船载有源相控阵天线与通信天线的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文结合科研项目进行选题研究,文中研究了船载有源相控阵天线与通信天线的设计问题。在研究船载有源相控阵天线中,分析了船体平台对船载有源相控阵天线电特性的影响,依据分析结果给出了降低天线雷达散射截面(Radar CrossSection,简写为RCS)的有效方法;在研究通信天线设计中,改进了原天线的设计方案,针对不同的使用用途,改进后的天线具有宽带、高增益、波束扫描等特点。
     论文的主要研究工作分为两个部分。第一部分研究工作为船载有源相控阵天线的设计与研制;第二部分研究工作为通信天线的设计与研制,其中包括了防洪减灾点对点通信天线、直升机搜救通信天线、无线通信的超宽带终端天线以及弹载宽带高增益阵列天线。作者的主要研究工作和成果为:
     1.在船载有源相控阵天线的设计与研制中,第一个研究成果为研制了外围具有金属背腔的新型天线单元,实现了对天线单元的波束控制,同时提高了天线单元及单元子阵间的隔离度。所设计的阵列天线具有大于21.3dB的扫描增益,实现了方位面-450~450的波束扫描;第二个研究成果为降低了天线阵面的RCS。文中改进了常规的安装方式,采用倾斜安装的方式有效地降低了天线阵面的RCS,使原来的RCS从10000m2降到100m2;第三个研究成果为天线外表面与船体完全共形。为此采用了平行四边形截面的安装嵌槽结构,一方面有效地降低了阵列天线的RCS,同时实现了阵列天线与载体平台的共形。在此研究基础上,加工了天线单元和单元子阵的实验样机,并对该样机进行了电性能测试,测试结果表明天线工作频段为UHF波段,扫面范围为-450~450,扫描增益大于21.3dB,阵列天线在X波段的RCS为50m2,满足设计指标要求并已在工程中得到了应用。
     2.提出了基片集成波导(Substrate Integrated Waveguide,简写为SIW)馈电的单缝隙耦合圆极化椭圆介质谐振天线形式。针对防洪减灾微波点对点通信系统的要求,天线应具有宽带圆极化的特点。文中采用最新的SIW馈电方法,设计了单缝隙耦合馈电圆极化椭圆介质谐振天线。采用HFSS仿真软件对阵列天线进行了一体化仿真设计。设计结果表明,在9.4GHz±350MHz频率范围内,天线增益大于18.5dB,轴比小于3.3dB,在设计的基础上,加工了天线实验样机,实测结果表明阵列天线的增益大于18.2dB,轴比小于3dB,满足通信系统的设计需求并在实际工程得到了应用。
     3.基于SIW,提出了馈电方式简单的宽带频率扫描微带阵列天线的新的设计方法。针对直升机搜救通信系统的设计要求,天线方向图波束应具有电扫描的特点。文中采用SIW馈电技术,设计了宽带频率扫描微带阵列天线。在仿真设计满足要求的基础上,加工制作了实验样机。实测结果表明,阵列天线在8.5GHz~12GHz的频带内,在方位面实现了-160~160的波束扫描特性,扫描增益大于12.7dB,满足工程要求。
     4.提出了边缘渐变小型化超宽带印刷天线的新形式;基于窄缝隙、半模SIW和SIW三种类型的谐振结构,提出了三种具有陷波特性的超宽带印刷天线。采用HFSS仿真软件对这些天线进行了设计仿真,在此基础上,加工了实验样机,实测结果表明天线的工作频带大于3个倍频程,因此具有超宽带特性。天线在陷波频段内电压驻波比的峰值分别达到了11.7、9.8和28.9。
     5.提出了基于SIW的改进型超宽带径向波导功分器,改进后的相对工作带宽达到了62%(改进前为5.7%)。并将该成果应用于弾载定向天线(最大辐射方向指向弹尾)的研制,采用HFSS仿真软件对四单元弹载微带阵列天线进行了天馈一体化仿真设计,加工了实验样机,实测结果表明天线在8.7GHz~11.3GHz频带内,增益大于11dB,波束覆盖大于310,满足了弹载通信系统的技术指标要求并在实际工程中得到了应用。
The research works are based on scientific projects. This dissertation discusses thedesign of the shipborne active phased array antenna and the communication antenna. Inthe research on the shipborne active phased array antenna, the effect of the hull platformon the electrical characteristics of the shipborne active phased array antenna, and aneffective method of reducing the Radar Cross Section (RCS) is given based on theanalysis results. In the study of the communication antenna, the design of the originalantenna is improved. As to different purposes, the improved antennas are characterizedby wideband, high gain, beam scanning, and so on.
