左旋丁苯酞对血管性痴呆小鼠认知功能的影响及对PI3K/Akt信号转导通路的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
血管性痴呆(vascular dementia,VaD)是指各种脑血管疾病引起的脑功能障碍而产生的获得性智能损害综合征。VaD以学习、记忆功能损害为主要症状,可伴有运动、语言、视空间及人格障碍。随着社会人口日益老龄化和脑卒中后生存率的提高,由脑卒中造成的精神及智能损害日益突出,给社会和家庭带来沉重负担。脑卒中后缺血-再灌注是诱发VaD的主要原因之一。
     脑缺血可以诱导脑梗死或选择性脑神经元死亡,当缺血发生在与学习、记忆密切相关的区域时,即可导致VaD的发生。海马是学习记忆的关键部位,同时又是缺血缺氧的敏感部位。但导致海马CA1区神经细胞死亡的调控机制目前不祥。细胞的死亡方式有2种:细胞坏死和程序性细胞死亡,其中程序性细胞死亡有Ⅰ型(细胞凋亡)和Ⅱ型(自噬性细胞死亡)两种。磷脂酰肌醇-3-激酶/蛋白激酶B(PI3K/Akt, phosphoinositide3kinase/Akt)信号转导途径是一个经典抗凋亡、促存活的信号转导途径。它的激活在神经细胞,尤其在缺血缺氧神经元损伤中起着重要作用,并逐渐受到广泛重视。近年来发现其与自噬的调节密切相关。PI3K/Akt信号转导通路在脑缺血和神经退行性变中的作用已被广泛研究,已有研究发现PI3K/Akt信号转导通路与学习认知有关。但PI3K/Akt信号转导通路在VaD发病机制中的作用尚不清楚。因此,研究PI3K/Akt信号通路与VaD的关系,对于VaD的基础及临床研究,具有重要的指导意义。
     丁苯酞(3-n-butylphthalide,NBP)是中国医学科学院药物研究所研制开发的一类新型抗脑缺血药物,对急性缺血性脑卒中有明显疗效。既往研究发现丁苯酞具有多靶点抗脑缺血作用,能改善缺血区局部脑血流,缩小脑梗死面积,改善线粒体功能,抑制自由基的产生,抑制炎症反应,抑制谷氨酸释放,减轻脑缺血所致脑水肿,抗血栓形成和抗血小板聚集,并且有研究证实能抑制神经细胞凋亡,保护缺血缺氧引起的神经细胞损伤,神经功能缺失及脑缺血记忆障碍。而这些机制均与血管性痴呆的发生有关。近年来,左旋丁苯酞(l-NBP)和右旋丁苯酞(d-NBP)已经被拆分,并且将拆分后的l-NBP和d-NBP进行了对比研究后发现,l-NBP比d-NBP的作用更强,而且还发现在对神经细胞凋亡研究中d-NBP的存在降低了dl-NBP的作用,从而证明d-NBP有拮抗l-NBP作用,因而开发l-NBP的意义更为重。目前该药应用于VaD的实验研究少有报道,更无其与PI3K/Akt信号转导通路之间关系的报道。基于此,本文拟通过观察PI3K/Akt信号转导通路在VaD小鼠海马组织中的变化,以及l-NBP对VaD的影响,以探讨PI3K/Akt信号转导通路在VaD的发病机制中的作用及l-NBP的作用机制。
     第一部分:血管性痴呆小鼠模型的建立和左旋丁苯酞的防治作用
     目的:观察脑反复缺血再灌注后C57BL/6小鼠行为学的改变和海马病理学特征变化,并观察l-NBP对脑反复缺血再灌注诱导的VaD小鼠空间学习记忆障碍的影响。
     方法:
     将C57BL/6小鼠随机分为假手术组(sham组)、模型组(IR组,造模后植物油灌胃6ml.kg-1.d-1,连续28天)、左旋丁苯酞预防性治疗组(Pre-l-NBP组,造模前7天左旋-丁苯酞灌胃30mg.kg-1.d-1,连续7天)、左旋丁苯酞低剂量治疗组(Low-l-NBP组,造模后左旋-丁苯酞灌胃30mg.kg-1.d-1,连续28天)和左旋丁苯酞高剂量治疗组(High-l-NBP组,造模后左旋-丁苯酞灌胃60mg.kg-1.d-1,连续28天);除假手术组外均给予双侧颈总动脉反复三次缺血-再灌注方法建立小鼠VaD模型,假手术组仅暴露颈总动脉不结扎。造模4周后通过Morris水迷宫试验和跳台试验进行学习和记忆成绩测试,观察其行为学改变;应用琉堇染色观察海马病理学特征变化。
     结果:
     1空间学习记忆能力的改变——Morris水迷宫实验
     在定位航行实验中,IR组小鼠的寻台潜伏期明显长于Sham组小鼠[F(1,27)=30.09,p<0.01]。l-NBP各组小鼠寻台潜伏期与IR组小鼠相比明显缩短[F(3,50)=10.315,P<0.01]。在实验的第2-5天,sham组小鼠、Pre-l-NBP组小鼠寻台潜伏期明显短于IR组小鼠(P<0.05, P<0.01);在实验的第3-5天,Low-l-NBP组和High-l-NBP组小鼠寻台潜伏期明显短于IR组小鼠(P<0.05,P<0.01)。
     在空间探索试验中,与IR组小鼠相比,Sham组小鼠对目标象限表现出明显的偏爱(P<0.01)。与IR组小鼠相比,High-l-NBP和Pre-l-NBP组小鼠对目标象限表现出明显的偏爱(P<0.05, P<0.01)。
     2被动逃避反应的改变——跳台实验
     2.1下台潜伏时间:IR组与Sham组相比小鼠的首次跳下平台的潜伏时间明显缩短(P<0.01),提示小鼠记忆形成功能受损;Low-l-NBP组、High-l-NBP组和Pre-l-NBP组与IR组相比跳下平台的潜伏时间明显增加(P<0.05),提示l-NBP可改善小鼠记忆形成功能。
     2.2错误次数:IR组与Sham组相比小鼠跳下平台的错误次数明显增多(P<0.05),Low-l-NBP组、High-l-NBP组和Pre-l-NBP组与IR组相比跳下平台的错误次数明显减少,但无统计学意义(P>0.05)。
     3小鼠海马的组织病理学改变
     硫堇染色显示,sham组小鼠海马CA1区锥体神经元排列整齐、致密,细胞形态完整,胞核饱满,核仁清晰。IR组小鼠海马CA1区可见片段性的锥体细胞缺失,部分细胞形态发生明显改变,可见胞体缩小,形态不规则,呈梭型或多角形,胞核固缩、浓染,核仁模糊不清或消失。与IR组相比,Low-l-NBP组、High-l-NBP组和Pre-l-NBP组小鼠海马CA1区的锥体细胞缺失明显减轻。
     结论:
     1本实验通过双侧颈总动脉反复三次缺血-再灌注方法成功的建立了C57BL/6小鼠VaD模型。预防性和治疗性应用l-NBP可以减轻VaD小鼠学习和记忆障碍,尤以预防性应用l-NBP效果显著。
     2反复缺血再灌注4周后小鼠海马组织CA1区出现神经细胞片段性缺失、排列紊乱、神经元密度降低等改变。预防性和治疗性应用l-NBP可以减轻VaD小鼠海马组织病理学变化,进而改善其学习和记忆能力。
     第二部分:PI3K激动剂及抑制剂对血管性痴呆小鼠认知功能的影响
     目的:观察PI3K激动剂及抑制剂对VaD小鼠认知功能的影响。
     方法:将C57BL/6小鼠随机分为假手术组(sham组)、激动剂组(IR+IGF-1组,手术前及手术24小时后经侧脑室给予IGF-12ul/mouse)、激动剂溶剂对照组(IR+DW组,手术前及手术24小时后经侧脑室给予去离子水2μl/mouse)、抑制剂组(IR+LY294002组,手术前及手术24小时后经侧脑室给予LY29400210nmol/mouse)和抑制剂溶剂对照组(IR+DMSO组,手术前及手术24小时后经侧脑室给予同等体积(2μl)的溶剂);除假手术组外均给予双侧颈总动脉反复三次缺血-再灌注方法建立小鼠VaD模型,侧脑室插管给予相应试剂;假手术组仅暴露颈总动脉不结扎。造模4周后通过Morris水迷宫试验进行学习和记忆成绩测试,观察其行为学改变;应用Western Blot方法测定各组小鼠海马组织中Akt及p-Akt Ser473蛋白的变化。
     结果:
     1空间学习记忆能力的改变——Morris水迷宫实验
     在定位航行实验中,Sham组和IR+IGF-1组小鼠的寻台潜伏期明显短于IR+DW组、IR+LY294002组、IR+DMSO组小鼠[F(4,45)=9.702,P<0.01]。
     在空间探索试验中,与IR+DW组、IR+LY294002组、IR+DMSO组小鼠相比,sham组和IR+IGF-1组小鼠对目标象限表现出明显的偏爱(P<0.01)。
     2Akt、pAkt Ser473在海马组织中表达的变化
     术后4周Sham组、IR+DW组、IR+IGF-1组、IR+DMSO组和IR+LY294002组之间Akt总蛋白表达无明显差异(P>0.05);IR+DW组、IR+IGF-1组、IR+DMSO组和IR+LY294002组的p-Akt Ser473的蛋白表达明显高于sham组(P<0.01, P<0.05)。IR+IGF-1组p-Akt的蛋白表达明显高于IR+DW组、IR+DMSO组和IR+LY294002组(P<0.05)。IR+LY294002组p-Akt的蛋白表达低于IR+DMSO组(P<0.05)。
     结论:
     PI3K激动剂IGF-1可以减轻VaD小鼠学习记忆功能障碍,促进海马组织中p-Akt Ser473表达。其机制可能为IGF-1激活PI3K/Akt信号转导通路,通过调节神经细胞的凋亡和自噬,从而改善VaD小鼠的认知功能。第三部分:血管性痴呆小鼠海马组织中Akt、p-Akt、mTOR、p-mTOR表达水平变化及左旋丁苯酞的影响
     目的:观察血管性痴呆小鼠海马组织中Akt、p-Akt、mTOR、p-mTOR表达水平的变化及l-NBP的干预作用。
     方法:造模4周后采用Western-Blot方法测定各组小鼠海马组织中Akt、p-Akt Ser473、mTOR和p-mTOR Ser2448蛋白的变化;采用免疫组化方法测定各组小鼠海马组织中p-Akt Ser473蛋白的变化。
     结果:
     1左旋丁苯酞对Akt、p-Akt Ser473蛋白表达的影响
     脑反复缺血再灌注术后4周各组之间Akt总蛋白表达无明显差异(P>0.05);与sham组相比,IR组、Pre-l-NBP组、Low-l-NBP组和High-l-NBP组p-Akt Ser473蛋白表达明显增强(P<0.01);与IR组相比,Pre-l-NBP组、Low-l-NBP组和High-l-NBP组三组p-Akt Ser473的表达明显增强(P<0.01)。
     2左旋丁苯酞对mTOR、p-mTOR Ser2448蛋白的表达的影响:
     脑反复缺血再灌注术后4周各组之间mTOR总蛋白表达无明显差异(P>0.05);IR组海马组织p-mTOR Ser2448的蛋白明显高于sham组(P<0.01)。Pre-l-NBP组、Low-l-NBP组和High-l-NBP组三组海马组织p-mTOR Ser2448的蛋白表达明显高于IR组(P<0.01, P<0.05)。
     结论:
     1脑反复缺血再灌注4周后,VaD小鼠海马组织中p-Akt Ser473、p-mTOR Ser2448的表达明显增多。提示脑反复缺血再灌注使PI3K/Akt通路活化,Akt和mTOR活化可抵抗缺血引起的损伤,在神经元的存活中发挥着重要的作用。
     2左旋丁苯酞可促进VaD小鼠海马组织中p-Akt Ser473和p-mTORSer2448的表达。提示该药可能通过激活PI3K/Akt通路,促进p-Akt Ser473和p-mTOR Ser2448的表达,从而发挥神经保护作用,改善小鼠认知功能障碍和神经损害。
     第四部分:血管性痴呆小鼠海马组织中自噬因子LC3B和Beclin1表达水平变化及左旋丁苯酞的影响
     目的:观察血管性痴呆小鼠海马组织中LC3B和Beclin1蛋白及mRNA表达的变化及l-NBP的干预作用。
     方法:造模4周后应用Western Blot方法测定各组小鼠海马组织中LC3B蛋白表达的变化,应用FQ RT-PCR方法测定各组小鼠海马LC3B和Beclin1mRNA表达的变化
     结果:
     1LC3B蛋白的表达情况:
     术后4周IR组海马组织LC3B蛋白表达明显高于sham组、Pre-l-NBP组和High-l-NBP组(P<0.01)。
     2LC3B、Beclin1的mRNA表达水平
     IR组小鼠海马LC3B mRNA和Beclin1mRNA的表达比Sham组明显增加(P<0.05);Pre-l-NBP组、Low-l-NBP组和High-l-NBP组三组海马组织中LC3B mRNA和Beclin1mRNA的表达无组间差异(P>0.05),与Sham组相比无统计学差异(P>0.05),但较IR组明显下降(P<0.01,P<0.05)。
     结论:
     1脑反复缺血再灌注4周后,小鼠海马组织LC3B蛋白、LC3B mRNA和Beclin1mRNA表达均显著升高,与小鼠行为学改变和神经元损伤基本一致。
     2左旋丁苯酞降低小鼠海马组织LC3B蛋白、LC3B mRNA和Beclin1mRNA表达(与其上游抑制物p-mTOR的表达相反)。提示l-NBP可能通过激活PI3K/Akt通路抑制自噬,从而减少VaD小鼠海马神经元损伤,减轻认知功能障碍。
     第五部分:血管性痴呆小鼠侧脑室室管膜扫描电镜的变化特征及左旋丁苯酞的影响
     目的:观察VaD小鼠侧脑室脉络丛上皮细胞和室管膜细胞的超微结构变化,以及l-NBP的影响。
     方法:通过扫描电镜观察造模4周后sham组、IR组和High-l-NBP组小鼠侧脑室脉络丛上皮细胞和室管膜细胞超微结构的变化。
     结果:
     1小鼠侧脑室脉络丛上皮细胞超微结构特点
     Sham组侧脑室脉络丛上皮细胞细胞胞体形状规则,细胞之间界限清晰,微绒毛密布上皮细胞游离面,较粗短,细胞表面可见大小不一的分泌泡。IR组小鼠侧脑室脉络丛上皮细胞形状变得极不规则,有的细胞有突起,有的呈沟回样皱缩,有的细胞表面光滑,并可见大量的分泌泡,分泌物增多,细胞间界限不清,细胞表面呈泥沙样堆积,脉络丛上皮细胞上微绒毛明显减少甚至消失。High-l-NBP组小鼠侧脑室脉络丛上皮细胞排列尚规律,细胞间界限较清晰。
     2小鼠侧脑室室管膜表面超微结构特点
     sham组小鼠可见室管膜上皮细胞表面带有大量的纤毛和微绒毛,纤毛,粗细较为均匀,在纤毛的空隙处,分布着众多的微绒毛。IR组小鼠室管膜上皮细胞表面可见纤毛稀疏、倒伏,部分粘附呈缕。部分纤毛表面粘附絮状物,可见纤毛和微绒毛被“淤泥状”分泌物呈片状覆盖。High-l-NBP组小鼠室管膜上皮细胞表面的纤毛和微绒毛较IR组明显增多。
     结论:
     1VaD小鼠侧脑室脉络丛上皮细胞及室管膜细胞出现超微结构异常,提示脉络丛上皮细胞和室管膜的异常可能参与了VaD的发病机制。
     2左旋丁苯酞可以减轻VaD小鼠侧脑室脉络丛上皮细胞室管膜的超微结构异常,从而改善认知功能障碍。
As an acquired syndrome of cognitive impairment, vascular dementia(VaD), which is caused by various kinds of cerebral vascular disease,demonstrates mainly as learning and memory dysfunction, accompanied withthe possible disorder of motion, tongue, direction and personality. VaD, as thesecond most common form of dementia after Alzheimer's disease in the elderpeople, has attracted much attention in recent years. Recently, there isemerging epidemiological evidence that VaD is likely the leading cause ofdementia in Asian population. At present, the pathogenesis of VaD remainsunclear, but increasing evidence suggests that VaD is associated with a groupof diverse pathologies affecting the cerebrovascular circulation. One ofimportant mechanisms in VaD is the pathophysiology of ischemia/reperfusion(I/R) including excitotoxicity, oxidative stress and inflammatory reactions.
     Cerebral ischemia can induce the death of cerebral infarction or selectiveneurons in the brain, when ischemia occurred in associated with learning,memory areas, can lead to the occurrence of VaD. Post-IR neurons exhibit twoobvious forms of cell death: necrosis and programmed cell death whichinclude apoptosis and autophagy. Previous researches showed that there mightbe a continuum between autophagy and apoptosis. Hence the extent of thesalvage of apoptosis and autophagy might contribute to the outcome of thepathological process. Recently, accumulating evidence has shown that thephosphatidylinositol-3kinase/Akt (PI3K/Akt) cell signaling pathway takespart in the apoptosis after IR. The PI3K/Akt signal transduction pathway is aclassic anti-apoptosis pathway, promoting the survival signal transduction. Itsactivation in the nerve cells, especially in hypoxic ischemic neuronal injurycells, plays an important role, and has received extensive attention. In recentyears, it found to be closely related with the regulation of autophagy. The neuroprotective role of PI3K/Akt in cerebral ischemia has been widely studied.PI3K/Akt survival signaling pathway regulate cell survival and are importantin the pathogenesis of degenerative diseases, activation of the Akt/proteinkinase B (PKB) kinase pathway can be neuroprotective after stroke throughblocking neuronal death after stroke. Akt/mTOR signal pathway inducedNF-κB (nuclear factor kappa B) activation pathway and Bcl-2and Baxbalance adjustment play an important role in nerve cells inflammatoryresponses and apoptosis of ischemic cerebrovascular disease. Akt may rescuecells from apoptosis by inhibiting the Bax-dependent apoptosis pathwaythrough a forkhead box transcription factor.
