两亲性炭材料的结构及其在电极材料领域应用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
两亲性炭材料(ACM)是一种在保持沥青、生焦等前躯体固有优点的同时,还兼备了水溶性,富官能团性,热固性等优点的碳质材料。ACM在制备炭材料过程中可以避免有机溶剂的使用,降低化学试剂用量,省去氧化稳定化过程,具有经济,节能,环保的特点,符合绿色化工的要求。考察ACM的结构,形成机理,拓展其在储能领域的应用,具有一定的科研价值与应用前景。
     本文结合多种表征手段对ACM的形成机理与结构特点进行了分析。分析表明,在混酸处理NC的过程中,会在分子的侧链、杂环或者边缘处发生氧化、硝化、磺化等一系列反应,引入-OH、-COOH、-NO2、-SO3H等官能团,此过程中主要发生了分子的官能团化和稠环分子的剥离,而稠环本身并未被严重破坏。ACM分子中富含官能团的部分成为亲水端,官能团含量少的部分成为亲油端。当ACM浓度过大时,分子间能通过有效碰撞形成一些胶束,进而形成凝胶,甚至是冻胶。通过溶剂置换法得到了具有同心圆结构的ACM纳米球,这种微球从侧面证明了ACM在水中是以纳米尺寸分散的。
     材料在热处理过程中保持了良好的热固性,这是由于在ACM制备过程中,分子的侧链、杂环或者边缘处发生了化学反应,使得ACM分子C/H比增加,支链多被氧化,热塑性变差。以二甲基硅油为分散介质,ACM水溶液为分散相,采用溶剂挥发法宏量制得ACM微米球。石墨化后的ACM基炭微球作为锂离子电池负极材料具有较高的容量(340mAh/g)与首次效率(90%),并表现出优良的倍率放电性能。
     由于ACM的两亲性,ACM分子可以在水/石墨界面生成一层自组装包覆层,将人造石墨的边缘与缺陷包覆起来,形成核-壳复合材料。ACM的用量对复合材料的性能有着重要的影响。用量过少不能形成完整的包覆层,用量过大会导致材料结块,破碎过程中破坏核-壳结构。采用少量多次包覆可以有效克服这一矛盾。理想的包覆能形成均匀、完整的包覆层,使材料堆积密度增高,比表面积降低。与原料人造石墨相比,复合材料的首次效率有所提高,不可逆容量降低,并且拥有良好的循环稳定性。
     以ACM为前躯体在低KOH用量下可以得到同时具有高比表面积和一定中孔含量的活性炭,这是由于ACM能够在KOH溶液中均匀分散,并具有丰富的反应活化能较低的杂原子,以及较大的层间距,使得化学活化更为均匀而有效。通过调整碱炭比、活化温度和活化时间等参数,可以实现对活性炭孔结构的控制。在电化学测试中,ACM基活性炭展现出良好的双电层电容器特性和循环稳定性。
Amphiphilic carbonaceous material (ACM), a material with high carbon content, economic cost, low volatile and ash content as pitch or coke, is soluble in alkaline aqueous solution, plenty in functional groups, and thermohardening. Based on these properties, no organic solvent and stabilization process is needed during the thereof carbon materials preparation from ACM. Therefore, ACM is economic, facile, and green in carbon materials production. It is necessary to study the structure of ACM and develop its applications in energy storage.
     In this paper, structure of ACM was studied via various characterization methods. It is confirmed that O, N, and S atoms were introduced into ACM by a series of combinated reactions including carboxylation, nitration and sulfonation during the nitro-sulfuric acid treatment. Such kinds of acidic functional groups are hydrophilic and tend to react with alkalis. Thus, it is all those hydrophilic groups that cause ACM to be soluble in alkali aqueous solution. During the oxidation, the links between adjacent graphitic microcrystallines in NC was forcibly broken. However, the graphene sheets composed of small hexagonal carbon rings are too stable to be destruction. As the concentration increase of ACM, gel was formed by the molecular movement and graft. In this paper, ACM-based nano-spheres were synthesized in aqueous solution. This, from another point of view, could demonstrate ACM could disperse in water in nano size with the help of hydrophilic functional groups.
