2005, 690 (10), 2536-2542.
    44. Bazito F. F. C., Kawano Y., Torresi R.M. Synthesis and characterization of two ionic liquids with emphasis on their chemical stability towards metallic lithium. Electrochim. Acta, 2007, 52 (23) 6427-6437.
    45. Okoturo O. O., VanderNoot T. J. Temperature dependence of viscosity for room temperature ionic liquids. J. Electroanal. Chem., 2004, 568, 167-181.
    1. Sakaebe H., Matsumoto H. N-Methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl) imide (PP13–TFSI)– novel electrolyte base for Li battery. Electrochem. Commun., 2003, 5 (7), 594-598.
    2. Matsumoto H., Sakaebe H., Tatsumi K. Discharge-charge properties of Li/LiCoO2 cell using room temperature ionic liquids (RTILs) based on quaternary ammonium cation - Effect of the structure. J. Power Sources, 2005, 146 (1-2), 693-697.
    3. Matsumoto H., Sakaebe H., Tatsumi K., et al. Fast cycling of Li/LiCoO2 cell with low-viscosity ionic liquids based on bis(fluorosulfonyl)imide [FSI]?. J. Power Sources, 2006, 160 (2), 1308-1313.
    4. Sakaebe H., Matsumoto H., Tatsumi K. Application of room temperature ionic liquids to Li batteries. Electrochim. Acta, 2007, 53 (3), 1048-1054.
    5. Egashira M., Okada S., Yamaki J., et al. The preparation of quaternary ammonium-based ionic liquid containing a cyano group and its properties in a lithium battery electrolyte. J. Power Sources, 2004, 138 (1-2), 240-244.
    6. Egashira M., Nakagawa M. T., Watanabe I., et al. Charge–discharge and high temperature reaction of LiCoO2 in ionic liquid electrolytes based on cyano-substituted quaternary ammonium cation. J. Power Sources, 2006, 160 (2), 1387-1390.
    7. Egashira M., Todo H., Yoshimoto N., et al. Functionalized imidazolium ionic liquids as electrolyte components of lithium batteries. J. Power Sources, 2007, 174 (2), 560-564.
    8. Matsumoto H., Miyazaki Y. Highly conductive room temperature molten salts based on small trimethylalkylammonium cations and bis(trifluoromethylsulfonyl)imide. Chem. Lett. 2000, 29 (8), 922-923.
    9. Tsunashima K., Sugiya M. Physical and electrochemical properties of low-viscosity phosphonium ionic liquids as potential electrolytes. Electrochem. Commun., 2007, 9 (9), 2353-2358.
    10. Matsumoto H., Sakaebe H., Tatsumi K. Preparation of room temperature ionic liquids based on aliphatic onium cations and asymmetric amide anions and their electrochemical properties as a lithium battery electrolyte. J. Power Sources, 2005, 146 (1-2), 45-50.
    11. Fuller J., Carlin R. T., Osteryoung R. A. The room temperature ionic liquid 1-ethyl-3-methylimidazolium tetrafluoroborate: electrochemical couples and physical properties. J. Electrochem. Soc., 1997, 144 (11), 3881-3886.
    12. Egashira M., Kiyabu T., Watanabe I., et al. The effect of additives in room temperature molten salt-based lithium battery electrolytes. Electrochemistry, 2003, 71 (12), 1114-1116.
    13. Zhao L., Yamaki J., Egashira M. Analysis of SEI formed with cyano-containing imidazolium-based ionic liquid electrolyte in lithium secondary batteries. J. Power Sources, 2007 174 (2), 352-358.
    14. Fujita M. Y., MacFarlane D. R., Howlett P. C., et al. A new Lewis-base ionic liquid comprising a mono-charged diamine structure: A highly stable electrolyte for lithium electrochemistry. Electrochem. Commun., 2006, 8 (3), 445-449.
    15. Fang S., Yang L., Wei C., et al. Ionic liquids based on guanidinium cations and TFSI anion as potential electrolytes. Electrochim. Acta, 2009, 54 (6), 1752-1756.
    16. Xu J., Yang J., Li Y., et al. Additive-containing ionic liquid electrolytes for secondary lithiumbattery. J. Power Sources, 2006, 160 (1), 621-626.