     3-n-butylphthalide is successfully synthesized to treating ischemic strokewith independent intellectual property rights of a class of chemical drugs inour country. The first is the L-isomer extracted originally from celery seed byYANG Jun-shan, after the artificial synthesis of racemes, also known asbutylphthalide. As the yellow oily liquid, butylphthalide has a celery flavor.3-n-butylphthalide (NBP) has three different stereo isomers known as l-, dl-,and d-NBP. A large number of studies have demonstrated that dl-NBP is ableto be a neuroprotective drug for the treatment of ischemic stroke throughmultiple mechanisms such as improving energy metabolism, reducingoxidative damage, improving microcirculation in arterioles, decreasingneuronal apoptosis, improving mitochondrial function, and inhibitinginflammation. Although the positive effects of NBP on cerebral infarct andAlzheimer’s disease have been verified in clinic trials and animal researches,few studies has investigated whether NBP could be beneficial as a treatmentfor VaD. A previous study discovered that only l-NBP ameliorated thecognitive impairment induced by chronic cerebral hypoperfusion while d-anddl-NBP did not show significant beneficial effects. Furthermore, l-NBPreduces β-amyloid-induced cell death in neuronal cell cultures, and improvescognitive performance in an animal model of Alzheimer’s disease. However,the effects of l-NBP in this area are still not clear.
     Therefore, this study set out to examine whether treating with l-NBP and pretreating with l-NBP have the ability to improve cognitive impairment inVaD mice induced by cerebral repetitive IR. Furthermore this study explorewhether activating PI3K/Akt cell signaling pathway is one of the mechanismsof l-NBP providing the protective effect on VaD mice.
     Part1: The establishment of the vascular dementia mice model and theeffects of l-3-n-butylphthalide
     Objectives: To observe the behavioral changes and hippocampalpathology changes4weeks after cerebral repetitive ischemia/reperfusion inC57BL/6mice, and to observe if l-NBP can improve learning and memoryimpairment induced by cerebral repetitive ischemia/reperfusion.
     Methods: C57BL/6mice were randomly divided into five groups: thesham group, IR group(vegetable oil was given daily for28consecutive daysafter IR), Pre-l-NBP group (30mg/kg l-NBP was administered daily for7daysprior to IR), Low-l-NBP group (30mg/kg l-NBP was given daily for28consecutive days after IR) and High-l-NBP group (60mg/kg l-NBP was givendaily for28consecutive days after IR). Mice, except the sham group, weresubjected for continuously three repeated times ischemia-reperfusion throughthe ligation of the bilateral common carotid arteries. In the sham group,protocols were the same as the model group but bilateral common carotidswere only exposed. The capability of learning and memory of mice wereinvestigated by the Morris water maze test and the step-down test, thepathological change of hippocampus in each group was observed by thioninestaining.
     Results:
     1Learning and memory ability of Morris water maze test:
     1.1L-NBP significantly ameliorated learning impairment induced by cerebralrepetitive IR.
     For the purpose of evaluating whether the mice cognitive function wasaffected after the oral administration of l-NBP, we used the MWM test toevaluate the mice abilities of spatial learning acquisition and memoryretention. There was a marked treatment effect [F(3,50)=10.315,P<0.01] on escape latency, suggesting that l-NBP was protective against impaired spatiallearning in the cerebral repetitive IR mice. The escape latency of IR group wasevidently longer than that of the sham group (P<0.01), suggesting that cerebralrepetitive IR successfully induced learning deficit. Compared with IR group,after treated with30mg/kg l-NBP or60mg/kg l-NBP, the escape latency wasmarkedly decreased from day3to day5(P<0.01, P<0.05). And comparedwith IR group, after pretreated with30mg/kg l-NBP, the escape latency wasmarkedly decreased from day2to day5(P<0.01). These results indicated thatoral administration of l-NBP, especially pretreatment with l-NBP significantlyrescues learning impairment caused by cerebral repetitive IR
     1.2L-NBP significantly rescued memory deficits induced by cerebralrepetitive IR.
     To investigate the effects of l-NBP on memory deficits caused bycerebral repetitive IR, we conducted a spatial probe test after the5days oftraining in the water maze. In the test, we discovered that the sham group, thePre-l-NBP group and the High-l-NBP mice were able to show significantpreference for the target quadrant compared with IR group mice (P<0.05,P<0.01).
     2Learning ability of step-down test:
     2.1Latency time
     The latency time of IR group are significant shorter than those of shamgroup (P<0.01), that suggest there are impairment of memory formation in IRgroup mice. The latency time of Low-l-NBP, High-l-NBP and Pre-l-NBPgroup are marked longer than those of IR group (P<0.05), that suggest l-NBPcan improve impairment of memory formation.
     2.2The number of error
     The number of error of IR group were much more than those ofsham-operated group (P<0.05). The number of error of l-NBP-treated groupwere lower than those of model group, but without statistical significance (P>0.05).
     3Neuropathological evaluation
     In sham mice, the pyramidal neurons in the CA1hippocampus werearranged in sequence with4-5cell layers, intact lineament, full nuclei andclear nucleoli. In the IR group, part neurons died4weeks after IR, which wererepresented by increases of HG (P<0.05) and by significant decreases of ND(P<0.01) compared with sham group. And, there was significant improvementin l-NBP groups as compared to those in the IR group (P<0.05).
     Conclusions:
     1This study has successfully established C57BL/6VaD mouse model bythree repeated times ischemia-reperfusion through the ligation of the bilateralcommon carotid arteries. Mice, treated with l-NBP, especially pre-treated withl-NBP significantly attenuated learning and memory impairment induced bycerebral repetitive IR.
     2L-NBP might improve learning and memory ability of mice byattenuating the injury of hippocampus neurons.
     Part2: The effects of PI3K agonists and inhibitors on cognitive functionin mice with vascular dementia
     Objectives:To observe the effects of PI3K agonists and inhibitors oncognitive function in VaD mice.
     Methods: C57BL/6mice were equally and randomly divided into fivegroups: the sham group, IR+IGF-1group, IR+DW group, IR+LY294002group and IR+DMSO group. Mice, except the sham group, were subjected forcontinuously three repeated times ischemia-reperfusion through the ligation ofthe bilateral common carotid arteries. In the sham group, protocols were thesame as the model group but bilateral common carotids were only exposed.The capability of learning and memory of mice were investigated by theMorris water maze test at4weeks after operation. The expression of Akt andp-Akt in hippocampus were studied by immunohistochemistry and WesternBlot technique.
     Results:
     1Learning and memory ability of Morris water maze test
     The escape latency of IR+DW group, IR+LY294002group and IR+DMSO group was evidently longer than that of the sham group andIR+IGF-1group[F(4,45)=9.702,P<0.01].
     Compared with IR+DW, IR+LY294002and IR+DMSO group mice, thesham and IR+IGF-1group mice were able to show significant preference forthe target quadrant (P<0.01).
     2Protein expression of LC3B in hippocampus by Western blot
     There is no marked change in total Akt among five groups (P>0.05) at4weeks after operation. However, compared with the sham group, p-Akt weresignificantly increased in the IR+DW、 IR+IGF-1、 IR+DMSO andIR+LY294002group(P<0.01). Moreover, IR+IGF-1group mice showed astrong expression of p-Akt compared with the IR+DW、IR+DMSO andIR+LY294002group mice (P<0.05). P-Akt were significantly decreased in theIR+LY294002group compared with those of IR+DMSO group (P<0.05)
     Conclusions:
     PI3K agonist IGF-1could alleviate the learning and memory impairmentand promote the p-Akt protein expression in hippocampus in VaD mice, andits possible mechanism of improving cognitive function may be activating ofPI3K/Akt signal transduction pathway and regulating apoptosis and autophagyof nerve cells.