     The research works involved can be divided into two parts: the design anddevelopment of the shipborne active phased array antenna constitute the first part; thesecond part represents the design and development of communication antennasincluding the point-point communication antenna for flood control and calamityreducing, the helicopter search and rescue communication antenna, the ultra-wideband(UWB) wireless communication terminal antennas and the broadband high gainmissile-borne antenna array. The main research works and contributions of the authorare outlined as follows:
     1. In the study of the shipborne active phased array antenna, a novel antennaradiating element with a metal back cavity is introduced to realize beam control of theantenna radiating element and improvement of the isolation between subarrays. Theproposed antenna array has a scanning gain of greater than21.3dB and a beam scanningrange of-450~450in the azimuth plane. Second, the RCS of the antenna array is reduced.The RCS of the antenna array is effectively reduced from10000m2to100m2throughslanting installation. Third, the outside surface of the antenna is completely conformalwith the hull. For this, an embedded groove structure with parallelogram section in sidesof boats is proposed. The RCS of the array antenna is effectively improved and theantenna array is conformal with the carrier platform. Based on these studies, theprototypes of the antenna radiating element and subarray are fabricated and measured.The operating frequency of the proposed antenna is UHF band. The proposed antennaarray has a beam scanning range of-450~450and a scanning gain of greater than21.3dB.The RCS of the proposed antenna is50m2. These measured results show that theproposed antenna can satisfy the design requirements and it has been applied in the engineering.
     2. A circularly polarized substrate integrated waveguide (SIW) feeding ellipticdielectric resonant antenna with a single-slot coupling structure is proposed. In view ofthe design requirements of the point-to-point communication system for flood controland calamity reducing, the antenna should be broadband and circularly polarized. Thelatest SIW feeding method is used to design the circularly polarized elliptic dielectricresonant antenna with a single-slot feeding coupling structure. The integral design of theantenna is conducted with the simulating software HFSS. The design results show thatthe antenna has a gain of greater than18.5dB and an axial ratio of less than3.3dBwithin9.4GHz±350MHz. On the basis of design, the prototype of the antenna array isfabricated and measured. The measured results show that the proposed antenna achievesa gain of greater than18.2dB and an axial ratio of less than3dB, which can meet thedesign requirements of the communication system and has been applied in theengineering.
     3. Based on SIW, a new design method of the broadband frequency scanningmicrostrip antenna array with a simple feeding structure is proposed. In view of thedesign requirements of the helicopter search and rescue communication system, theantenna should have electric scanning radiation patterns. A broadband frequencyscanning microstrip antenna array is proposed with SIW feeding technology. Theprototype is fabricated on the simulation design basis. The measured results show thatthe proposed antenna array achieves a beam scanning range of-160~160in the azimuthplane and a scanning gain of greater than12.7dB ranging from8.5GHz to12GHz,which can satisfy the engineering requirements.
     4. A novel edge gradient miniature UWB printed antenna is proposed. Based on thenarrow slot resonant structure, the half-mode SIW resonant structure and the SIWresonant structure, three kinds of band-notched UWB antennas are proposed. Theseantennas are simulated with the simulating software HFSS. The prototypes arefabricated and measured. The measured results show that the proposed antennas havefrequency bands of greater than3octave band, indicating the broadband feature. Themaximum VSWR at the notched bands are11.7,9.8and28.9, respectively.
     5. A modified UWB radial waveguide power divider based on SIW is proposed,which has a relative bandwidth of62%, compared with that of the original (5.7%).These achievements are applied to the development of a missile-borne directionalantenna with the direction of maximum radiation pointing at the missile tail. The integral design of the4-element missile-borne microstrip antenna array with theproposed SIW radial waveguide power divider is conducted with Ansoft HFSS. Theprototype is fabricated and measured. The measured results show that the proposedantenna array achieves a gain of greater than11dB and beam coverage of greater than310, which can satisfy the requirements of the missile-borne communication system andhas been applied in the engineering.
引文
[1] A. Fenn, G. Thiele, B. Munk, Moment method analysis of finite rectangularwaveguide phased arrays, IEEE Transactions on Antennas and Propagation,1982,30(4):554-564.
    [2]李建瀛,梁昌洪,矩形开口波导有限相控阵理论研究,电子学报,1999,9:35.
    [3]李欣,波导单元相控阵天线的分析与设计,硕士学位论文,电子科技大学,2003.
    [4] R. E. Wallis, S. Cheng,Phased-array antenna system for the MESSENGER deepspace mission,Aerospace Conference,2001,IEEE Proceedings,2001.
    [5]汪伟,李磊,张智慧,有源相控双极化波导缝隙天线阵,2009年全国微波毫米波会议论文集(上册),2009.
    [6] R. Munson, Conformal microstrip antennas and microstrip phased arrays, IEEETransactions on Antennas and Propagation,1974,22(1):74-78.
    [7] A. K. Skrivervic, J. R. Mosig, Finite phased array of microstrip patch antennas:The infinite array approach, IEEE Transactions on Antennas and Propagation,1992,40(5):579-582.
    [8] H. Shuhao, The balun family, Microwave Journal,1987,30:227-229.
    [9] D. Pozar, D. Schaubert, Scan blindness in infinite phased arrays of printeddipoles, IEEE Transactions on Antennas and Propagation,1984,32(6):602-610.
    [10] A. A. Eldek, Design of double dipole antenna with enhanced usable bandwidthfor wideband phased array applications, Progress In Electromagnetics Research,2006,59:1-15.