    
    1. Sakaebe H., Matsumoto H. N-Methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl) imide (PP13–TFSI)– novel electrolyte base for Li battery. Electrochem. Commun., 2003, 5 (7), 594-598.
    2. Matsumoto H., Sakaebe H., Tatsumi K. Discharge-charge properties of Li/LiCoO2 cell using room temperature ionic liquids (RTILs) based on quaternary ammonium cation - Effect of the structure. J. Power Sources, 2005, 146 (1-2), 693-697.
    3. Matsumoto H., Sakaebe H., Tatsumi K., et al. Fast cycling of Li/LiCoO2 cell with low-viscosity ionic liquids based on bis(fluorosulfonyl)imide [FSI]?. J. Power Sources, 2006, 160 (2), 1308-1313.
    4. Sakaebe H., Matsumoto H., Tatsumi K. Application of room temperature ionic liquids to Li batteries. Electrochim. Acta, 2007, 53 (3), 1048-1054.
    5. Egashira M., Okada S., Yamaki J., et al. The preparation of quaternary ammonium-based ionic liquid containing a cyano group and its properties in a lithium battery electrolyte. J. Power Sources, 2004, 138 (1-2), 240-244.
    6. Egashira M., Nakagawa M. T., Watanabe I., et al. Charge–discharge and high temperature reaction of LiCoO2 in ionic liquid electrolytes based on cyano-substituted quaternary ammonium cation. J. Power Sources, 2006, 160 (2), 1387-1390.
    7. Egashira M., Todo H., Yoshimoto N., et al. Functionalized imidazolium ionic liquids as electrolyte components of lithium batteries. J. Power Sources, 2007, 174 (2), 560-564.
    8. Matsumoto H., Miyazaki Y. Highly conductive room temperature molten salts based on small trimethylalkylammonium cations and bis(trifluoromethylsulfonyl)imide. Chem. Lett. 2000, 29 (8), 922-923.
    9. Tsunashima K., Sugiya M. Physical and electrochemical properties of low-viscosity phosphonium ionic liquids as potential electrolytes. Electrochem. Commun., 2007, 9 (9), 2353-2358.
    10. Matsumoto H., Sakaebe H., Tatsumi K. Preparation of room temperature ionic liquids based on aliphatic onium cations and asymmetric amide anions and their electrochemical properties as a lithium battery electrolyte. J. Power Sources, 2005, 146 (1-2), 45-50.
    11. Seki S., Kobayashi Y., Miyashiro H., et al. Reversibility of lithium secondary batteries using a room-temperature ionic liquid mixture and lithium metal. Electrochem. Solid-State Lett., 2005, 8 (11), A577-A578.
    12. Tsunashima K., Yonekawa F., Sugiya M. Lithium sencondary batteries using a lithium nickelate-based cathode and phosphonium ionic liquid electrolytes. Electrochem. Solid-State Lett., 2009, 12 (3), A54-A57.
    13. Fang S., Yang L., Wei C., et al. Ionic liquids based on guanidinium cations and TFSI anion as potential electrolytes. Electrochim. Acta, 2009, 54 (6), 1752-1756.
    14. Fang S., Yang L., Wang J., et al. Ionic liquids based on functionalized guanidinium cations and TFSI anion as potential electrolytes. Electrochim. Acta, 2009, 54 (17), 4269-4273.
    15. Fang S., Yang L., Wang J., et al. Guanidinium-based ionic liquids as new electrolytes for lithium battery, J. Power Sources, 2009, 191, 619-622.
    16. Taggougui M., Diaw M., Carre B., et al. Solvents in salt electrolyte: Benefits and possible use as electrolyte for lithium-ion battery. Electrochem. Acta, 2008, 53, 5496-5502.
    17. Xu J., Yang J., Li Y., et al. Additive-containing ionic liquid electrolytes for secondary lithium battery. J. Power Sources, 2006, 160 (1), 621-626.
    18. Fernicola A., Croce F., Scrosati B., et al. LiTFSI-BEPyTFSI as an improved ionic liquid electrolyte for rechargeable lithium batteries. J. Power Sources, 2007, 174, 342-348.
    19. Sirisopanaporn C., Fernicola A., Scrosati B. New ionic liquid-based membranes for lithium battery application. J. Power Sources, 2009, 186, 490-495.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700