     Part3: The expression level of Akt, p-Akt, mTOR, p-mTOR protein inhippocampus of VaD mice and the effects of l-NBP.
     Objectives: To observe the Akt, p-Akt, mTOR, p-mTOR proteinexpression in hippocampus of VaD mice and the effects of l-NBP.
     Methods: The expressions of Akt, p-Akt, mTOR and p-mTOR inhippocampus were studied by measure of Western Blot and the expression ofp-Akt were studied by immunohistochemistry at4weeks after operation.
     Results:
     1L-NBP induce expression of p-Akt Ser473in the hippocampus of VaD mice.
     There is no marked change in total Akt among five groups (P>0.05).However, p-Akt Ser473were significantly increased in the IR group micecompared with those in the sham group (P<0.01). Moreover, Low-l-NBP, High-l-NBP and Pre-l-NBP group mice showed a strong expression of p-Aktcompared with the IR group mice (P<0.01).2L-NBP induce expression of p-mTOR Ser2448in the hippocampus ofcerebral repetitive IR mice.
     There is no marked change in total mTOR among five groups (P>0.05).However, p-mTOR Ser2448were significantly increased in the IR group micecompared with those in the sham group (P<0.01). Moreover, Low-l-NBP,High-l-NBP and Pre-l-NBP group mice showed a strong expression ofp-mTOR compared with the IR group mice (P<0.01, P<0.05).
     Conclusions:
     1There is significant increase in the expression of p-Akt Ser473andp-mTOR Ser2448protein in hippocampal tissue of VaD mice at4weeks postsurgery. It is suggest that activation of the PI3K/Akt signal transductionpathway might play a protect role in resisting neuronal damage after repeatedcerebral ischemia and reperfusion.
     2L-NBP can promote the expression of p-Akt Ser473and p-mTORSer2448in hippocampal tissue of VaD mice. The result suggest that l-NBPmay play a neuroprotective role by promoting the expression of p-Akt Ser473and p-mTOR Ser2448, thereby improving cognitive dysfunction and neuronaldamage in mice.
     Part4: The expression level of LC3B和Beclin1in hippocampus of VaDmice and the effects of l-NBP
     Objectives:To observe the LC3B和Beclin1expression in hippocampusof VaD mice and the effects of l-NBP.
     Methods: The expression of LC3B和Beclin1in hippocampus werestudied by Western-Blot technique or FQ RT-PCR technique at4weeks afteroperation.
     Results:
     1The expression level of LC3B protein in hippocampus by Western blot.
     The expression level of LC3B protein were significantly increased in theIR group mice compared with those in the sham group (P<0.01). Howover, in High-l-NBP and Pre-l-NBP group, the protein expression of LC3B were lowerthan those of IR group (P<0.05).
     2LC3B and Beclin1mRNA expression in hippocampus by FQ RT-PCR
     LC3B and Beclin1mRNA expression were significantly increased in theIR group mice compared with those in the sham group (P<0.05). There are nosignificant difference among Low-l-NBP, High-l-NBP, Pre-l-NBP group andsham group. Howover, LC3B and Beclin1mRNA expression of l-NBPgroups were marked lower than that of IR group (P<0.05).
     Conclusions:
     1There are significant increase in the expression of LC3B protein, LC3BmRNA and Beclin1mRNA in hippocampal tissue of VaD mice at4weekspost surgery. It suggests that increase in the expressions of LC3B and Beclin1was related to cognitive damage and neuronal damage in VaD mice.
     2L-NBP can reduce the expression level of LC3B and Beclin1inhippocampal tissue of VaD mice, thereby improving cognitive dysfunction andneuronal damage in VaD mice.
     Part5: Features of ependyma of the lateral ventricle in VaD mice byscanning electron microscopy (SEM) and the effect of l-NBP
     Objectives:To observe the change of ependyma cells of the lateralventricle in the VaD mice and the effect of l-NBP.
     Methods: To observe the change of ependyma cell and choroid plexusepithelial cell of the lateral ventricle in the VaD mice by scanning electronmicroscopy (SEM) and the effect of l-NBP.
     Results:
     1Structure features of choroid plexus epithelial cell of the lateral ventricle inmice
     The choroid plexus epithelial cell of the lateral ventricle of sham groupare of regular shape, clear boundary between cells. On cell surface, there arefull of bushy and shorter microvilli, and kind of secretory vesicles withdifferent sizes. In IR group, the shape of choroids plexus epithelial cellbecame irregular, and some cells have raised, some are of gyrus shrinkage,
     some cell surface are smooth. There were a large number of secretory vesiclesand increased secretions. Sediment is accumulated on the cell surface andintercellular boundaries are not clear. Microvillus decreased significantly evendisappear. The arrangement of choroid plexus epithelial cell in High-l-NBPgroup was in order, with clear boundaries between cells.
     2Structure features of ependyma cell of the lateral ventricle in mice
     In sham group, there were abundant cilia and microvillus on its unevensurface. The quantities of cilia and microvillus on the uneven surface of in IRgroup reduced obviously. Both of them became twisty and stiff or bent and fellon the surface of cell in lesion regions and ‘mud-like’ secretions flaky out onthe ependymal surface. In High-l-NBP group, the quantities of cilia andmicrovillus on the uneven surface increased obviously compared with IRgroup.
     Conclusions:
     1The ependyma cells of the lateral ventricle of VaD mice were abnormal,that suggests abnormal ependyma cells may be involved in the pathogenesis ofVaD.
     2L-NBP can improve the abnormal ependyma cells of the lateralventricle, thereby improving cognitive dysfunction.
引文
1Roman GC. Vascular dementia revisited: diagnosis, pathogenesis,treatment, and prevention. Med Clin North Am,2002,86(3):477~499
    2黄红莉,陈保健,周昊.血管性痴呆.基础医学与临床,1998,18(5):26~30
    3Song PP, Wang DX, Wang PY. Effects of lidocaine on brain damageinduced by transient global cerebral ischemia in mice of differentapolipoprotein E genotypes. Zhonghua Yi Xue Za Zhi,2005,85(48):3401~3408
    4Kitagawa K, Matsumoto M, Tagaya M, et al.'Ischemic tolerance'phenomenon found in the brain. Brain Res,1990,528(1):21~24
    5Kato H, Liu Y, Araki T, et al. Temporal profile of the effects ofpretreatment with brief cerebral ischemia on the neuronal damagefollowing secondary ischemic insult in the gerbil: cumulative damage andprotective effects. Brain Res,1991,553(2):238~242
    6Storck T, Schultes S, Hofmann K, et al. Structure, expression andfunctional analysis of a Na+-dependent glutamate/aspartate transporterfrom rat brain. PNAS,1992,89(22):10955~10959
    7Kitagawa K, Matsumoto M, Yang G, et al. Cerebral ischemia after bilateralcarotid artery occlusion and intraluminal suture occlusion inmice-Evaluation of the patency of the posterior communicating artery. JCereb Blood Flow Metab,1998;18(5):570~579
    8Fujii M, Hara H, Meng W, et al. Strain-related differences in susceptibilityto transient forebrain ischemia in SV-129and C57Black/6mice. Stroke,1997,28(9):1805~1810.
    9Maeda K, Hata R, Hossmann KA. Regional metabolic disturbances andcerebrovascular anatomy after permanent middle cerebral artery occlusionin C57black/6and SV129mice. Neurobiol Dis,1999,6(2):101~108
    10Olsson T, Wieloch T, Smith Mf. Brain damage in a mouse model of globalcerebral ischemia effect of NMIDA receptor blockade. Brain Res,2003,982(3):260~269
    11Morris RGM. Spatial localization does not require the presence of localcues. Learn Motiv,1981,12(2):239~260
    12Morris RGM. Developments of a water-maze procedure for studyingspatial learning in the rat. J Neurosci Meth,1984,11(1):47~60
    13Kumar A, Seghal N, Padi SV, et al. Differential effects of cyclooxygenaseinhibitors on intracerebroventricular colchicine-induced dysfunction andoxidative stress in rats. Eur J Pharmacol,2006,551(1-3):58~66
    14D’Hooge R, De Deyn PP. Applications of the Morris water maze in thestudy of learning and memory. Brain Res Rev,2001,36(1):60~90
    15Malleret G, Hen R, Guillou JL, et al.5-HT1B receptor knock-out miceexhibit increased exploratory activity and enhanced spatial memoryperformance in the Morris water maze. J Neurosci,1999,19(14):6157~6168
    16Poucet B, Save E, Lenck-Santini PP. Sensory andmemory properties ofhippocampal place cells. Neuroscience,2000,11(2-3):95~111
    17Vasconcellos AP, Zugno AI, Dos Santos AH. Na+, K+-ATPase activity isreduced in hippocampus of rats submitted to an experimentalmodelofdepression: effectof chronic lithium treatmentand possible involvementin learning deficits. Neurobiol Learn Mem,2005,84(2):102~110
    18McAuliffe JJ, Miles L, Vorhees CV. Adult neurological function followingneonatal hypoxia-ischemia in a mouse model of the term neonate:watermaze performance is dependenton separable cognitive andmotorcomponents. BrainRes,2006,1118(1):208~221
    19Oliveira AA, Nogueira CR, Nascimento VS. Evaluation of levetiracetameffects on pilocarpine-induced seizures: cholinergicmusca-rinic systeminvolvement. Neurosci Lett,2005,385(3):184~188
    20Moser MB, Moser EI, Forrest E. Spatial learning with aminislab in thedorsal hippocampus. Proc NatlAcad SciUSA,1995,92(21):9697~9701
    21Kumaran D, Udayabanu M, Nair RU. Benzamide protects delayedneuronal death and behavioural impairment in a mouse model of globalcerebral ischemia. Behav Brain Res,2008,192(2):178~184
    22Li L, Zhang B, Tao Y, et al. DL-3-n-butylphthalide protects endothelialcells against oxidative/nitrosative stress, mitochondrial damage andsubsequent cell death after oxygen glucose deprivation in vitro. Brain Res,2009,1290:91~101
    23Chong ZZ, Feng YP. dl-3-n-butylphthalide attenuates reperfusion-inducedblood-brain barrier damage after focal cerebral ischemia in rats. ZhongguoYao Li Xue Bao,1999,20(8):696~700
    24陆国庆,吴雪钗,胡婷婷.恩必普.中国新药杂志,2006,15(7):572~573
    25Liao SJ, Lin JW, Pei Z, et al. Enhanced angiogenesis withdl-3n-butylphthalide treatment after focal cerebral ischemia in RHRSP.Brain Res,2009,1289:69~78
    26熊杰,冯亦璞.丁基苯酞对线粒体呼吸链复合酶活性的影响.药学学报,1999,34(4):241~245
    27熊杰,冯亦璞.丁基苯酞对局灶性脑缺血过程中线粒体损伤的保护作用.药学学报,2000,35(6):408~412
    28熊杰,徐平湘,孙丽娜,等.丁基苯酞对原代培养神经元线粒体功能的保护作用.中药药理与临床,2007,23(5):73~75
    29黄如训,李常新,陈立云,等.丁苯酞对实验性动脉血栓形成性脑梗死的治疗作用.中国新药杂志,2005,14(8):985~988
    30徐皓亮,冯亦璞.丁基苯酞对局灶性脑缺血大鼠软脑膜微循环障碍的影响.药学学报,1999,34(3):172~175
    31Xu Hao-Liang, Feng Yi-Pu. Inhibitory effects of chiral3-n-butylphthalideon inflammation following focal ischemic brain injury in rats. ActaPharmacol Sinica,2000,21(5):433~438
    32胡丹波,李舜伟.慢性间断性缺氧后细胞色素C和caspase-3的表达及维生素E和左旋丁基苯酞对其变化的影响。北京医学,2005,27(1):11~14
    33陈欣然,汪玉梅,王晓如,等。左旋丁苯酞抗脑缺血缺氧作用研究。沈阳药科大学学报,2012,29(10):792~795
    1Levine DA, Langa KM. Vascular cognitive impairment: diseasemechanisms and therapeutic implications. Neurotherapeutics,2011,8(3):361~373
    2Noshita N, Lewen A, Sugawara T, et al. Evidence of phosphorylation ofAkt and neuronal survival after transient focal cerebral ischemia in mice.Cereb Blood Flow Metab,2001,21(12):1442~1450
    3Zhao H, Sapolsky RM, Steinberg GK. Phosphoinositide-3-kinase/Aktsurvival signal pathways are implicated in neuronal survival after stroke.Mol Neurobiol,2006,34(3):249~270
    4Abe E, Fujiki M, Nagai Y, et al. The phosphatidylinositol-3kinase/Aktpathway mediates geranylgeranylacetone-induced neuroprotection againstcerebral infarction in rats. Brain Res,2010;1330(12):151~157
    5Wang HY, Wang GL, Yu YH, et al. The role ofphosphoinositide-3-kinase/Akt pathway in propofol-inducedpostconditioning against focal cerebral ischemia-reperfusion injury in rats.Brain Res,2009,1297(10):177~184
    6Xu X, Chua CC, Gao J, et al. Neuroprotective effect of humanin oncerebral ischemia/reperfusion injury is mediated by a PI3K/Akt pathway.Brain Res,2008,1227(28):12~18