    [11] J. J. Lee, S. Livingston, R. Koenig, A low-profile wide-band (5:1) dual-pol array,Antennas and Wireless Propagation Letters, IEEE,2003,2(1):46-49.
    [12] Y. Zhang, A. K. Brown, Bunny Ear Combline Antennas for Compact Wide-BandDual-Polarized Aperture Array, IEEE Transactions on Antennas and Propagation,2011,59(8):3071-3075.
    [13]郭斌兴,朱淮城,毫米波相控阵天线单元的分析与比较,电讯技术,2009,49(1):92-96.
    [14]张伟康,用矩量法分析地平面之上的V形对称振子,无线电技术(上海),1994(022):16-22.
    [15]王真,于大群,何炳发,一种宽角覆盖宽角扫描相控阵天线系统,2009年全国天线年会论文集(上),2009.
    [16] P. Hannan, D. Lerner, G. Knittel, Impedance matching a phased-array antennaover wide scan angles by connecting circuits, IEEE Transactions on Antennas andPropagation,1965,13(1):28-34.
    [17] S. Edelberg, A. Oliner, Mutual coupling effects in large antenna arrays II:Compensation effects, IRE Transactions on Antennas and Propagation,1960,8(4):360-367.
    [18] Z. Iluz, R. Shavit, R. Bauer, Microstrip antenna phased array withelectromagnetic bandgap substrate, IEEE Transactions on Antennas andPropagation,2004,52(6):1446-1453.
    [19] B. Munk, R. Taylor, T. Durharn, et al, A low-profile broadband phased arrayantenna, Antennas and Propagation Society International Symposium, IEEE,2003.
    [20] D. Sievenpiper, L. Zhang, R. F. Broas, et al. High-impedance electromagneticsurfaces with a forbidden frequency band. IEEE Transactions on MicrowaveTheory and Techniques,1999,47(11):2059-2074.
    [21]张念启, Ka波段波导缝隙天线设计与分析,硕士学位论文,南京理工大学,2010.
    [22]龚雪,宽带相控阵天线小型化技术研究,硕士学位论文,电子科技大学,2012.
    [23] E. Magill, H. Wheeler,Wide-angle impedance matching of a planar arrayantenna by a dielectric sheet,IEEE Transactions on Antennas and Propagation,1966,14(1):49-53.
    [24]王成,张玉,低副瓣相控阵面天线波束扫描及互耦特性分析,雷达与对抗.1999(2):45-49.
    [25]刘聪,X波段Vivaldi阵列天线单元及互耦研究,硕士学位论文,哈尔滨工程大学,2012.
    [26]郑学誉,万长宁,宽带宽角扫描相控阵天线,电波科学学报,1995,10(1):33-38.
    [27]司军,吴万军,汪波等,宽带宽角相控阵天线研究,零八一科技,2009(3):27-30.
    [28]刘英,龚书喜,郭晖等,用于天线RCS减缩的分形微带贴片天线,电子学报,2004,32(9):1530-1531.
    [29] W. Gordon,Far-field approximations to the kirchoff-helmholtz representations ofscattered fields, IEEE Transactions on Antennas and Propagation,1975,23(4):590-592.
    [30] J. B. Keller, Geometrical theory of diffraction,1962.
    [31] J. Perez, M. F. Catedra, Application of physical optics to the RCS computation ofbodies modeled with NURBS surfaces, IEEE Transactions on Antennas andPropagation,1994,42(10):1404-1411.
    [32]汪茂光,天线.几何绕射理论.,西安电子科技大学出版社,1994.
    [33] R. G. Kouyoumjian, P. H. Pathak, A uniform geometrical theory of diffractionfor an edge in a perfectly conducting surface. Proceedings of the IEEE,1974,62(11):1448-1461.
    [34] J. Jin, J. Jin, J. Jin, The finite element method in electromagnetics, Wiley NewYork,2002.
    [35] A.Tavlove, S.C. Hagness, Computational electrodynamics: the finite-differencetime-domain method. Artech House, Norwood, MA.1995,2062.
    [36]吕英华,计算电磁学的数值方法,清华大学出版社,2006.
    [37] V. Rokhlin, Rapid solution of integral equations of classical potential theory,Journal of Computational Physics,1985,60(2):187-207.
    [38] T. Sarkar, E. Arvas, S. Rao, Application of FFT and the conjugate gradientmethod for the solution of electromagnetic radiation from electrically large andsmall conducting bodies, IEEE Transactions on Antennas and Propagation,1986,34(5):635-640.
    [39] P. Zhang, S. Gong, S. F. Zhao, Fast hybrid FEM/CRE-UTD method to computethe radiation pattern of antennas on large carriers, Progress In ElectromagneticsResearch,2009,89:75-84.
    [40] U. Jakobus, F. M. Landstorfer, Improved PO-MM hybrid formulation forscattering from three-dimensional perfectly conducting bodies of arbitrary shape,IEEE Transactions on Antennas and Propagation,1995,43(2):162-169.