     ACM shows well thermosetting property during heat treatment. This is because the side chain of NC were oxidized, nitrified or sulfonated during the ACM preparation, which reduced the thermoplasticity of material. In this work, we report the preparation of well-controlled ACM-based spheres by solvent evaporation method with polydimethylsiloxane as the continuous phase. The graphitized microspheres were then tested as anode material and showed satisfactory electrochemical behaviors with large capacity (340mAh/g), high initial efficiency (90%), and good rate capability.
     Artificial graphite powder was coated by ACM in aqueous solutions. Results show that surface defects and edge sites of original graphite were uniformly covered by ACM coating layer after modification, while the overall characteristics of graphite were not severely changed. After modification, the bulk density of material increased while its surface area decreased. Electrochemical measurements were then carried out to evaluate the anode performances of samples in lithium-ion batteries. The composite showed higher initial efficiency, lower inreversible capacitance, and better cyclic performance than raw artificial graphite.
     As a special precursor with small particle size, plenty of functional groups and widened d002 simultaneously, ACM guarantees subsequent ACM-based activated carbons (AACs) with high specific surface area as well as well-developed mesoporous structure after KOH activation. The modification of pore structure or achieved by controlling the activation conditions including KOH/ACM weight ratio, activation temperature and maintain time. In electrochemical measuraments, all AAC samples exhibited high performances as electrode materials for electric double-layer capacitors.
引文
[1]秦匡宗,石油沥青质,北京:石油工业出版社,2002,29-30
    [2]波霍金柯,石油焦生产(李成林),北京:中国石化出版社,1992,7-26
    [3]翟国华,延迟焦化工艺与工程,北京:中国石化出版社,2008,100-227
    [4]李同起,碳质中间相结构的形成及其相关材料的应用研究:[博士学位论文],天津;天津大学,2005
    [5] Fujii M, Yamada Y, Imamura T, Preparation of aqua-mesophase by nitration or sulfonation of carbonaceous mesophase and properties of carbon material made from it, 18th Biennial Conference of Carbon, 1987: 405-406
    [6] Tateishi, D, Esumi, K, Honda, H, Formation of carbonaceous gel, Carbon, 1991, 29(8): 1296-1298
    [7] Tateishi, D, Esumi, K, Honda, H, Preparation of Organo-carbonaceous gel, Carbon, 1992, 30(6): 944-945
    [8]李轩科,刘朗,沈士德,原料以及制备条件对水性中间相产率和性能的影响,新型炭材料,2000,15(1):57-60
    [9]余高奇,李轩科,刘秀然等,混酸系制备水性中间相,炭素技术,2000,108(1):22-24
    [10]余高奇,李轩科,刘秀然等,水性中间相制备研究,炭素,2000,4(1):28-32
    [11]吴卫泽,朱珍平,刘振宇,水性中间相沥青的制备研究,新型炭材料,2001,16(2):8-13
    [12] Tateishi D, Esumi K, Honda H, Preparation of Organo-carbonaceous gel, Carbon, 1992, 30(6): 944-945
    [13] Esumi K, Takahashi S, Sugii H, et al., Characterization of organo-carbonaceous gel, Carbon, 1993, 31(8): 1303-1306
    [14] Esumi K, Tateishi D, Kudoh S, et al., Carbonaceous gel obtained by oxidation of coaltar pitch with hydrogen perioxide, Carbon, 1993, 31(8): 1357-1358
    [15] Esumi K, Ono R, Sugii H, et al., Catalytic property of platinum-dispersed carbon prepared using amphiphilic carbonaceous material, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1995, 94(1): 93-96
    [16] Murakami Y, Esumi K, Honda H,preparation and characterization of an electrocatalytic electrode using amphiphilic carbonaceous material containing metal compound, Carbon, 1996, 34(4): 463-470