    7Ding Z, Liang J, Li J, et al. Physical association of PDK1with AKT1issufficient for pathway activation independent of membrane localizationand phosphatidylinositol3kinase. PLoS One,2010,5, e9910
    8Glidden EJ, Gray LG, Vemuru S, et al. Multiple site acetylation of rictorstimulates mammalian target of rapamycin complex2(mTORC2)-dependent phosphorylation of Akt protein. J. Biol. Chem,2012,287:581~588
    9Hou J, Chong ZZ, Shang YC, et al. Early apoptotic vascular signaling isdetermined by Sirt1through nuclear shuttling, forkhead trafficking, bad,and mitochondrial caspase activation. Curr. Neurovasc. Res,2010,7:95~112
    10Chong ZZ, Hou J, Shang YC, et al. EPO relies upon novel signaling ofWnt1that requires Akt1, FoxO3a, GSK-3beta, and beta-Catenin to fostervascular integrity during experimental diabetes. Curr. Neurovasc. Res,2011,8:103~120
    11Chong ZZ, Kang JQ, Maiese K. Erythropoietin is a novel vascularprotectant through activation of Akt1and mitochondrial modulation ofcysteine proteases. Circulation,2002,106:2973~2979
    12Chong ZZ, Kang JQ, Maiese K. AKT1drives endothelial cell membraneasymmetry and microglial activation through Bcl-xL and caspase1,3, and9. Exp. Cell Res,2004,296:196~207
    13Hou J, Chong ZZ, Shang YC, et al. FoxO3a governs early and lateapoptotic endothelial programs during elevated glucose throughmitochondrial and caspase signaling.Mol. Cell. Endocrinol,2010,321:194~206
    14Hou J, Wang S, Shang YC, et al. Erythropoietin employs cell longevitypathways of SIRT1to foster endothelial vascular integrity during oxidantstress. Curr. Neurovasc. Res,2011,8:220~235
    15Mannell HK, Pircher J, Chaudhry DI, et al. ARNO regulatesVEGF-dependent tissue responses by stabilizing endothelial VEGFR-2surface expression. Cardiovasc. Res,2012,93:111~119
    16Su KH, Shyue SK, Kou YR, et al. β Common receptor integrates theerythropoietin signaling in activation of endothelial nitric oxide synthase. J.Cell. Physiol,2011,226:3330~3339
    17Chong ZZ, Kang J, Li F, et al. mGluRI targets microglial activation andselectively prevents neuronal cell engulfment through Akt and Caspasedependent pathways. Curr. Neurovasc. Res,2005,2:197~211
    18Chen T, Zhang L, Qu Y, et al. The selective mGluR5agonist CHPGprotects against traumatic brain injury in vitro and in vivo via ERK andAkt pathway. Int. J. Mol. Med,2012,29:630~636
    19Chong ZZ, Shang YC, Hou J, et al. Wnt1neuroprotection translates intoimproved neurological function during oxidant stress and cerebralischemia through AKT1and mitochondrial apoptotic pathways. Oxid. Med.Cell. Longevity,2010,3:153~165
    20Komandirov MA, Knyazeva EA, Fedorenko YP, et al. On the role ofphosphatidylinositol3-kinase, protein kinase b/Akt, and glycogen synthasekinase-3β in photodynamic injury of crayfish neurons and glial cells. J.Mol. Neurosci,2011,45:229~235
    21Malagelada C, Jin ZH, Jackson-Lewis V, et al. Rapamycin protects againstneuron death in in vitro and in vivo models of Parkinson’s disease. J.Neurosci,2010,30:1166~1175
    22Shen J, Wu Y, Xu JY, et al. ERKand Akt-dependent neuroprotection byerythropoietin (EPO) against glyoxal-AGEs via modulation of Bcl-xL,Bax, and BAD. Invest. Ophthalmol. Vis. Sci,2010,51:35~46
    23Zeng KW, Wang XM, Ko H, et al. Hyperoside protects primary rat corticalneurons from neurotoxicity induced by amyloid beta-protein via thePI3K/Akt/Bad/Bcl(XL)-regulated mitochondrial apoptotic pathway. Eur. J.Pharmacol,2011,672:45~55
    24Li F, Chong ZZ, Maiese K. Microglial integrity is maintained byerythropoietin through integration of Akt and its substrates of glycogensynthase kinase-3beta, beta-catenin, and nuclear factor-kappaB. Curr.Neurovasc. Res,2006,3:187~201
    25Pineda D, Ampurdanes C, Medina MG, et al. Tissue plasminogen activatorinduces microglial inflammation via a noncatalytic molecular mechanisminvolving activation of mitogen-activated protein kinases and Aktsignaling pathways and AnnexinA2and Galectin-1receptors. Glia,2012,60:526~540
    26Shang YC, Chong ZZ, Hou J, et al. The forkhead transcription factorFoxO3a controls microglial inflammatory activation and eventualapoptotic injury through caspase3. Curr. Neurovasc. Res,2009,6:20~31
    27Zhou X, Wang L, Wang M, Xu L, et al. Emodin-induced microglialapoptosis is associated with TRB3induction. Immunopharmacol.Immunotoxicol,2011,33:594~602
    28Shang YC, Chong ZZ, Hou J, et al. FoxO3a governs early microglialproliferation and employs mitochondrial depolarization with caspase3,8,and9cleavage during oxidant induced apoptosis. Curr. Neurovasc. Res,2009,6:223~238
    29Perez-Garcia MJ, Cena V, de Pablo Y, et al. Glial cell line-derivedneurotrophic factor increases intracellular calcium concentration. Role ofcalcium/calmodulin in the activation of the phosphatidylinositol3–kinasepathway. J. Biol. Chem,2004,279:6132~6142
    30Xu J, Zhang QG, Li C, et al. Subtoxic N-methyl-D-aspartate delayedneuronal death in ischemic brain injury through TrkB receptor-andcalmodulin-mediated PI-3K/Akt pathway activation. Hippocampus,2007,17:525~537
    31Maiese K. The challenges for drug development: Cytokines, genes, andstem cells. Curr. Neurovasc. Res,2012,9:231~232
    32Chattopadhyay M, Walter C, Mata M, et al. Neuroprotective effect ofherpes simplex virus-mediated gene transfer of erythropoietin inhyperglycemic dorsal root ganglion neurons. Brain,2009,132:879~888
    33Chong ZZ, Maiese K. Erythropoietin involves the phosphatidylinositol3-kinase pathway,14-3-3protein and FOXO3a nuclear trafficking topreserve endothelial cell integrity. Br. J. Pharmacol,2007,150:839~850
    34Storz, P. Forkhead homeobox type O transcription factors in the responsesto oxidative stress.Antioxid. Redox Signaling,2011,14:593~605
    35Maiese K, Chong ZZ, Shang YC, et al.“FOXO” in sight: Targeting FoxOproteins from conception to cancer. Med. Res. Rev,2009,29:395~418
    36Kousteni S. FoxO1, the transcriptional chief of staff of energy metabolism.Bone2012,50,437~443
    37Lam, E.W.; Shah, K.; Brosens, J.J. The diversity of sex steroid action: Therole of micro-RNAs and FOXO transcription factors in cyclingendometrium and cancer. J. Endocrinol,2012,212:13~25
    38Lappas M, Permezel M. The anti-inflammatory and antioxidative effectsof nicotinamide, a vitamin B (3) derivative, are elicited by FoxO3inhuman gestational tissues: Implications for preterm birth. J. Nutr. Biochem,2011,22:1195~1201
    39Maiese K, Chong ZZ, Shang YC. OutFOXOing disease and disability: Thetherapeutic potential of targeting FoxO proteins. Trends Mol. Med,2008,14:219~227
    40Chong ZZ, Lin SH, Li F, et al. The sirtuin inhibitor nicotinamide enhancesneuronal cell survival during acute anoxic injury through Akt, Bad, PARP,and mitochondrial associated “anti-apoptotic” pathways. Curr. Neurovasc.Res,2005,2:271~285
    41Maiese K, Li F, Chong ZZ. Erythropoietin in the brain: Can the promise toprotect be fulfilled? Trends Pharmacol. Sci,2004,25:577~583
    42Li F, Chong ZZ, Maiese K. Cell life versus cell longevity: The mysteriessurrounding the NAD (+) precursor nicotinamide. Curr. Med. Chem,2006,13:883~895
    43Wang S, Chong ZZ, Shang YC, et al. Wnt1inducible signaling pathwayprotein1(WISP1) blocks neurodegeneration through phosphoinositide3kinase/Akt1and apoptotic mitochondrial signaling involving Bad, Bax,Bim, and Bcl-xL. Curr. Neurovasc. Res,2012,9:20~31
    44Chong ZZ, Shang YC, Wang S, et al. SIRT1: New avenues of discoveryfor disorders of oxidative stress. Expert Opin. Ther. Targets,2012,16:167~178
    45Maiese K, Chong ZZ, Shang YC, et al. Translating cell survival and celllongevity into treatment strategies with SIRT1. Rom. J. Morphol. Embryol,2011,52:1173~1185
    46Chong ZZ, Li F, Maiese K. Oxidative stress in the brain: Novel cellulartargets that govern survival during neurodegenerative disease. Prog.Neurobiol,2005,75:207~246
    47Koh PO. Nicotinamide attenuates the ischemic brain injury-induceddecrease of Akt activation and Bad phosphorylation. Neurosci. Lett,2011,498:105~109
    48Chong ZZ, Hou J, Shang YC, et al. EPO relies upon novel signaling ofWnt1that requires Akt1, FoxO3a, GSK-3beta, and beta-Catenin to fostervascular integrity during experimental diabetes. Curr. Neurovasc. Res,2011,8:103~120
    49Shang YC, Chong ZZ, Wang S, et al. Erythropoietin and Wnt1governpathways of mTOR, Apaf-1, and XIAP in inflammatory microglia. Curr.Neurovasc. Res,2011,8:270~285
    50Ma R, Xiong N, Huang C, et al. Erythropoietin protects PC12cells frombeta-amyloid(25–35)-induced apoptosis via PI3K/Akt signaling pathway.Neuropharmacology,2009,56:1027~1034
    51Xie Z, Chen F, Wu X, et al. Effects of supplemental erythropoietin on itsreceptor expression and signal transduction pathways in rat model ofretinal detachment. Curr. Eye Res,2012,37:138~144
    52Shang YC, Chong ZZ, Wang S, et al. Prevention of beta-amyloiddegeneration of microglia by erythropoietin depends on Wnt1, the PI3-K/mTOR pathway, Bad, and Bcl-xL. Aging (Albany NY).2012,4:187~201
    53Lee ST, Chu K, Park JE, et al.Erythropoietin improves memory functionwith reducing endothelial dysfunction and amyloid-beta burden inAlzheimer’s disease models. J. Neurochem,2012,120:115~124
    54Burgos-Ramos E, Martos-Moreno GA, Lopez MG, et al. The N-terminaltripeptide of insulin-like growth factor-I protects againstbeta-amyloid-induced somatostatin depletion by calcium and glycogensynthase kinase3beta modulation. J. Neurochem,2009,109:360~370
    55Echeverria V, Zeitlin R, Burgess S, et al. Cotinine reduces amyloid-betaaggregation and improves memory in Alzheimer’s disease mice. J.Alzheimers Dis,2011,24:817~835
    56Li L, Xu B, Zhu Y, et al. DHEA prevents Abeta25-35-impaired survival ofnewborn neurons in the dentate gyrus through a modulation ofPI3K-Akt-mTOR signaling. Neuropharmacology.2010,59:323~333
    57Chong ZZ, Li F, Maiese K. Cellular demise and inflammatory microglialactivation during beta-amyloid toxicity are governed by Wnt1andcanonical signaling pathways. Cell. Signal,2007,19:1150~1162
    58Koh PO, Cho GJ, Choi WS.17beta-estradiol pretreatment prevents theglobal ischemic injury-induced decrease of Akt activation and badphosphorylation in gerbils. J. Vet. Med. Sci,2006,68(10):1019~1022
    59Won CK, Ha SJ, Noh HS, et al. Estradiol prevents the injury-induceddecrease of Akt activation and Bad phosphorylation. Neurosci Lett,2005,387(2):115~119
    60Koh PO. Melatonin attenuates the focal cerebral ischemic injury byinhibiting the dissociation of pBad from14-3-3. J. Pineal Res,2008,44(1):101~106
    61Zhou Y, Lekic T, Fathali N, et al. Isoflurane posttreatment reducesneonatal hypoxic-ischemic brain injury in rats by thesphingosine-1-phosphate/phosphatidylinositol-3-kinase/Akt pathway.Stroke,2010,41(7):1521~1527
    62Zhang L, Zhang ZG, Liu XS, Hozeska-Solgot A, Chopp M. The PI3K/Aktpathway mediates the neuroprotective effect of atorvastatin in extendingthrombolytic therapy after embolic stroke in the rat. Arterioscler ThrombVasc Biol,2007,27(11):2470~2475
    63Miyawaki T, Mashiko T, Ofengeim D, et al. Ischemic preconditioningblocks BAD translocation, Bcl-xL cleavage, and large channel activity inmitochondria of postischemic hippocampal neurons. Proc Natl Acad SciUSA,2008,105(12):4892~4897
    64Gao X, Zhang H, Takahashi T, et al. The Akt signaling pathwaycontributes to postconditioning’s protection against stroke: the protectionis associated with the MAPK and PKC pathways. J Neurochem,2008,105(3):943~955
    65Zhao H. Ischemic postconditioning as novel avenue to protect againstbrain injury after stroke. J Cereb Blood Flow Metab,2009,29(5):873~885.