    [41]阮颖铮,天线的散射机理和雷达截面减缩,宇航学报,1990,1:94-190.
    [42] D. D. Lynch, Introduction to RF stealth, SciTech,2004.
    [43]王季立,频率选择表面(FSS)在天线隐身技术中的应用,南京航空航天大学学报,1992,6:8.
    [44]阮颖铮,雷达截面与隐身技术,国防工业出版社,1998.
    [45]朱华邦,杜娟,李媛媛,十字型振子FSS在机(弹)载雷达天线隐身中的应用研究,湖北航天科技,2007(001):39-43.
    [46] F. Sakran, Y. Neve-Oz, A. Ron, et al, Absorbing frequency-selective-surface forthe mm-wave range. IEEE Transactions on Antennas and Propagation,2008,56(8):2649-2655.
    [47] W. He, R. Jin, J. Geng, et al,2×2Array with UC‐EBG ground for low RCSand high gain, Microwave and optical technology Letters,2007,49(6):1418-1422.
    [48] Q. Gao, F. Tan, J. Sun, Low RCS Antenna Based on EBG Structure, AdvancedMaterials Research,2013,668:771-775.
    [49]张宏波,龚书喜,双H形槽减缩微带天线RCS,空间电子技术,2006,1:37-39.
    [50]李炎,开槽缩减微带天线及阵列RCS研究,硕士学位论文,西安电子科技大学,2008.
    [51]荣丰梅,龚书喜,贺秀莲,利用开槽和短路探针加载减缩微带天线RCS,西安电子科技大学学报,2006,33(3):479-481.
    [52]刘英,龚书喜,傅德民,分形在天线雷达散射截面减缩中的应用,微波学报,2003,19(2):28-30.
    [53]刘英,姜文,龚书喜等,具有RCS减缩效果的超宽带仿生天线,电波科学学报,2010(003):548-552.
    [54] W. Jiang, Y. Liu, S. Gong, et al, Application of bionics in antenna radar crosssection reduction, Antennas and Wireless Propagation Letters, IEEE,2009,8:1275-1278.
    [55] W. Jiang, S. Gong, Y. Liu, et al, Method of reducing antenna RCS using bionicsprinciple, Asia-Pacific Microwave Conference Proceedings (APMC),2010.
    [56]张鹏飞,隐身技术中的雷达截面预估与控制,西安电子科技大学,2008.
    [57]刘菊艳,智能蒙皮,飞航导弹,1990,9:10.
    [58] Uchimura Hiroshi, Takenoshita Takeshi, Fujii Mikio, Development of a“laminated waveguide”[C], IEEE Transactions on Microwave Theory andTechniques,1998,46(12):2438-2443.
    [59] D. Deslandes, K. Wu, Integrated microstrip and rectangular waveguide in planarform, Microwave and Wireless Components Letters, IEEE,2001,11(2):68-70.
    [60] Y. Cassivi, L. Perregrini, P. Arcioni, et al, Dispersion characteristics of substrateintegrated rectangular waveguide, Microwave and Wireless Components Letters,IEEE,2002,12(9):333-335.
    [61] F. Xu, Y. Zhang, W. Hong, et al, Finite-difference frequency-domain algorithmfor modeling guided-wave properties of substrate integrated waveguide, IEEETransactions on Microwave Theory and Techniques,2003,51(11):2221-2227.
    [62] F. Xu, K. Wu, Guided-wave and leakage characteristics of substrate integratedwaveguide, IEEE Transactions on Microwave Theory and Techniques,2005,53(1):66-73.
    [63] H. Li, W. Hong, T. J. Cui, et al, Propagation characteristics of substrateintegrated waveguide based on LTCC. Microwave Symposium Digest,2003IEEE MTT-S International,2003.
    [64] L. Yan, W. Hong, K. Wu, et al, Investigations on the propagation characteristicsof the substrate integrated waveguide based on the method of lines, Microwaves,Antennas and Propagation, IEE Proceedings,2005.
    [65] W. Hong, B. Liu, Y. Wang, et al, Half mode substrate integrated waveguide: Anew guided wave structure for microwave and millimeter wave application,Infrared Millimeter Waves and14th International Conference on TeraherzElectronics, IRMMW-THz2006, Joint31st,2006.
    [66] N. Grigoropoulos, B. Sanz-Izquierdo, P. R. Young, Substrate integrated foldedwaveguides (SIFW) and filters, Microwave and Wireless Components Letters,IEEE,2005,15(12):829-831.
    [67] W. Hong, Research advances in SIW, HMSIW and FHMSIW, MicrowaveConference,2008China-Japan Joint,2008.
    [68] D. Deslandes, K. Wu. Integrated microstrip and rectangular waveguide in planarform, Microwave and Wireless Components Letters, IEEE,2001,11(2):68-70.
    [69] D. Deslandes, K. Wu. Integrated transition of coplanar to rectangular waveguides,International Microwave Symposium Digest,2001IEEE MTT-S,2001.
    [70] X. Chen, K. Wu, Low-loss ultra-wideband transition between conductor-backedcoplanar waveguide and substrate integrated waveguide, International MicrowaveSymposium Digest, IEEE MTT-S,2009.