    [17]吴卫泽,朱珍平,刘振宇,Fe/C复合纳米材料的制备研究,新型炭材料,2002,17(1):4-9
    [18] Tateishi D, Esumi K, Honda H, et al., Preparation of carbonaceous gel beads, Carbon, 1992, 30(6): 942-944
    [19] Esumi K, Sugii H, Tateishi D, et al., Preparation of carbon microbeads containing fine platinum particles from `aqua-mesophase', Carbon, 1992, 30(1): 121-122
    [20] Esumi K, Eshima S, Murakami Y, et al., Preparation of hollow carbon-microbeads from water-in-oil emulsion using amphiphilic carbonaceous material, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1996, 108(1): 113-116
    [21] Li Z, Yan W, Dai S, A novel vesicular carbon synthesized using amphiphilic carbonaceous material and micelle templating approach, Carbon, 2004, 42(4): 767-770
    [22] Okada K, Yamamoto N, Kameshima Y, et al. Adsorption properties of activated carbon from waste newspaper prepared by chemical and physical activation, Journal of Colloid Interface Science, 2003, 262(1): 194-199
    [23] Yang T, Lua A C, Characteristics of activated carbons prepared from pistachio-nut shells by physical activation, Journal of Colloid Interface Science, 2003, 267(2): 407-417
    [24] Okada K, Yamamoto N, Kameshima Y, et al. Porous properties of activated carbons from waste newspaper prepared by chemical and physical activation, Journal of Colloid Interface Science, 2003, 262(1): 179-193
    [25] Sun X M, Li Y D, Colloidal Carbon Spheres and Their Core/Shell Structures with Noble-Metal Nanoparticles, Angewandte Chemie International Edition, 2004, 43(5): 597-601
    [26] Williams P T, Reed A R, Development of activated carbon pore structure via physical and chemical activation biomass fiber waste, Biomass Bioenergy, 2006, 30(2): 144-152
    [27] Tseng R L, Physical and chemical properties and adsorption type of activated carbon prepared from plum kernels by NaOH activation, Journal of Hazard. Materials, 2007, 147(3): 1020-1027
    [28] Guo Y P, Rockstraw D A, Physical and chemical properties of carbons synthesized from xylan, cellulose, and Kraft lignin by H3PO4 activation, Carbon, 2006, 44(8): 1464-1475
    [29] Valix M, Cheung W H, McKay G, Preparation of activated carbon using low temperature carbonization and physical activation of high ash raw bagasse for acid dye adsorption, Chemosphere, 2004, 56(5): 493-501
    [30] Wang Q, Li H, Chen L Q, Huang X J, Monodispersed hard carbon spherules with uniform nanopores, Carbon, 2001, 39(14): 2211-2214
    [31]宋燕,李开喜,杨常玲等,石油焦制备高比表面积活性炭的研究,石油化工,2002,31(6):431-435
    [32] Ahmadpour A, Do D, The preparation of active carbons from coal by chemical and physical activation, Carbon, 1996, 34(4): 471-479
    [33]解强,张双全,制备高比表面积煤基活性炭的理论基础,炭素技术,2002,12(2):24-27
    [34]罗功宇,刘成明,黄子强等,贵州无烟煤制取颗粒活性炭的研究,贵州林业科技,1999,27(4):46-49
    [35]扬绍斌,胡浩权,大比表面积炭质吸附剂的表面及孔隙发展,燃料化学学报,2000,28(5):473-477
    [36] Cunliffe A M, Williams P T, Influence of process conditions on the rate of activation of chars derived from pyrolysis of the used tires, Energy Fuels, 1999, 13(1): 66-69
    [37] Ariyadejwanich P, Tanihapanichakoon W, Preparation and characterization of mesoporous activated carbon from waste tire, Carbon, 2003, 41(1): 157-161
    [38] Teng H S, Wang S C, Preparation of porous carbons from phenol-formaldehyde resins with chemical and physical activation, Carbon, 2000, 38(6): 817-824
    [39] Rodriuez-Reinoso F, Molina-Sabio M, Gonzalez M T, The use of steam and CO2 as activating agents in the preparation of activated carbons, Carbon, 1995, 33(1): 15-23