    66Bruel-Jungerman E, Vevrac A, Dufour F, et al. Inhibition of PI3K-Aktsignaling blocks exercise-mediated enhancement of adult neurogenesis andsynaptic plasticity in the dentate gyrus. PLoS One,2009,4(11): e7901
    67Kenchappa P, YadavA, Singh Get al.Rescue of TNF alpha inhibitedneuronal cells by IGF-1involves Akt and c-Jun N-terminalkinases.JNeurosciRes,2004,76(4):466~474
    68Ueki K, Fruman D A, Brachmann S M, et al. Molecular balance betweenthe regulatory and catalytic subunits of phosphoinositide3-kinaseregulates cell signaling and survival. Mol Cell Biol,2002,22(3):965~977
    69Wymann M P, Pirola L. Structure and function of phosphoinositide3-kinases. Biochim Biophys Acta,1998,1436(1-2):127~150
    1Zhao H, Sapolsky RM, Steinberg GK. Phosphoinositide-3-kinase/Aktsurvival signal pathways are implicated in neuronal survival after stroke.Mol Neurobiol,2006,34(3):249~270
    2Hou J, Chong ZZ, Shang YC, et al. Early apoptotic vascular signaling isdetermined by Sirt1through nuclear shuttling, forkhead trafficking, bad,and mitochondrial caspase activation. Curr. Neurovasc. Res,2010,7:95~112
    3Su KH, Shyue SK, Kou YR, et al. β Common receptor integrates theerythropoietin signaling in activation of endothelial nitric oxide synthase. J.Cell. Physiol,2011,226:3330~3339
    4Chen T, Zhang L, Qu Y, et al. The selective mGluR5agonist CHPGprotects against traumatic brain injury in vitro and in vivo via ERK andAkt pathway. Int. J. Mol. Med,2012,29:630~636
    5Zeng KW, Wang XM, Ko H, et al. Hyperoside protects primary rat corticalneurons from neurotoxicity induced by amyloid beta-protein via thePI3K/Akt/Bad/Bcl(XL)-regulated mitochondrial apoptotic pathway. Eur. J.Pharmacol,2011,672:45~55
    6Pineda D, Ampurdanes C, Medina MG, et al. Tissue plasminogen activatorinduces microglial inflammation via a noncatalytic molecular mechanisminvolving activation of mitogen-activated protein kinases and Aktsignaling pathways and AnnexinA2and Galectin-1receptors. Glia,2012,60:526~540
    7Shang YC, Chong ZZ, Hou J, et al. The forkhead transcription factorFoxO3a controls microglial inflammatory activation and eventualapoptotic injury through caspase3. Curr. Neurovasc. Res,2009,6:20~31
    8Carloni S,Girelli S,Scopa C,et al. Activation of autophagy and Akt/CREB signaling play an equivalent role in the neuroprotective effect ofrapamycin in neonatal hypoxia-ischemia. Autophagy,2010,6(3):366~377
    9Chauhan A, Sharma U, Jagannathan NR, et al. Rapamycin protects againstmiddle cerebral artery occlusion induced focal cerebral ischemia inrats.Behav Brain Res,2011,225(2):603~609
    10苏方,张培,姜治伟,等.海马神经细胞缺血/再灌注后自噬的表达及其作用.中国应用生理学杂志,2011,27(2):187~191
    11Carloni S, Buonocore G, Balduini W. Protective role of autophagy inneonatal hypoxia-ischemia induced brain injury. Neurobiol Dis,2008,32(3):329~339
    12Puyal J,Vaslin A,Mottier V,et al. Postischemic treatment of neonatalcerebral ischemia should target autophagy. Ann Neurol,2009,66(3):378~389
    13Wen YD, Sheng R, Zhang LS, et al. Neuronal injury in rat model ofpermanent focal cerebral ischemia is associated with activation ofautophagic and lysosomal pathways. Autophagy,2008,4(6):762~769
    14王雪笠,吕佩源,郭宗成,等。多奈哌齐对血管性痴呆模型小鼠海马p38MAPK mRNA表达的影响。中国新药与临床杂志,2008,27(3):176~179
    15吕佩源,宋春风,樊敬峰,等。石杉碱甲对血管性痴呆小鼠海马NMDA受体及mRNA表达的影响。中国医院药学杂志,2005,25(9):800~802
    16Tianjun Wang, Peiyuan Lü, Hezhen Zhang, et al. Expression ofcyclin-dependent protein kinase5in the hippocampus of vasculardementia mice after cerebral ischemia and reperfusion. Neural RegenRes,2009,4(5):377~382
    17Acquaah-Mensah GK, Taylor RC, Bhave SV. PACAP interactions in themouse brain: Implications for behavioral and other disorders. Gene,2012,491:224~231
    18Benjamin D, Colombi M, Moroni C, et al. Rapamycin passes the torch: Anew generation of mTOR inhibitors. Nat. Rev. Drug Discov,2011,10:868~880
    19Hwang SK, Kim HH. The functions of mTOR in ischemic diseases. BMBRep,2011,44:506~511
    20Chong ZZ, Shang YC, Zhang L, et al. Mammalian target of rapamycin:Hitting the bull’s-eye for neurological disorders. Oxid. Med. Cell.Longevity,2010,3:374~391
    21Alessi DR, Andjelkovic M, Caudwell B,et al. Mechanism of activation ofprotein kinase B by insulin and IGF-1. EMBO J,1996,15(23):6541~6551
    22Horwood JM,Dufour F,Laroche S,et al. Signalling mechanismsmediated by the phosphoinositide3-kinase/Akt cascade in synapticplasticity and memory in the rat. Eur J Neurosci,2006,23(12):3375~3384
    23Brazil DP, Yang ZZ, Hemmings BA. Advances in protein kinase Bsignalling: Aktion on multiple fronts. Trends Biochem Sci,2004,29(5):233~242
    24Yang ZZ, Tschopp O, Baudry A, et al. Physiological functions of proteinkinase B/Akt. Biochem Soc Trans,2004,32:350~354
    25Kamada H, Nito C, Endo H, et al. Bad as converging signaling moleculebetween survival PI3-K/Akt and death JNK in neurons after transient focalcerebral ischemia in rats. J Cereb Blood Flow Metab,2007,27(3):521~533
    26Levenbrown Y, Ashraf QM, Maounis N, et al. Phosphorylation ofcaspase-9in the cytosolic fraction of the cerebral cortex of newbornpiglets following hypoxia. Neurosci Lett,2008,447(1):96~99
    27Jiang BH et al. PI3K/PTEN signaling in angiogenesis and tumor genesis.Adv Cancer Res,2009,102:19~65
    28Morgan TM. Targeted therapy for advanced prostate cancer:inhibition ofthe PI3K/Akt/mTOR pathway. Curr Cancer Drug Targets,2009,9:237~249
    29Wada A. Lithium and neuropsychiatric therapeutics: neuroplasticity viaglycogen synthase kinase-3beta, beta-catenin, and neurotrophin cascades.J Pharmacol Sci,2009,110(1):14~28
    30Juhaszova M, Zorov DB, Kim SH, et al. Glycogen synthase kinase-3betamediates convergence of protection signaling to inhibit the mitochondrialpermeability transition pore. J Clin Invest,2004,113(11):1535~1549
    31Zhou FQ, Zhou J, Dedhar S, et al. NGF-induced axon growth is mediatedby localized inactivation of GSK-3beta and functions of the microtubuleplus end binding protein APC. Neuron,2004,42(6):897~912
    32Duarte AI, Santos P, Oliveira CR, et al. Insulin neuroprotection againstoxidative stress is mediated by Akt and GSK-3beta signaling pathways andchanges in protein expression. Biochim Biophys Acta,2008,1783(6):994~1002
    33Lim SY, Davidson SM, Hausenloy DJ, et al. Preconditioning andpostconditioning: the essential role of the mitochondrial permeabilitytransition pore. Cardiovasc Res,2007,75(3):530~535
    34Hou J, Wang S, Shang YC, et al. Erythropoietin employs cell longevitypathways of SIRT1to foster endothelial vascular integrity during oxidantstress. Curr. Neurovasc. Res,2011,8:220~235
    35Koh, P.O. Nicotinamide attenuates the ischemic brain injury-induceddecrease of Akt activation and Bad phosphorylation. Neurosci. Lett,2011,498:105~109
    36Pastor MD, Garcia-Yebenes I, Fradejas N, et al mTOR/S6kinase pathwaycontributes to astrocyte survival during ischemia. J. Biol. Chem,2009,284:22067~22078
    37Wu X, Reiter CE, Antonetti DA, et al. Insulin promotes rat retinal neuronalcell survival in a p70S6K-dependent manner. J. Biol. Chem,2004,279:9167~9175
    38Maiese K, Li F, Chong ZZ. New avenues of exploration for erythropoietin.JAMA,2005,293:90~95
    39Shang YC, Chong ZZ, Wang S, et al. Prevention of beta-amyloiddegeneration of microglia by erythropoietin depends on Wnt1, thePI3-K/mTOR pathway, Bad, and Bcl-xL.Aging (Albany NY)2012,4:187~201
    40Galan-Moya EM, Le Guelte A, Lima Fernandes E, et al. Secreted factorsfrom brain endothelial cells maintain glioblastoma stem-like cellexpansion through the mTOR pathway. EMBO Rep,2011,12:470~476
    41Marfia G, Madaschi L, Marra F, et al. Adult neural precursors isolatedfrom post mortem brain yield mostly neurons: an erythropoietin-dependentprocess. Neurobiol. Dis,2011,43:86~98
    42Sanghera KP, Mathalone N, Baigi R, et al. The PI3K/Akt/mTOR pathwaymediates retinal progenitor cell survival under hypoxic and superoxidestress. Mol. Cell. Neurosci,2011,47:145~153
    43Hou G, Xue L, Lu Z, et al. An activated mTOR/p70S6K signaling pathwayin esophageal squamous cell carcinoma cell lines and inhibition of thepathway by rapamycin and siRNA against mTOR. Cancer Lett,2007,253:236~248
    44Zhang D, ContuR, Latronico MV, et al. MTORC1regulates cardiacfunction and myocyte survival through4E-BP1inhibition in mice. J. Clin.Invest,2010,120:2805~2816
    45Chong ZZ, Hou J, Shang YC, et al. EPO relies upon novel signaling ofWnt1that requires Akt1, FoxO3a, GSK-3beta, and beta-Catenin to fostervascular integrity during experimental diabetes. Curr. Neurovasc. Res,2011,8:103~120
    46Dormond O, Madsen JC, Briscoe DM. The effects of mTOR-Aktinteractions on anti-apoptotic signaling in vascular endothelial cells. J.Biol. Chem,2007,282:23679~23686
    47Chong ZZ, Li F, Maiese K. The pro-survival pathways of mTOR andprotein kinase B target glycogen synthase kinase-3beta and nuclearfactor-κB to foster endogenous microglial cell protection. Int. J. Mol. Med,2007,19:263~272
    48Choi KC, Kim SH, Ha JY, et al. A novel mTOR activating protein protectsdopamine neurons against oxidative stress by repressing autophagy relatedcell death. J. Neurochem,2010,112:366~376