    [71] C. L. Zhong, J. Xu, Z. Y. Zhi, et al, Broadband substrate integrated waveguide torectangular waveguide transition with fin-line, Electronics letters,2009,45(4):205-207.
    [72] L. Li, X. Chen, R. Khazaka, et al, A transition from substrate integratedwaveguide (SIW) to rectangular waveguide. Asia Pacific Microwave Conference,APMC,2009.
    [73]李皓,陈安定,洪等,基片集成波导定向耦合器的仿真与实验研究[J],2004,20(4):54-56.
    [74] Z. C. Hao, W. Hong, J. X. Chen, et al. Single-layer substrate integratedwaveguide directional couplers, IEE Proceedings-Microwaves, Antennas andPropagation,2006,153(5):426-431.
    [75] B. Liu, W. Hong, Y. Wang, et al, Half mode substrate integrated waveguide(HMSIW)3-dB coupler, Microwave and Wireless Components Letters, IEEE,2007,17(1):22-24.
    [76] T. Djerafi, K. Wu. Super-compact substrate integrated waveguide cruciformdirectional coupler, Microwave and Wireless Components Letters, IEEE,2007,17(11):757-759.
    [77] A. Ali, H. Aubert, N. Fonseca, et al, Wideband two-layer SIW coupler: designand experiment, Electronics letters,2009,45(13):687-689.
    [78] S. T. Choi, K. S. Yang, K. Tokuda, et al, A V-band planar narrow bandpass filterusing a new type integrated waveguide transition, Microwave and WirelessComponents Letters, IEEE,2004,14(12):545-547.
    [79] Z. C. Hao, W. Hong, X. P. Chen, et al, Multilayered substrate integratedwaveguide (MSIW) elliptic filter, Microwave and Wireless Components Letters,IEEE,2005,15(2):95-97.
    [80] X. Chen, W. Hong, T. Cui, et al, Substrate integrated waveguide elliptic filterwith transmission line inserted inverter, Electronics Letters,2005,41(15):851-852.
    [81] Y. L. Zhang, W. Hong, K. Wu, et al, Novel substrate integrated waveguide cavityfilter with defected ground structure, IEEE Transactions on Microwave Theoryand Techniques,2005,53(4):1280-1287.
    [82] F. Mira, J. Mateu, S. Cogollos, et al. Design of ultra-wideband substrateintegrated waveguide (SIW) filters in zigzag topology. Microwave and WirelessComponents Letters, IEEE,2009,19(5):281-283.
    [83] Yun T.S,Nam H,Kim J.Y,et al, Harmonics suppressed substrate-integratedwaveguide filter with integration of low-pass filter[J], Microwave and OpticalTechnology Letters.2008,50(2):447-450.
    [84] S. Germain, D. Deslandes, K. Wu. Development of substrate integratedwaveguide power dividers, Canadian Conference on Electrical and ComputerEngineering, IEEE CCECE,2003.
    [85] C. Wang, W. Che, C. Li, et al, Multi-way microwave power dividing/combiningnetwork based on substrate-integrated waveguide (SIW) directional couplers.International Conference on Microwave and Millimeter Wave Technology,ICMMT,2008.
    [86] K. Sarhadi, M. Shahabadi, Wideband substrate integrated waveguide powersplitter with high isolation, Microwaves, Antennas&Propagation, IET,2010,4(7):817-821.
    [87] Suntives A.,Smith N. A.,Abhari R, Analytical design of a half-mode substrateintegrated waveguide Wilkinson power divider. Microwave and OpticalTechnology Letters,2010,52(5):1066-1069.
    [88] L. Yan, W. Hong, G. Hua, et al, Simulation and experiment on SIW slot arrayantennas, Microwave and Wireless Components Letters, IEEE,2004,14(9):446-448.
    [89] D. Stephens, P. R. Young, I. D. Robertson, W-band substrate integratedwaveguide slot antenna, Electronics Letters,2005,41(4):165-167.
    [90] L. Yan, W. Hong, K. Wu. Simulation and experiment on substrate integratedmonopulse antenna, Antennas and Propagation Society International Symposium,IEEE,2005.
    [91] S. Park, Y. Okajima, J. Hirokawa, et al, A slotted post-wall waveguide array withinterdigital structure for45linear and dual polarization, IEEE Transactions onAntennas and Propagation,2005,53(9):2865-2871.
    [92] S. Cheng, H. Yousef, H. Kratz,79GHz slot antennas based on substrateintegrated waveguides (SIW) in a flexible printed circuit board, IEEETransactions on Antennas and Propagation,2009,57(1):64-71.
    [93] H. Wang, D. Fang, B. Zhang, et al, Dielectric loaded substrate integratedwaveguide (SIW) H-plane horn antennas, IEEE transactions on antennas andpropagation,2010,58(3):640-647.
    [94] Y. J. Cheng, W. Hong, K. Wu, et al. Millimeter-wave substrate integratedwaveguide long slot leaky-wave antennas and two-dimensional multibeamapplications, IEEE Transactions on Antennas and Propagation,2011,59(1):40-47.