    [40] Lozano-Castell D, Lillo-Ródenas M A, Cazorla-Amorós D, et al., Preparation of activated carbons from Spanish anthracite: I. Activation by KOH, Carbon, 2001, 39(5): 741-749
    [41] Stoeckli F, Ballerini L, Evolution of microporosity during activation of carbon, Fuel, 1991, 70(4): 557-559
    [42] Teng H, Ho J-A, Hsu Y-F, et al., Preparation of Activated Carbons from Bituminous Coals with CO2 Activation. 1. Effects of Oxygen Content in Raw Coals, Industrial & Engineering Chemistry Research, 1996, 35(11): 4043-4049
    [43] Wigmans T, Industrial aspects of production and used of activated carbon, Carbon, 1989, 27 (1): 13-22
    [44] Benssant G A R, Walker P L, Activation of anthracite using carbon dioxide versus air, Carbon,1994, 32(6): 1171-1176
    [45] Ryu S K, Jin H, Gondy D, et al, Activation of carbon fibers by steam and carbon dioxide, Carbon, 1993, 31(5): 841-842
    [46]赵朔,马铃薯淀粉基炭微球制备机理及电化学性能的研究:[博士学位论文],天津;天津大学,2009
    [47] Raymundo-Pi?ero E, Aza?s P, Cacciaguerra T, et al., KOH and NaOH activation mechanisms of multiwalled carbon nanotubes with different structural organisation, Carbon, 2005, 43(4): 786-795
    [48] Stavropoulos G G, Precursor materials suitability for super activated carbons production, Fuel Processing Technology, 2005, 86(11): 1165-1173
    [49] Illan-Gomez M J, Garcia-Garcia A, Salinas-Martinez de Lecea C, et al., Activated Carbons from Spanish Coals. 2. Chemical Activation, Energy & Fuels, 1996, 10 (5): 1108-1114
    [50] Jibril B Y, Al-Maamari R S, Hegde G, et al., Effects of feedstock pre-drying on carbonization of KOH-mixed bituminous coal in preparation of activated carbon, Journal of Analytical and Applied Pyrolysis, 2007, 80(2): 277-282
    [51] Mitani S, Lee S-I, Yoon S-H, et al., Activation of raw pitch coke with alkali hydroxide to prepare high performance carbon for electric double layer capacitor, Journal of Power Sources, 2004, 133(2): 298-301
    [52] Mitani S, Lee S-I, Saito K, et al., Activation of coal tar derived needle coke with K2CO3 into an active carbon of low surface area and its performance as unique electrode of electric double-layer capacitor, Carbon, 2005, 43(14): 2960-2967
    [53] Liu Z C, Ling L C, Qiao W M, et al., Preparation of pitch-based spherical activated carbon with developed mesopore by the aid ferrocene, Carbon, 1999, 37(8): 663-667
    [54] Liu H Y, Wang K P, Teng H S, A simplified preparation of mesoporous carbon and the wxamination of the carbon accessibility for electric double layer formation, Carbon, 2005, 43(4): 559-566
    [55] Marsh H, Diez M A, Kou K, Lahaye J, P et al, Fundamental issues in control of carbon gasification reactivity. Kluwer Academic Publishers, 1991(3), 205-206
    [56]刘植昌,凌立成,乔文明等,添加二茂铁制得的沥青基球状活性炭对VB12吸附性能的研究,离子交换与吸附,1999,15(5):391-396
    [57]刘植昌,凌立成,乔文明等,铁微粒的存在对沥青基球状活性炭微孔形成过程的影响,炭素技术,1999(3):10-14
    [58] Zhou H S, Zhu S M, Hibino M, et al., Electrochemical capacitance of self-ordered mesoporous carbon, Journal of Power Sources, 2003, 122(2): 219~223
    [59] Wang Y-s, Wang C-y, Chen M-m, New mesoporous carbons prepared from pitch by simultaneous templating and carbonization, New Carbon Materials, 2009, 24(2): 187-190
    [60] Ji Y, Li T, Zhu L, et al., Preparation of activated carbons by microwave heating KOH activation, Applied Surface Science, 2007, 254(2): 506-512