    49Sheng B, Liu J, Li GH. Metformin preconditioning protects Daphnia pulexfrom lethal hypoxic insult involving AMPK, HIF and mTOR signaling.Comp. Biochem. Physiol. B Biochem. Mol. Biol,2012,163:51~58
    50Koh PO. Melatonin prevents ischemic brain injury through activation ofthe mTOR/p70S6kinase signaling pathway. Neurosci. Lett,2008,444:74~78
    51Shang YC, Chong ZZ, Wang S, et al. Erythropoietin and Wnt1governpathways of mTOR, Apaf-1, and XIAP in inflammatory microglia. Curr.Neurovasc. Res,2011,8:270~285
    52Chong ZZ, Shang YC, Zhang L, et al. Mammalian target of rapamycin:Hitting the bull’s-eye for neurological disorders. Oxid. Med. Cell.Longevity,2010,3:374~391
    53Liu G, Detloff MR, Miller KN, et al. Exercise modulates microRNAs thataffect the PTEN/mTOR pathway in rats after spinal cord injury. Exp.Neurol,2012,233:447~456
    54Walker CL, Walker MJ, Liu NK, et al. Systemic bisperoxovanadiumactivates Akt/mTOR, reduces autophagy, and enhances recovery followingcervical spinal cord injury. PLoS One,2012,7: e30012
    55Hu LY, Sun ZG, Wen YM, et al. ATP-mediated protein kinase BAkt/mammalian target of rapamycin mTOR/p70ribosomal S6proteinp70S6kinase signaling pathway activation promotes improvement oflocomotor function after spinal cord injury in rats. Neuroscience,2010,169:1046~1062
    56Sun F, Park KK, Belin S, et al. Sustained axon regeneration induced byco-deletion of PTEN and SOCS3. Nature,2011,480:372~375
    57Liu K, Lu Y, Lee JK, et al. PTEN deletion enhances the regenerativeability of adult corticospinal neurons. Nat. Neurosci,2010,13:1075~1081
    58Park KK, Liu K, Hu Y, et al. Promoting axon regeneration in the adultCNS by modulation of the PTEN/mTOR pathway. Science,2008,322:963~966
    59Erlich S, Alexandrovich A, Shohami E, et al. Rapamycin is aneuroprotective treatment for traumatic brain injury. Neurobiol. Dis,2007,26:86~93
    60Sekiguchi A, Kanno H, Ozawa H, et al. Rapamycin promotes autophagyand reduces neural tissue damage and locomotor impairment after spinalcord injury in mice. J. Neurotrauma,2012,29:946~956
    61Shi GD, OuYang YP, Shi JG, et al. PTEN deletion prevents ischemic braininjury by activating the mTOR signaling pathway. Biochem. Biophys. Res.Commun,2011,404:941~945
    62Zhang W, Khatibi NH, Yamaguchi-Okada M, et al. Mammalian target ofrapamycin (mTOR) inhibition reduces cerebral vasospasm following asubarachnoid hemorrhage injury in canines. Exp. Neurol,2012,233:799~806
    63Noshita N, Lewén A, Sugawara T, et al. Evidence of phosphorylation ofAkt and neuronal survival after transient focal cerebral ischemia in mice. JCereb Blood Flow Metab,2001;21(12):1442~1450
    1Harvey SC, Koster A, Yu H, et al. AMPA receptor function is altered inGluR2deficient mice. J Mol Neurosci,2001,17(1):35~43
    2Shen YD, Zhang LS, Yao HP, et al. Study of Fufang Haishe capsuleagainst cell apoptosis. Zhongguo Zhong Yao Za Zhi,2008,33(10):1171~1174
    3Frandsen A, Schousboe A. AMPA receptor-mediated neurotoxicity: role ofCa2+and desensitization. Neurochem Res.2003,28(10):1495~1499
    4Koike M, Shibata M, Tadakoshi M, et al. Inhibition of autophagy preventshippocampal pyramidal neuron death after hypoxic ischemic injury. Am JPathol,2008,172(2):454~469
    5Roy S, Debnath J. Autophagy and tumorigenesis. Semin Immunopathol,2010,32(4):383~396
    6Levine B. Eating oneself and uninvited guests: autophagy-relatedpathways in cellular defense. Cell,2005,120(2):159~162
    7Mizushima N,Yamamoto A,Matsui M,et al. In vivo analysis ofautophagy in response to nutrient starvation using transgenic miceexpressing a fluorescent autophagosome marker. Mol Biol Cell,2004,15(3):1101~1111
    8Vicencio JM, Galluzzi L, Tajeddine N, et al.Senescence, apoptosis orautophagy? When a damaged cell must decide its path--a mini-review.Gerontology,2008,54(2):92~99
    9Rohn TT,Wirawan E,Brown RJ,et al. Depletion of Beclin-1due toproteolytic cleavage by caspases in the Alzheimer’s disease brain.Neurobiol Dis,2011,43(1):68~78
    10Luo S, Rubinsztein DC. BCL2L11/BIM: A novel molecular link betweenautophagy and apoptosis. Autophagy,2013,9(1):104~105
    11Carloni S, Buonocore G, Balduini W. Protective role of autophagy inneonatal hypoxia-ischemia induced brain injury. Neurobiol Dis,2008,32(3):329~339
    12Chen JJ, Lin F, Qin ZH. The roles of the proteasome pathway in signaltransduction and neurodegeneratived iseases. Neurosci Bull,2008,24(3):183~194
    13Zhu C, Wang X, Xu F, et al. The influence of age on apoptotic and othermechan isms of cell death after cerebral hypoxia ischemia. Cell DeathDiffer,2005,12(2):162~176
    14Puyal J, Vaslin A, Mottier V, et al. Post ischemic treatment of neonatalcerebral ischemia should target autophagy. Ann Neurol,2009,66(3):378~389
    15Wen YD, Sheng R, Zhang LS, et al. Neuronal injury in rat model ofpermanent focal cerebral ischemia is associated with activation ofautophagic and lysosomal pathways. Autophagy,2008,4(6):762~769
    16Kabeya Y, Kamada Y, Baba M, et al. Atg17functions in cooperation withAtg1and Atg13in yeast autophagy. Mol. Biol. Cell,2005,16:2544~2553
    17Scott RC, Juhasz G, Neufeld TP. Direct induction of autophagy by Atg1inhibits cell growth and induces apoptotic cell death. Curr. Biol,2007,17:1~11
    18Brown EJ, Albers MW, Shin TB, et al A mammalian protein targeted byG1–arresting rapamycin-receptor complex. Nature,1994,369:756~758
    19Kamada Y, Funakoshi T, Shintani T, et al. Tor-mediated induction ofautophagy via an Apg1protein kinase complex. J Cell Biol.2000,150:1507~1513
    20Kuroyanagi H, Yan J, Seki N, et al. Human ULK1, a novelserine/threonine kinase related to UNC-51kinase of Caenorhabditiselegans: cDNA cloning, expression, and chromosomal assignment.Genomics,1998,51:76~85
    21Yan J, Kuroyanagi H, Kuroiwa A, et al. Identification of mouse ULK1, anovel protein kinase structurally related to C. elegans UNC-51. Biochem.Biophys. Res. Commun,1998,246:222~227
    22Yan J, Kuroyanagi H, Tomemori T, et al. Mouse ULK2, a novel member ofthe UNC-51-like protein kinases: unique features of functional domains.Oncogene,1999,18:5850~5859
    23Hosokawa N, Sasaki T, Iemura S, et al. Atg101, a novel mammalianautophagy protein interacting with Atg13. Autophagy,2009,5:973~979
    24Jung CH, Jun CB, Ro SH, et al. ULK-Atg13-FIP200complexes mediatemTOR signaling to the autophagy machinery. Mol. Biol. Cell,2009,20:1992~2003
    1McKinley MJ, McAllen RM, Davern P, et al. The sensorycircumventricular organs of the mammalian brain. Adv Anat Embryol CellBiol,2003,172:1~122
    2Miklossy J, kraftsik R, Pillevuit O, et al. Curly fibers and tangle-likeinclusions in the ependyma and choroids plexus---A pathogenicrelation-ship with the cortical Alzheimer-tipe changes? J Neruopath andExp Neurol,1998,57(2):1202~1212
    3吕佩源,尹昱,王丽,等。血管性痴呆小鼠第三脑室室管膜扫描电镜特征观察。中国医学物理学杂志,2004,21(3):144~146
    4吕佩源。血管性认知功能障碍。北京:中国科学技术出版社,2012
    5张朝佑。人体解剖学(第二版)。北京:人民卫生出版社,1998
    6杨程,吴淑玉,郭艳苏等.大鼠侧脑室及其脉络丛室管膜上皮的超微结构观察.电子显微学报,2003,22(1):12~15
    7朱长庚,卢金活,刘庆莹等.大白鼠第三脑室室管膜的超微结构.动物学报.1985,31(3):273~274
    8Scott DE, Krobisch-Dudley G, Paull WK, et al. The primate medianeminence. I. Correlative scanning-transmission electron microscopy CellTissue Res.1975,162(1):61~73
    9Meller ST, Dennis BJ. A scanning and transmission electron microscopicanalysis of the cerebral aqueduct in the rabbit. Anat. Rec.1993,237(1):124~140
    10Gammal ES. The development of the diencephalic choroid plexus in thechick. Cell and Tissue Res.1981,219(2):297~311
    11Scott DE, VanDyke DH, Paull WK, et al. Ultrastructural analysis of thehuman cerebral ventricular system.3. The choroid plexus. Cell Tissue Res.1974,150:389~397
    12郭艳苏,吴淑玉,李春岩,等。大鼠侧脑室脉络丛的超微结构特征。基础医学与临床。2004,24(5):591~592
    13McKinley MJ, McAllen RM, Davern P, et al. The sensorycircumventricular organs of the mammalian brain. Adv Anat Embryol CellBiol,2003,172:1~122
    14Alan P, Sanford LP, Henry DW. The fine structure of the nervous system(3rd edition). Oxford university press,1991,325~327
    15Morest DK, Silver J. Precursors of neurons, neuroglia, and ependymalcells in the CNS: what are they? Where are they from? How do they getwhere they are going? Glia.2003,43(1):6~18
    1Datta SR, Brunet A, Greenberg ME. Cellular survival: a play in threeAkts. Genes Dev,1999,13(22):2905~2927
    2Zhao H, Sapolsky RM, Steinberg GK. Phosphoinositide-3-kinase/Aktsurvival signal pathways are implicated in neuronal survival after stroke.Mol Neurobiol,2006,34(3):249~270
    3Chong ZZ, Li F, Maiese K. Stress in the brain: Novel cellularmechanisms of injury linked to Alzheimer’s disease. Brain Res. BrainRes, Rev,2005,49:1~21
    4Chong ZZ, Maiese K. The Src homology2domain tyrosinephosphatases SHP-1and SHP-2: Diversified control of cell growth,inflammation, and injury. Histol. Histopathol,2007,22:1251~1267
    5Acquaah-Mensah, G.K, Taylor RC, Bhave SV. PACAP interactions inthe mouse brain: Implications for behavioral and other disorders.Gene,2012,491:224~231
    6Benjamin D, Colombi M, Moroni C, et al. Rapamycin passes the torch:A new generation of mTOR inhibitors. Nat. Rev. Drug Discov,2011,10:868~880.