    [95] R. Kazemi, A. E. Fathy, R. A. Sadeghzadeh. Dielectric rod antenna array withsubstrate integrated waveguide planar feed network for wideband applications,IEEE Transactions on Antennas and Propagation,2012,60(3):1312-1319.
    [96] J. S. Fu. Preliminary study of60GHz air-filled SIW H-plane horn antenna,Electrical Design of Advanced Packaging and Systems Symposium (EDAPS),IEEE,2011.
    [97] K. Kim, J. Byun, H. Lee. Substrate integrate waveguide quasi Yagi antenna usingSIW-to-CPS transition for low mutual coupling, Antennas and PropagationSociety International Symposium (APSURSI), IEEE,2010.
    [98] O. Kramer, T. Djerafi, K. Wu, Very small footprint60GHz stacked Yagi antennaarray, IEEE Transactions on Antennas and Propagation,2011,59(9):3204-3210.
    [99] K. Song, Y. Fan, Y. Zhang, Radial cavity power divider based on substrateintegrated waveguide technology, Electronics Letters,2006,42(19):1100-1101.
    [100] K. Song, Y. Fan, Y. Zhang, Eight-way substrate integrated waveguide powerdivider with low insertion loss, IEEE Transactions on Microwave Theory andTechniques,2008,56(6):1473-1477.
    [101] W. M. Abdel-Wahab, S. Safavi-Naeini. Improvement of aperture coupling inSIW-fed DRA using embedded metallic posts, Antennas and Propagation SocietyInternational Symposium (APSURSI), IEEE,2012.
    [102] W. M. Abdel Wahab, S. S. Naeini, Simple circuit model for millimeter wavesubstrate integrated waveguide (SIW) Series-fed dielectric resonator antenna(RDRA) arrays, Antennas and Propagation Society International Symposium,APSURSI'09, IEEE,2009.
    [103] W. M. Abdel-Wahab, S. Safavi-Naeini, D. Busuioc, High gain/efficiency2D-dielectric resonator antenna array for low cost mm-wave systems, IEEEInternational Symposium on Antennas and Propagation (APSURSI),2011.
    [104] W. M. A. Wahab, S. Safavi-Naeini, D. Busuioc, A convenient circuit model formillimeter-wave substrate integrated waveguide (SIW) corporate feed fordielectric resonator antenna arrays, Antennas and Propagation SocietyInternational Symposium (APSURSI), IEEE,2010.
    [105] Z. C. Hao, W. Hong, A. Chen, et al, SIW fed dielectric resonator antennas(SIW-DRA), Microwave Symposium Digest, IEEE MTT-S International,2006.
    [106] O. Losito, L. Mescia, D. Mencarelli, et al, SIW cavity-backed patch antenna forKu band applications, European Conference on Antennas and Propagation(EuCAP),2013.
    [107] M. H. Awida, S. H. Suleiman, A. E. Fathy, Substrate-integrated cavity-backedpatch arrays: a low-cost approach for bandwidth enhancement, IEEE Transactionson Antennas and Propagation,2011,59(4):1155-1163.
    [108] D. Kim, J. W. Lee, T. K. Lee, et al, Design of SIW cavity-backedcircular-polarized antennas using two different feeding transitions, IEEETransactions on Antennas and Propagation,2011,59(4):1398-1403.
    [109] W. M. Abdel-Wahab, S. Safavi-Naeini. Wide-bandwidth60-GHzaperture-coupled microstrip patch antennas (MPAs) fed by substrate integratedwaveguide (SIW), Antennas and Wireless Propagation Letters, IEEE,2011,10:1003-1005.
    [110] T. Mikulasek, J. Lacik, Microstrip patch antenna fed by Substrate IntegratedWaveguide, International Conference on Electromagnetics in AdvancedApplications (ICEAA),2011.
    [111] K. B. Ng, H. Wong, C. H. Chan, et al, A novel waveguide fed array antenna withshorted microstrip patch elements, International Workshop on AntennaTechnology (iWAT), IEEE,2012.
    [112] W. M. Abdel-Wahab, S. Safavi-Naeini, D. Busuioc, Low cost60GHzmillimeter-wave microstrip patch antenna array using low-loss planar feedingscheme, International Symposium on Antennas and Propagation (APSURSI),IEEE,2011.
    [113] D. Garcia-Valverde, J. L. Masa-Campos, P. Sanchez-Olivares, et al, Linear PatchArray Over Substrate Integrated Waveguide For Ku Band,2013.
    [114] J. D. Taylor, Ultra-wideband radar technology, CRC press,2001.
    [115]阮成礼,超宽带天线理论与技术,哈尔滨:哈尔滨工业大学出版社,2006.
    [116] Commission Federal Communications. Revision of part15of the commission’srules regarding ultra-wideband transmission systems, First Report and Order,FCC.2002,2: V48.
    [117]吴琦,新型超宽带天线研究,博士学位论文,上海交通大学,2009.