    [61] Li W, Peng J, Zhang L, et al., Preparation of activated carbon from coconut shell chars in pilot-scale microwave heating equipment at 60KW, Waste Management, 2009, 29(2): 756-760
    [62] Kubota M, Hata A, Matsuda H, Preparation of activated carbon from phenolic resin by KOH chemical activation under microwave heating, Carbon, 2009, 47(12): 2805-2811
    [63] Xing W, Yan Z F, Effects of preoxidation on the surface properties of super active carbon, New Carbon Materials, 2002, 17(3): 25-30
    [64] Parra J B, Pis J J, De Sousa J C, et al., Effect of coal preoxidation on the development of microporosity in activated carbons, Carbon, 1996, 34(6): 783-787
    [65] Jiang B, Zhang Y, Zhou J, et al., Effects of chemical modification of petroleum cokes on the properties of the resulting activated carbon, Fuel, 2008, 87(11): 1844-1848
    [66] Lu C, Xu S, Wang M, et al., Effect of pre-oxidation on the development of porosity in activated carbons from petroleum coke, Carbon, 2007, 45(1): 206-209
    [67]时志强,炭基电化学电容器电极材料的制备与电容性能研究:[博士学位论文],天津;天津大学,2007
    [68] Xu B, Wu F, Su Y F, et al., Competitive effect of KOH activation on the electrochemical performances of carbon nanotubes for EDLC: Balance between porosity and conductivity, Electrochimical Acta, 2008, 53(26): 7730-7735
    [69] W R Li, D H Chen, Z Li, et al., Nitrogen-containing carbon spheres with very large uniform mesopores: The superior electrode materials for EDLC in organic electrolyte, Carbon, 2007, 45(9): 1757-1763
    [70] Centeno T A, Hahn M, Fernández J A, et al., Correlation between capacitances of porous carbons in acidic and aprotic EDLC electrolytes, Electrochemical Communication, 2007, 9(6): 1242-1246
    [71] Tashima D, Taniguchi M, Fujikawa D, et al., Performance of electric double layer capacitors using nanocarbons produced from nanoparticles of resorcinol–formaldehyde polymers, Materials Chemistry and Physics, 2009, 115(1): 69-73
    [72] Kuwabara Y, Yano H, Kanematsu Y, et al., Control and behaviors of resorcinol-acetaldehyde carbon cryogel porous structures as electrodes for electric double-layer capacitors, Carbon, 2009, 47(4): 1
    [73]郭春雨,沥青系多孔炭的结构及其电化学性能的研究:[博士学位论文],天津;天津大学,2007
    [74] Endo M, Kim Y J, Takeda T, et al, Poly(vinylidene chloride)-Based Carbon as an Electrode Material for High Power Capacitors with an Aqueous Electrolyte, Journal Electrochemical Society, 2001, 148(10): 1135-1140
    [75] Brousse T, Toupin M, Belanger D, A Hybrid Activated Carbon-Manganese Dioxide Capacitor using a Mild Aqueous Electrolyte, Journal of Electrochemical Society, 2004, 151(4): 614-622
    [76] Mikhail E K, Ryan C C, William M A, et al. Spinning solid and hollow polymerfree carbon nanotube fibers, Advanced Materials, 2005, 17(5):614-617
    [77] Kim C, Kim J S, Kim S J, et al. Supercapacitors Prepared from Carbon Nanofibers Electrospun from Polybenzimidazol, Journal of Electrochemical Society, 2004, 151(5): 769-773
    [78] An K H, Kim W S, Park Y S, et al. Supercapacitors Using Single-Walled Carbon Nanotube Electrodes, Advanced Materials, 2001, 13(7): 497-500
    [79] Qu D Y, Shi H, Studies of activated carbons used in double-layer capacitors, Journal of Power Sources, 1998, 74(1): 99-107
    [80] Pandolfo A G., Hollenkamp A F, Carbon properties and their role in supercapacitors, Journal of Power Sources, 2006, 157(1): 11-27
    [81] Sarangapani S, Tilak B V, Chen C P. Materials for electrochemical capacitors, Journal of Electrochemical Society, 1996, 143(11): 3791-3799.