    7Hwang SK, Kim HH. The functions of mTOR in ischemic diseases.BMB Rep,2011,44:506~511
    8Philipp V,Carsten B,Bernd N,et al. Assigning functional domainswithin the p101regulatory subunit of phosphoinositide3-kinaseγ. BiolChem,2005,280(6):5121
    9Ding Z, Liang J, Li J, et al. Physical association of PDK1with AKT1issufficient for pathway activation independent of membrane localizationand phosphatidylinositol3kinase. PLoS One,2010,5:e9910
    10Glidden EJ, Gray LG, Vemuru S, et al. Multiple site acetylation of rictorstimulates mammalian target of rapamycin complex2(mTORC2)-dependent phosphorylation of Akt protein. J. Biol.Chem,2012,287:581~588
    11Weber JD, Gutmann DH. Deconvoluting mTOR biology. Cell Cycle,2012,11(2):236~248
    12Jung CH, Ro SH, Cao J, et al. mTOR regulation of autophagy. FEBSLett,2010,584(7):1287~1295
    13Chong ZZ, Wang S, Shang YC, et al. Targeting cardiovascular diseasewith novel SIRT1pathways. Future Cardiol,2012,8:89~100
    14Fingar DC, Richardson CJ, Tee AR, et al. mTOR controls cell cycleprogression through its cell growth effectors S6K1and4E-BP1/eukaryotic translation initiation factor4E. Mol. Cell. Biol,2004,24:200~216
    15Jastrzebski K, Hannan KM, Tchoubrieva EB, et al. Coordinateregulation of ribosome biogenesis and function by the ribosomal proteinS6kinase, a key mediator of mTOR function. Growth Factors,2007,25:209~226
    16Gingras AC, Kennedy SG, O’Leary MA, et al.4E-BP1, a repressor ofmRNA translation, is phosphorylated and inactivated by the Akt(PKB)signaling pathway. Genes Dev,1998,12:502~513
    17Bhandari BK, Feliers D, Duraisamy S, et al. Insulin regulation ofprotein translation repressor4E-BP1, an eIF4E-binding protein, in renalepithelial cells. Kidney Int,2001,59:866~875
    18Sato T, Nakashima A, Guo L, et al. Specific activation of mTORC1byRheb G-protein in vitro involves enhanced recruitment of its substrateprotein. J. Biol. Chem,2009,284:12783~12791
    19Inoki K, Li Y, Zhu T, et al. TSC2is phosphorylated and inhibited by Aktand suppresses mTOR signalling. Nat. Cell Biol,2002,4:648~657
    20Cai SL, Tee AR, Short JD, et al. Activity of TSC2is inhibited byAKT-mediated phosphorylation and membrane partitioning. J. Cell Biol,2006,173:279~289
    21Sarbassov DD, Ali SM, Kim DH, et al. Rictor, a novel binding partnerof mTOR, defines a rapamycin-insensitive and raptor-independentpathway that regulates the cytoskeleton [J]. Curr Biol,2004,14(14):1296~1302
    22Oshiro N, Takahashi R, Yoshino K, et al. The proline-rich Akt substrateof40kDa (PRAS40) is a physiological substrate of mammalian targetof rapamycin complex1. J. Biol. Chem,2007,282:20329~20339.
    23Wang L, Harris TE, Lawrence JC. Regulation of proline-rich Aktsubstrate of40kDa (PRAS40) function by mammalian target ofrapamycin complex1(mTORC1)-mediated phosphorylation. J. Biol.Chem,2008,283:15619~15627
    24Sancak Y, Thoreen CC, Peterson TR, et al. PRAS40is aninsulin-regulated inhibitor of the mTORC1protein kinase. Mol. Cell,2007,25:903~915
    25Chong ZZ, Shang YC, Wang S, et al. PRAS40is an integral regulatorycomponent of erythropoietin mTOR signaling and cytoprotection. PLoSOne,2012,7:e45456
    26Kovacina KS, Park GY, Bae SS, et al. Identification of a proline-richAkt substrate as a14-3-3binding partner. J. Biol. Chem.2003,278:10189~10194
    27Vander HE, Lee SI, Bandhakavi S, et al. Insulin signalling to mTORmediated by the Akt/PKB substrate PRAS40. Nat. Cell Biol,2007,9:316~323
    28Wang L, Harris TE, Roth RA, et al. PRAS40regulates mTORC1kinaseactivity by functioning as a direct inhibitor of substrate binding. J. Biol.Chem.2007,282:20036~20044
    29Dan HC, Adli M, Baldwin AS. Regulation of mammalian target ofrapamycin activity in PTEN-inactive prostate cancer cells by I kappa Bkinase alpha. Cancer Res,2007,67:6263~6269
    30Zandi E, Rothwarf DM, Delhase M, et al. The IkappaB kinase complex(IKK) contains two kinase subunits, IKKα and IKKβ, necessary for IκBphosphorylation and NF-κB activation. Cell,1997,91:243~252
    31Lee DF, Kuo HP, Chen CT, et al. IKK beta suppression of TSC1linksinflammation and tumor angiogenesis via the mTOR pathway. Cell,2007,130:440~455
    32Yen CJ, Izzo JG, Lee DF, et al. Bile acid exposure up-regulates tuberoussclerosis complex1/mammalian target of rapamycin pathway inBarrett’s-associated esophageal adenocarcinoma. Cancer Res,2008,68:2632~2640
    33Broe M, Shepherd CE, Milward EA, et al. Relationship between DNAfragmentation, morphological changes and neuronal loss in Alzheimer’sdisease and dementia with Lewy bodies. Acta Neuropathol,2001,101:616~624.
    34Louneva N, Cohen JW, Han LY, et al. Caspase-3is enriched inpostsynaptic densities and increased in Alzheimer’s disease. Am. J.Pathol,2008,173:1488~1495
    35Tatton NA. Increased caspase3and Bax immunoreactivity accompanynuclear GAPDH translocation and neuronal apoptosis in Parkinson’sdisease. Exp. Neurol,2000,166:29~43
    36Qin AP, Liu CF, Qin YY, et al. Autophagy was activated in injuredastrocytes and mildly decreased cell survival following glucose andoxygen deprivation and focal cerebral ischemia. Autophagy,2010,6:738~753
    37Wang JY, Xia Q, Chu KT, et al. Severe global cerebralischemia-induced programmed necrosis of hippocampal CA1neuronsin rat is prevented by3-methyladenine: A widely used inhibitor ofautophagy. J. Neuropathol. Exp. Neurol,2011,70:314~322
    38Baba H, Sakurai M, Abe K, et al. Autophagy-mediated stress responsein motor neuron after transient ischemia in rabbits. J. Vasc. Surg,2009,50:381~387
    39Canu N, Tufi R, Serafino AL, et al. Role of the autophagic-lysosomalsystem on low potassium-induced apoptosis in cultured cerebellargranule cells. J. Neurochem,2005,92:1228~1242
    40Xue L, Fletcher GC, Tolkovsky AM. Autophagy is activated byapoptotic signalling in sympathetic neurons: An alternative mechanismof death execution. Mol. Cell. Neurosci,1999,14:180~198
    41Spilman P, Podlutskaya N, Hart MJ, et al. Inhibition of mTOR byrapamycin abolishes cognitive deficits and reduces amyloid-beta levelsin a mouse model of Alzheimer’s disease. PLoS One,2010,5:e9979
    42Spencer B, Potkar R, Trejo M, et al. Beclin1gene transfer activatesautophagy and ameliorates the neurodegenerative pathology inalpha-synuclein models of Parkinson’s and Lewy body diseases. J.Neurosci,2009,29:13578~13588.
    43Nopparat C, Porter JE, Ebadi M, et al. The mechanism for theneuroprotective effect of melatonin against methamphetamine-inducedautophagy. J. Pineal. Res,2010,49:382~389
    44Mannell HK, Pircher J, Chaudhry DI, et al. ARNO regulatesVEGF-dependent tissue responses by stabilizing endothelial VEGFR-2surface expression. Cardiovasc. Res,2012,93:111~119
    45Su KH, Shyue SK, Kou YR, et al. Common receptor integrates theerythropoietin signaling in activation of endothelial nitric oxidesynthase. J. Cell. Physiol,2011,226:3330~3339
    46Shen J, Wu Y, Xu JY, et al. ERKand Akt-dependent neuroprotection byerythropoietin (EPO) against glyoxal-AGEs via modulation of Bcl-xL,Bax, and BAD. Invest. Ophthalmol. Vis. Sci,2010,51:35~46
    47Zeng KW, Wang XM, Ko H, et al. Hyperoside protects primary ratcortical neurons from neurotoxicity induced by amyloid beta-protein viathe PI3K/Akt/Bad/Bcl(XL)-regulated mitochondrial apoptotic pathway.Eur. J. Pharmacol,2011,672:45~55
    48Zhou X, Wang L, Wang M, et al. Emodin-induced microglial apoptosisis associated with TRB3induction. Immunopharmacol. Immunotoxicol,2011,33:594~602
    49Shang YC, Chong ZZ, Hou J, et al. FoxO3a governs early microglialproliferation and employs mitochondrial depolarization with caspase3,8, and9cleavage during oxidant induced apoptosis. Curr. Neurovasc.Res,2009,6:223~238
    50Zeng KW, Wang XM, Ko H, et al. Hyperoside protects primary ratcortical neurons from neurotoxicity induced by amyloid beta-protein viathe PI3K/Akt/Bad/Bcl(XL)-regulated mitochondrial apoptotic pathway.Eur. J. Pharmacol,2011,672:45~55.
    51Perez-Garcia MJ, Cena V, de Pablo Y, et al. Glial cell line-derivedneurotrophic factor increases intracellular calcium concentration. Roleof calcium/calmodulin in the activation of the phosphatidylinositol3–kinase pathway. J. Biol. Chem,2004,279:6132~6142
    52Xu J, Zhang QG, Li C, et al. Subtoxic N-methyl-D-aspartate delayedneuronal death in ischemic brain injury through TrkB receptor-andcalmodulin-mediated PI-3K/Akt pathway activation. Hippocampus2007,17:525~537
    53Maiese K. The challenges for drug development: Cytokines, genes, andstem cells. Curr. Neurovasc. Res,2012,9:231~232.
    54Chattopadhyay M, Walter C, Mata M, et al. Neuroprotective effect ofherpes simplex virus-mediated gene transfer of erythropoietin inhyperglycemic dorsal root ganglion neurons. Brain,2009,132:879~888.
    55Chong ZZ, Maiese K. Erythropoietin involves the phosphatidylinositol3-kinase pathway,14-3-3protein and FOXO3a nuclear trafficking topreserve endothelial cell integrity. Br. J. Pharmacol,2007,150:839~850
    56Maiese K, Chong ZZ, Shang YC, et al “FOXO” in sight: TargetingFoxO proteins from conception to cancer. Med. Res. Rev,2009,29:395~418
    57Maiese K, Chong ZZ, Shang YC. Out FOXOing disease and disability:The therapeutic potential of targeting FoxO proteins. Trends Mol. Med,2008,14:219~227
    58Li F, Chong ZZ, Maiese K. Cell life versus cell longevity: Themysteries surrounding the NAD(+) precursor nicotinamide. Curr. Med.Chem,2006,13:883~895
    59Chong ZZ, Li F, Maiese K. Oxidative stress in the brain: Novel cellulartargets that govern survival during neurodegenerative disease. Prog.Neurobiol,2005,75:207~246
    60Koh PO. Nicotinamide attenuates the ischemic brain injury-induceddecrease of Akt activation and Bad phosphorylation. Neurosci. Lett,2011,498:105~109
    61Pastor MD, Garcia-Yebenes I, Fradejas N, et al. mTOR/S6kinasepathway contributes to astrocyte survival during ischemia. J. Biol.Chem,2009,284:22067~22078
    62Wu X, Reiter CE, Antonetti DA, et al. Insulin promotes rat retinalneuronal cell survival in a p70S6K-dependent manner. J. Biol. Chem,2004,279:9167~9175.
    63Maiese K, Li F, Chong ZZ. New avenues of exploration forerythropoietin. JAMA,2005,293:90~95
    64Sanghera KP, Mathalone N, Baigi R, et al. The PI3K/Akt/mTORpathway mediates retinal progenitor cell survival under hypoxic andsuperoxide stress. Mol. Cell. Neurosci,2011,47:145~153
    65Hou G, Xue L, Lu Z, et al. An activated mTOR/p70S6K signalingpathway in esophageal squamous cell carcinoma cell lines andinhibition of the pathway by rapamycin and siRNA against mTOR.Cancer Lett,2007,253:236~248
    66Zhang D, Contu R, Latronico MV, et al. MTORC1regulates cardiacfunction and myocyte survival through4E-BP1inhibition in mice. J.Clin. Invest,2010,120:2805~2816.
    67Chong ZZ, Hou J, Shang YC, et al. EPO relies upon novel signaling ofWnt1that requires Akt1, FoxO3a, GSK-3beta, and beta-Catenin tofoster vascular integrity during experimental diabetes. Curr. Neurovasc.Res,2011,8:103~120
    68Dormond O, Madsen JC, Briscoe DM. The effects of mTOR-Aktinteractions on anti-apoptotic signaling in vascular endothelial cells. J.Biol. Chem,2007,282:23679~23686
    69Chong ZZ, Li F, Maiese K. The pro-survival pathways of mTOR andprotein kinase B target glycogen synthase kinase-3beta and nuclearfactor-κB to foster endogenous microglial cell protection. Int. J. Mol.Med,2007,19:263~272
    70Choi KC, Kim SH, Ha JY, et al. A novel mTOR activating proteinprotects dopamine neurons against oxidative stress by repressingautophagy related cell death. J. Neurochem,2010,112:366~376
    71Thedieck K, Polak P, Kim ML, et al. PRAS40and PRR5-like proteinare new mTOR interactors that regulate apoptosis. PLoS One,2007,2:e1217
    72Shang YC, Chong ZZ, Wang S, et al. WNT1inducible signalingpathway protein1(WISP1) targets PRAS40to govern β-amyloidapoptotic injury of microglia. Curr. Neurovasc. Res,2012,9:239~249.