    [118] J. Liang, L. Guo, C. C. Chiau, et al, Study of CPW-fed circular disc monopoleantenna for ultra wideband applications. Microwaves, Antennas and Propagation,IEE Proceedings,2005.
    [119] J. Liang, C. C. Chiau, X. Chen, et al, Study of a printed circular disc monopoleantenna for UWB systems, IEEE Transactions on Antennas and Propagation,2005,53(11):3500-3504.
    [120] J. Liang, L. Guo, C. C. Chiau, et al, CPW-fed circular disc monopole antenna forUWB applications, IEEE International Workshop on Antenna Technology: SmallAntennas and Novel Metamaterials, IWAT,2005.
    [121] Qu Xinan, Zhong S.S, Wang Wei, Study of the band-notch function for a UWBcircular disc monopole antenna[J], Microwave and optical technology letters,2006,48(8):1667-1670.
    [122] X. L. Bao, M. J. Ammann, Investigation on UWB printed monopole antenna withrectangular slitted groundplane, Microwave and Optical Technology Letters,2007,49(7):1585-1587.
    [123] Q. Wu, R. Jin, J. Geng, et al, Printed omni-directional UWB monopole antennawith very compact size, IEEE Transactions on Antennas and Propagation,2008,56(3):896-899.
    [124] K. Chung, J. Kim, J. Choi, Wideband microstrip-fed monopole antenna havingfrequency band-notch function, Microwave and Wireless Components Letters,IEEE.2005,15(11):766-768.
    [125] J. Jung, W. Choi, J. Choi, A small wideband microstrip-fed monopole antenna,Microwave and Wireless Components Letters, IEEE,2005,15(10):703-705.
    [126] C. Lin, Y. Kan, L. Kuo, et al, A planar triangular monopole antenna for UWBcommunication, Microwave and Wireless Components Letters, IEEE,2005,15(10):624-626.
    [127] C. Lin, H. Chuang, A3-12GHz UWB planar triangular monopole antenna withridged ground-plane, Progress In Electromagnetics Research,2008,83:307-321.
    [128] Y. J. Cho, K. H. Kim, D. H. Choi, et al, A miniature UWB planar monopoleantenna with5-GHz band-rejection filter and the time-domain characteristics,IEEE Transactions on Antennas and Propagation,2006,54(5):1453-1460.
    [129] W. C. Liu, P. C. Kao, CPW-fed triangular monopole antenna for ultra-widebandoperation, Microwave and optical technology letters,2005,47(6):580-582.
    [130] H. Chuang, C. Lin, Y. Kan, A printed UWB triangular monopole antenna,Microwave Journal,2006,49(1):108.
    [131] R. Fallahi, A. A. Kalteh, M. G. Roozbahani, A novel UWB elliptical slot antennawith band-notched characteristics, Progress In Electromagnetics Research,2008,82:127-136.
    [132] C. Zhang, A. E. Fathy, Development of an ultra-wideband elliptical disc planarmonopole antenna with improved omni-directional performance using a modifiedground, Antennas and Propagation Society International Symposium, IEEE,2006.
    [133] C. Huang, W. Hsia, Planar elliptical antenna for ultra-wideband communications,Electronics Letters,2005,41(6):296-297.
    [134] F. Fan, Z. Yan, T. Zhang, et al, Novel dual band-notched ultra-wideband antenna,Microwave and Optical Technology Letters,2009,51(12):2973-2976.
    [135] Z. Zheng, Q. Chu, Compact CPW-fed UWB antenna with dual band-notchedcharacteristics, Progress In Electromagnetics Research Letters,2009,11:83-91.
    [136] B. S. H. Choi, G. T. Jeong, H. H. Park, et al, Compact band-notchedultrawideband Y-shaped antenna with dual inverted-L slots, Microwave andOptical Technology Letters,2008,50(11):2797-2799.
    [137] X. Zhang, T. Zhang, Y. Xia, et al, Planar monopole antenna with band-notchcharacterization for UWB applications, Progress In Electromagnetics ResearchLetters,2009,6:149-156.
    [138] Y. Hu, M. Li, G. Gao, et al, A double-printed trapezoidal patch dipole antenna forUWB applications with band-notched characteristic,Progress In ElectromagneticsResearch,2010,103:259-269.
    [139] S. Barbarino, F. Consoli, UWB circular slot antenna provided with an inverted-Lnotch filter for the5GHz WLAN band, Progress In Electromagnetics Research,2010,104:1-13.
    [140] M. A. Habib, A. Bostani, A. Djaiz, et al, Ultra wideband CPW-FED apertureantenna with WLAN band rejection. Progress In Electromagnetics Research,2010,106:17-31.
    [141] J. Gong, Q. Li, G. Zhao, et al, Design and analysis of a printed UWB antennawith multiple band-notched characteristics, Journal of Electromagnetic Wavesand Applications,2009,23(13):1745-1754.
    [142] L. Ren, F. Li, J. Zhao, et al, A novel compact UWB antenna with dualband-notched characteristics, Journal of Electromagnetic Waves and Applications,2010,24(11-12):1521-1529.