    [82] Xu B, Wu F, Chen R, et al., Mesoporous activated carbon fiber as electrode material for high-performance electrochemical double layer capacitors with ionic liquid electrolyte, Journal of Power Sources, 2010, 195(7): 2118-2124
    [83]李强,李开喜,王芙蓉等,针状焦基活性炭的制备及其作为EDLCs电极材料的电化学性能,新型炭材料,2005,20(4):335-342
    [84] Qiao W, Yoon S-H, Mochida I, KOH Activation of Needle Coke to Develop Activated Carbons for High-Performance EDLC, Energy & Fuels, 2006, 20(4): 1680-1684
    [85]孟庆函,李开喜,宋燕等,石油焦基活性炭电极电容特性研究,新型炭材料,2001,16(4):18-21
    [86]时志强,赵朔,陈明鸣等,预炭化对KOH活化石油焦的结构及电容性能的影响,无机材料学报,2008,23(4):799-804
    [87] Tian Y, Song Y, Tang Z, et al., Influence of high temperature treatment of porous carbon on the electrochemical performance in supercapacitor, Journal of Power Sources, 2008, 184(2): 675-681
    [88] Simon P, Gogotsi Y, Materials for electrochemical capacitors, Nature Materials, 2008, 7(11): 845-854
    [89] Taberna P L, Simon P, Fauvarque J F, Electrochemical Characteristics and Impedance Spectroscopy Studies of Carbon-Carbon Supercapacitors, Journal of The Electrochemical Society, 2003, 150(3): 292-300
    [90] Qu D, Studies of the activated carbons used in double-layer supercapacitors, Journal of Power Sources, 2002, 109(2): 403-411
    [91] Gamby J, Taberna P L, Simon P, et al., Studies and characterisations of various activated carbons used for carbon/carbon supercapacitors, Journal of Power Sources, 2001, 101(1): 109-116
    [91] Frackowiak E, Béguin F, Carbon materials for the electrochemical storage of energy in capacitors, Carbon, 2001, 39(6): 937-950
    [92]施啸奔,沥青包覆人造石墨用作锂离子电池的研究:[硕士学位论文],天津;天津大学,2009
    [93] Megahed S, Scrosati B, Lithium-ion rechargeable batteries, Journal of Power Sources, 51(2): 79-104
    [94]吴川,吴锋,陈实等,锂离子电池正极材料的研究进展,电池,2001,30(1):36-38
    [95]王文燕,酚醛树脂包覆针状焦作为锂离子电池负极材料的研究:[硕士学位论文],天津;天津大学,2007
    [96]山平隆幸,非水电解液二次电池及びその制造方法,特开平9-219188
    [97] Nishi Y, Lithium ion secondary battries; past 10 years and the future, Journal of Power Sources, 2001, 100(1-2): 101-106.
    [98]李建军,万春荣,吴宇平等,高容量锂离子电池负极材料的制备方法,中国专利,1234618A,1999-11-10
    [99] Nishi Y, The Development of Lithium Ion Secondary Batteries, The Chemical Record, 2001, 1(5): 406-413
    [100] N Wan C, Li H, Wu M, et al., Spherical natural graphite coated by a thick layer of carbonaceous mesophase for use as an anode material in lithium ion batteries, Journal of Applied Electrochemistry, 2009, 39(7): 1081-1086
    [101] Kong F, Kostecki R, Nadeau G, et al., In situ studies of SEI formation, Journal of Power Sources, 2001, 97(1): 58-66
    [102]马铁,炭、石墨复合材料作为锂离子电池负极材料的研究:[硕士学位论文],天津;天津大学,2005
    [103] Aurbach D, Markovsky B, Shechter A, et al., A Comparative Study of Synthetic Graphite and Li Electrodes in Electrolyte Solutions Based on Ethylene Carbonate-Dimethyl Carbonate Mixtures, Journal of The Electrochemical Society, 1996, 143(12): 3809-3820
    [104] Peled E, Bar Tow D, Merson A, et al., Composition, depth profiles and lateral distribution of materials in the SEI built on HOPG-TOF SIMS and XPS studies, Journal of Power Sources, 2001, 97-98(1): 52-57
    [105]曹高萍,锂离子电池碳负极材料及其改性研究:[硕士学位论文],天津;天津大学,1998
    [106]张永刚,锂离子二次电池炭负极材料的改性与修饰:[博士学位论文],天津;天津大学,2004
    [107] Nozaki H, Nagaoka K, Hoshi K, et al., Carbon-coated graphite for anode of lithium ion rechargeable batteries: Carbon coating conditions and precursors, Journal of Power Sources, 2009, 194(1): 486-493
    [108] Liu D, Du F, Pan W, et al., Electrochemical characterizations of Li2.6Co0.4N/Graphite anodes for lithium ion batteries, Materials Letters, 2009, 63(4): 504-506
    [109]时志强,天然石墨的改性及其用作锂离子电池负极材料的研究:[硕士学位论文],天津;天津大学,2003
    [110] Ratnakumar B V, Smart M C, Surampudi S, Effects of SEI on the kinetics of lithium intercalation, Journal of Power Sources, 2001, 101(2): 137-139.
    [111] Matsuo Y, Fumita K, Fukutsuka T, et al., Butyrolactone derivatives as electrolyte additivesfor lithium-ion batteries with graphite anodes, Journal of Power Sources, 2003, 103(2): 373-377
    [112] Aurbach D, Markovsky B, Weissman I, et al., On the correlation between surface chemistry and performance of graphite negative electrodes for Li ion batteries, Electrochimica Acta, 1999, 45(1): 67-86
    [113] Ohta N, Nagaoka K, Hoshi K, et al., Carbon-coated graphite for anode of lithium ion rechargeable batteries: Graphite substrates for carbon coating, Journal of Power Sources, 2009, 194(2): 985-990
    [114] Lee H-Y, Baek J-K, Jang S-W, et al., Characteristics of carbon-coated graphite prepared from mixture of graphite and polyvinylchloride as anode materials for lithium ion batteries, Journal of Power Sources, 2001, 101(2): 206-212
    [115] Zhou Y F, Xie S, Chen C H, Pyrolytic polyurea encapsulated natural graphite as anode material for lithium ion batteries, Electrochimica Acta, 2005, 50(24): 4728-4735
    [116] Zhang H-L, Liu S-H, Li F, et al., Electrochemical performance of pyrolytic carbon-coated natural graphite spheres, Carbon, 2006, 44(11): 2212-2218
    [117] Yoon S, Kim H, Oh S M, Surface modification of graphite by coke coating for reduction of initial irreversible capacity in lithium secondary batteries, Journal of Power Sources, 2001, 94(1): 68-73
    [118]张永刚,王成扬,包覆修饰石墨微观结构与嵌锂电化学分析,材料导报,2008,20(7):117-119
    [119]郑洪河,蒋凯,秦建华,超声浸渍包覆石墨的嵌脱锂性能,应用化学,2008,21(8):801-805
    [120] Yoshio M, Wang H, Fukuda K, et al., Effect of Carbon Coating on Electrochemical Performance of Treated Natural Graphite as Lithium-Ion Battery Anode Material, Journal of The Electrochemical Society, 2000, 147(4): 1245-1250