    [143] F. T. Zha, S. X. Gong, G. Liu, et al, Compact slot antenna for2.4GHz/UWB withdual band-notched characteristic, Microwave and Optical Technology Letters,2009,51(8):1859-1862.
    [144] X. Yin, C. Ruan, C. Ding, et al, A compact ultra-wideband microstrip antennawith multiple notches, Progress In Electromagnetics Research,2008,84:321-332.
    [145] S. Tu, Y. Jiao, Y. Song, et al, A novel monopole dual band-notched antenna withtapered slot for UWB applications, Progress In Electromagnetics Research Letters,2009,10:49-57.
    [146] X. Yihua, X. Zeming, C. Qingxin, UWB antenna with stop-band notch and returnnulls, International Conference on Microwave and Millimeter Wave Technology,ICMMT,2008.
    [147] K. Kim, Y. Cho, S. Hwang, et al, Band-notched UWB planar monopole antennawith two parasitic patches. Electronics Letters,2005,41(14):783-785.
    [148] W. Wang, S. Gong, Z. Cui, et al, Dual band-notched ultra-wideband antenna withcodirectional SRR, Microwave and Optical Technology Letters,2009,51(4):1032-1034.
    [149] J. Huang, F. Zhang, H. Xie, et al, A hexagonal ring antenna with dual tunableband-notches for ultra-wideband applications. Progress In ElectromagneticsResearch Letters,2009,12:151-159.
    [150] Z. Wang, W. Hong, Z. Kuai, et al, Compact ultra-wideband antennas withmultiple notches, International Conference on Microwave and Millimeter WaveTechnology, ICMMT,2008.
    [151] Y. D. Dong, W. Hong, Z. Q. Kuai, et al, Development of ultrawideband antennawith multiple band-notched characteristics using half mode substrate integratedwaveguide cavity technology, IEEE Transactions on Antennas and Propagation,2008,56(9):2894-2902.
    [152] M. Yazdi, N. Komjani, Design of a band-notched UWB monopole antenna bymeans of an EBG structure, Antennas and Wireless Propagation Letters, IEEE.2011,10:170-173.
    [153] L. Peng, C. Ruan, UWB band-notched monopole antenna design usingelectromagnetic-bandgap structures, IEEE Transactions on Microwave Theoryand Techniques,2011,59(4):1074-1081.
    [154]张凡,锥台共形阵天线与特定用途天线研究[D],博士学位论文,西安电子科技大学,2011.
    [155]林晨,机载天线设计及天线系统布局研究,博士学位论文,西安电子科技大学,2011.
    [156]魏文元,宫德明,陈必森,天线原理[M],西安电子科技大学出版社,1985.
    [157]林昌禄,天线工程手册[M],电子工业出版社,2002.
    [158]肖伟清,用HFSS分析小型微带阵列天线的互耦效应,北京遥测技术研究所,2005.
    [159]周翔,朱晓维,华光,MIMO系统双极化微带振子天线研究[C],全国微波毫米波会议论文集,2003.
    [160]梁仙灵,双极化微带天线阵与超宽带,多频段印刷天线[D],2006.
    [161]钟顺时,微带天线理论与应用[M],西安电子科技大学出版社,1991.
    [162] D. M. Pozar, Microstrip antenna aperture-coupled to a microstripline, Electronicsletters,1985,21(2):49-50.
    [163] M. Dich, A. Ostergaard, U. Gothelf, A network model for the aperture coupledmicrostrip patch, International Journal of Microwave and Millimeter-WaveComputer-Aided Engineering,1993,3(4):326-339.
    [164] M. Himdi, J. P. Daniel, C. Terret, Transmission line analysis of aperture-coupledmicrostrip antenna, IEE Electronics letters,1989,25(18):1229-1230.
    [165]刘刚,波导窄边裂缝行波阵的设计及其波束赋形研究[D],电子科技大学,2009..
    [166] M. Hamadallah, Frequency limitations on broad-band performance of shunt slotarrays, IEEE Transactions on Antennas and Propagation,1989,37(7):817-823.
    [167] J. C. Coetzee, J. Joubert, D. A. Mcnamara, Off-center-frequency analysis of acomplete planar slotted-waveguide array consisting of subarrays, IEEETransactions on Antennas and Propagation,2000,48(11):1746-1755.
    [168]宋开军,樊勇,基于波导的微波毫米波空间功率合成技术研究[D],电子科技大学,2007.
    [169]陈丽娜,基片集成波导在几种微波无源器件及天线中的应用研究,西安电子科技大学,2012.
    [170] Yan L, Hong W, Wu K, et al. Investigations on the propagation characteristics ofthe substrate integrated waveguide based on the method of lines, Microwaves,Antennas and Propagation, IEE Proceedings. IET,2005,152(1):35-42..
    [171]吴涛,频率扫描天线阵设计与仿真,硕士学位论文,华中科技大学,2012.
    [172]刘永康,微带频扫天线阵列研究与设计,硕士学位论文,南京理工大学,2012.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700