    [121] Yoshio M, Wang H, Fukuda K, et al., Improvement of natural graphite as a lithium-ion battery anode material, from raw flake to carbon-coated sphere, Journal of Material Chemistry, 2004, 14(11): 1754-1758
    [122] Wang H, Yoshio M, Carbon-coated natural graphite prepared by thermal vapor decomposition process, a candidate anode material for lithium-ion battery, Journal of Power Sources, 2001, 93(1-2): 123-129
    [123] Ohzawa Y, Yamanaka Y, Naga K, et al., Pyrocarbon-coating on powdery hard-carbon using chemical vapor infiltration and its electrochemical characteristics, Journal of Power Sources, 2005, 146(1-2): 125-128
    [124]徐秀丽,蔡奉翰,锂离子电池碳负极材料生产方法,中国专利,1624956A,2005-06-08
    [125]李鹏,锂电用中间相炭微球的结构与电化学性能的研究:[硕士学位论文],天津;天津大学,2002
    [126]徐仲榆,尹笃林,谢辉等,HTTmax对碳微球的结构及电化学性能的影响,电池,2003,33(1):8-11
    [127] Hara M, Sach A, Takami N, et al., Surface structures and charge characteristics of mesocarbon microbeads as the anodes for secondary lithium-ion batteries, Tanso, 1994, 165(2): 261-267
    [128] Liao XZ, Ma Z-F, Hu J-H, et al., SnNi-deposited carbonaceous mesophase spherule as anode material for lithium ion batteries, Electrochemistry Comunications, 2003, 5(8): 657-661
    [129]冯熙康,王伯良,陈爱松等,电动汽车锂离子动力电池系统的研制,电源技术,2002,26(2):63-65
    [130]周震涛,严燕,锂离子动力蓄电池充放电基本性能的研究,华南理工大学学报(自科版),2001,29(4):17-21
    [131] Biniak S, Szymanski G, Siedlewski J, et al., The characterization of activated carbons with oxygen and nitrogen surface groups, Carbon, 1997, 35(12): 1799-1810
    [132]唐培堃,精细有机合成化学与工艺学,北京:化学工业出版社,2008,100-160
    [133] Mochida I, Ku C H, Koral Y, Anodic performance and insertion mechanism of hard carbons prepared from synthetic isotropic pitches, Carbon, 2001, 39(3): 399-410
    [134]吴宇平,万春荣,姜长印,等,锂离子二次电池,北京:化学工业出版社,2002,104-112
    [135] Lu C, Xu S, Wang M, et al., Effect of pre-oxidation on the development of porosity in activated carbons from petroleum coke, Carbon, 2007, 45(1): 206-209
    [136] Ga?an J, González-García C M, González J F, et al., Preparation of activated carbons from bituminous coal pitches, Applied Surface Science, 2004, 238(1-4): 347-354
    [137] Rodríguez-Reinoso F, Molina-Sabio M, González M, The use of steam and CO2 as activating agents in the preparation of activated carbons, Carbon, 1995, 33(1): 15-23
    [138] Portet C, Yushin G, Gogotsi Y, Effect of Carbon Particle Size on Electrochemical Performance of EDLC, Journal of The Electrochemical Society, 2008, 155(7): A531-A536
    [139] Huang Z-H, Kang F, Huang W L, et al., Pore Structure and Fractal Characteristics of Activated Carbon Fibers Characterized by Using HRTEM, Journal of Colloid and Interface Science, 2002, 249(2): 453-457
    [140] Oshida K, Kogiso K, Matsubayashi K, et al., Analysis of pore structure of activated carbon fibers using high resolution transmission electron microscopy and image processing, Journal of Materials Research, 1995, 10(10): 2507–2517
    [141] Shi H, Activated carbons and double layer capacitance, Electrochimica Acta, 1996, 41(10): 1633-1639
    [142] Largeot C, Portet C, Chmiola J, et al., Relation between the Ion Size and Pore Size for an Electric Double-Layer Capacitor, Journal of the American Chemical Society, 2008, 130(9): 2730-2731
    [143] Chmiola J, Yushin G, Gogotsi Y, et al., Anomalous Increase in Carbon Capacitance at Pore Sizes Less Than 1 Nanometer, Science, 2006, 313(5794): 1760-1763
    [144] Taberna P L, Simon P, Fauvarque J F, Electrochemical characteristics and impedance spectroscopy studies of carbon-carbon supercapacitors, Journal of Electrochemical Society, 2003, 150(3): 292-300

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700