    73Chong ZZ, Li F, Maiese K. Attempted cell cycle induction inpost-mitotic neurons occurs in early and late apoptotic programsthrough Rb, E2F1, and Caspase3. Curr. Neurovasc. Res,2006,3:25~39
    74Yu Y, Ren QG, Zhang ZH, et al. Phospho-Rb mediating cell cyclereentry induces early apoptosis following oxygen-glucose deprivation inrat cortical neurons. Neurochem. Res,2012,37:503~511
    75Bhaskar K, Miller M, Chludzinski A, et al. The PI3K-Akt-mTORpathway regulates Abeta oligomer induced neuronal cell cycle events.Mol. Neurodegener,2009,4:14
    76Balduini W, Carloni S, Buonocore G. Autophagy in hypoxia-ischemiainduced brain injury. J. Matern. Fetal Neonatal Med,2012,25:30~34.
    77Silva DF, Esteves AR, Oliveira CR, et al. Mitochondria: The commonupstream driver of amyloid-beta and tau pathology in Alzheimer’sdisease. Curr. Alzheimer Res,2011,8:563~572
    78Kabeya Y, Kamada Y, Baba M, et al. Atg17functions in cooperationwith Atg1and Atg13in yeast autophagy. Mol. Biol. Cell,2005,16:2544~2553
    79Scott RC, Juhasz G, Neufeld TP. Direct induction of autophagy by Atg1inhibits cell growth and induces apoptotic cell death. Curr. Biol,2007,17:1~11
    80Brown EJ, Albers MW, Shin TB, et al. A mammalian protein targeted byG1–arresting rapamycin-receptor complex. Nature,1994,369:756~758.
    81Kamada Y, Funakoshi T, Shintani T, et al. Tor-mediated induction ofautophagy via an Apg1protein kinase complex. J Cell Biol,2000,150:1507~1513
    82Yan J, Kuroyanagi H, Tomemori T, et al. Mouse ULK2, a novel memberof the UNC-51-like protein kinases: unique features of functionaldomains. Oncogene,1999,18:5850~5859.
    83Hosokawa N, Sasaki T, Iemura S, et al. Atg101, a novel mammalianautophagy protein interacting with Atg13. Autophagy,2009,5:973~979
    84Jung CH, Jun CB, Ro SH, et al. ULK-Atg13-FIP200complexes mediatemTOR signaling to the autophagy machinery. Mol. Biol. Cell,2009,20:1992~2003
    85Yu L, McPhee CK, Zheng L, et al. Termination of autophagy andreformation of lysosomes regulated by mTOR. Nature,2010,465:942~94.
    86Rong Y, McPhee CK, Deng S, et al. Spinster is required for autophagiclysosome reformation and mTOR reactivation following starvation.Proc. Natl. Acad. Sci,2011,108:7826~7831
    87Chattopadhyay M, Walter C, Mata M, et al. Neuroprotective effect ofherpes simplex virus-mediated gene transfer of erythropoietin inhyperglycemic dorsal root ganglion neurons. Brain,2009,132:879~888
    88Sheng B, Liu J, Li GH. Metformin preconditioning protects Daphniapulex from lethal hypoxic insult involving AMPK, HIF and mTORsignaling. Comp. Biochem. Physiol. B Biochem. Mol. Biol,2012,163:51~58
    89Koh PO. Melatonin prevents ischemic brain injury through activation ofthe mTOR/p70S6kinase signaling pathway. Neurosci. Lett,2008,444:74~78
    90Shang YC, Chong ZZ, Wang S, et al. Erythropoietin and Wnt1governpathways of mTOR, Apaf-1, and XIAP in inflammatory microglia. Curr.Neurovasc. Res,2011,8:270~285
    91Chong ZZ, Shang YC, Zhang L, et al. Mammalian target of rapamycin:Hitting the bull’s-eye for neurological disorders. Oxid. Med. Cell.Longevity,2010,3:374~391
    92Liu G, Detloff MR, Miller KN, et al. Exercise modulates microRNAsthat affect the PTEN/mTOR pathway in rats after spinal cord injury.Exp. Neurol,2012,233:447~456.
    93Walker CL, Walker MJ, Liu NK, et al. Systemic bisperoxovanadiumactivates Akt/mTOR, reduces autophagy, and enhances recoveryfollowing cervical spinal cord injury. PLoS One,2012,7:e30012
    94Hu LY, Sun ZG, Wen YM, et al. ATP-mediated protein kinase BAkt/mammalian target of rapamycin mTOR/p70ribosomal S6proteinp70S6kinase signaling pathway activation promotes improvement oflocomotor function after spinal cord injury in rats. Neuroscience,2010,169:1046~1062
    95Sun F, Park KK, Belin S, et al. Sustained axon regeneration induced byco-deletion of PTEN and SOCS3. Nature,2011,480:372~375
    96Liu K, Lu Y, Lee JK, et al. PTEN deletion enhances the regenerativeability of adult corticospinal neurons. Nat. Neurosci,2010,13:1075~1081
    97Park KK, Liu K, Hu Y, et al. Promoting axon regeneration in the adultCNS by modulation of the PTEN/mTOR pathway. Science,2008,322:963~966
    98Erlich S, Alexandrovich A, Shohami E, et al. Rapamycin is aneuroprotective treatment for traumatic brain injury. Neurobiol. Dis,2007,26:86~93
    99Sekiguchi A, Kanno H, Ozawa H, et al. Rapamycin promotes autophagyand reduces neural tissue damage and locomotor impairment afterspinal cord injury in mice. J. Neurotrauma,2012,29:946~956
    100Shi GD, OuYang YP, Shi JG, et al. PTEN deletion prevents ischemicbrain injury by activating the mTOR signaling pathway. Biochem.Biophys. Res. Commun,2011,404:941~945
    101Zhang W, Khatibi NH, Yamaguchi-Okada M, et al. Mammalian target ofrapamycin (mTOR) inhibition reduces cerebral vasospasm following asubarachnoid hemorrhage injury in canines. Exp. Neurol,2012,233:799~806
    102Zeng LH, Rensing NR, Wong M. The mammalian target of rapamycinsignaling pathway mediates epileptogenesis in a model of temporal lobeepilepsy. J. Neurosci,2009,29:6964~6972
    103Buckmaster PS, Ingram EA, Wen X. Inhibition of the mammalian targetof rapamycin signaling pathway suppresses dentate granule cell axonsprouting in a rodent model of temporal lobe epilepsy. J. Neurosci,2009,29:8259~8269
    104Holmes GL, Stafstrom CE. Tuberous sclerosis complex and epilepsy:Recent developments and future challenges. Epilepsia,2007,48:617~630
    105Waltereit R, Welzl H, Dichgans J, et al. Enhanced episodic-like memoryand kindling epilepsy in a rat model of tuberous sclerosis. J. Neurochem,2006,96:407~413
    106Zeng LH, Xu L, Gutmann DH, et al. Rapamycin prevents epilepsy in amouse model of tuberous sclerosis complex. Ann. Neurol,2008,63:444~453
    107Lee ST, Chu K, Park JE, et al. Erythropoietin improves memoryfunction with reducing endothelial dysfunction and amyloid-betaburden in Alzheimer’s disease models. J. Neurochem,2012,120:115~124
    108Burgos-Ramos E, Martos-Moreno GA, Lopez MG, et al. The N-terminaltripeptide of insulin-like growth factor-I protects againstbeta-amyloid-induced somatostatin depletion by calcium and glycogensynthase kinase3beta modulation. J. Neurochem,.2009,109:360~370
    109Chano T, Okabe H, Hulette CM. RB1CC1insufficiency causes neuronalatrophy through mTOR signaling alteration and involved in thepathology of Alzheimer’s diseases. Brain Res,2007,1168:97~105
    110Paccalin M, Pain-Barc S, Pluchon C, et al. Activated mTOR and PKRkinases in lymphocytes correlate with memory and cognitive decline inAlzheimer’s disease. Dementia Geriatr. Cognit. Disord,2006,22:320~326
    111Slipczuk L, Bekinschtein P, Katche C, et al. BDNF activates mTOR toregulate GluR1expression required for memory formation. PLoS One,2009,4: e600.
    112Ma T, Hoeffer CA, Capetillo-Zarate E, et al. Dysregulation of themTOR pathway mediates impairment of synaptic plasticity in a mousemodel of Alzheimer’s disease. PLoS One,2010,5: e12845
    113Lafay-Chebassier C, Paccalin M, Page G, et al. mTOR/p70S6ksignalling alteration by Aβ exposure as well as in APP-PS1transgenicmodels and in patients with Alzheimer’s disease. J. Neurochem,2005,94:215~225
    114Griffin RJ, Moloney A, Kelliher M, et al. Activation of Akt/PKB,increased phosphorylation of Akt substrates and loss and altereddistribution of Akt and PTEN are features of Alzheimer’s diseasepathology. J. Neurochem,2005,93:105~117
    115Esteras N, Munoz U, Alquezar C, et al. Altered calmodulin degradationand signaling in non-neuronal cells from Alzheimer’s disease patients.Curr. Alzheimer Res,2012,9:267~277
    116An WL, Cowburn RF, Li L, et al. Up-regulation ofphosphorylated/activated p70S6kinase and its relationship toneurofibrillary pathology in Alzheimer’s disease. Am. J. Pathol,2003,163:591~607
    117Sarkar S, Ravikumar B, Rubinsztein DC. Autophagic clearance ofaggregate-prone proteins associated with neurodegeneration. MethodsEnzymol,2009,453:83~110
    118Berger Z, Ravikumar B, Menzies FM, et al. Rapamycin alleviatestoxicity of different aggregate-prone proteins. Hum. Mol. Genet,2006,15:433~442
    119Ravikumar B, Vacher C, Berger Z, et al. Inhibition of mTOR inducesautophagy and reduces toxicity of polyglutamine expansions in fly andmouse models of Huntington disease. Nat. Genet,2004,36:585~595
    120Floto RA, Sarkar S, Perlstein EO, et al. Small molecule enhancers ofrapamycin-induced TOR inhibition promote autophagy, reduce toxicityin Huntington’s disease models and enhance killing of mycobacteria bymacrophages. Autophagy,2007,3:620~622
    121Roscic, A, Baldo B, Crochemore C, et al. Induction of autophagy withcatalytic mTOR inhibitors reduces huntingtin aggregates in a neuronalcell model. J. Neurochem,2011,119:398~407
    122Fox JH, Connor T, Chopra V, et al. The mTOR kinase inhibitorEverolimus decreases S6kinase phosphorylation but fails to reducemutant huntingtin levels in brain and is not neuroprotective in the R6/2mouse model of Huntington’s disease. Mol. Neurodegener,2010,5:26.
    123Hyrskyluoto A, Reijonen S, Kivinen J, et al. GADD34mediatescytoprotective autophagy in mutant huntingtin expressing cells via themTOR pathway. Exp. Cell Res,2012,318:33~42
    124Crews L, Spencer B, Desplats P, et al. Selective molecular alterations inthe autophagy pathway in patients with Lewy body disease and inmodels of alpha-synucleinopathy. PLoS One,2010,5:e9313
    125Malagelada C, Jin ZH, Jackson-Lewis V, et al. Rapamycin protectsagainst neuron death in in vitro and in vivo models of Parkinson’sdisease. J. Neurosci,2010,30:1166~1175
    126DeYoung MP, Horak P, Sofer A, et al. Hypoxia regulatesTSC1/2-mTOR signaling and tumor suppression throughREDD1–mediated14-3-3shuttling. Genes Dev,2008,22:239~251
    127Malagelada C, Ryu EJ, Biswas SC, et al. RTP801is elevated inParkinson brain substantia nigral neurons and mediates death in cellularmodels of Parkinson’s disease by a mechanism involving mammaliantarget of rapamycin inactivation. J. Neurosci,2006,26:9996~10005
    128Imai Y, Gehrke S, Wang HQ, et al. Phosphorylation of4E-BP byLRRK2affects the maintenance of dopaminergic neurons in Drosophila.EMBO J,2008,27:2432~2443
    129Maiese K, Hou J, Chong ZZ, et al. A fork in the path: Developingtherapeutic inroads with FoxO proteins. Oxid. Med. Cell. Longev,2009,2:119~129
    130Musteanu M, Blaas L, Zenz R, et al. A mouse model to identifycooperating signaling pathways in cancer. Nat. Methods,2012,9:897~900
    131Maiese K, Chong ZZ, Shang YC, et al. Translating cell survival and celllongevity into treatment strategies with SIRT1. Rom. J. Morphol.Embryol,2011,52:1173~1185
    132Majumder S, Richardson A, Strong R, et al. Inducing autophagy byrapamycin before, but not after, the formation of plaques and tanglesameliorates cognitive deficits. PLoS One,2011,6:e25416
    133Pattingre S, Tassa A, Qu X, et al. Bcl-2antiapoptotic proteins inhibitBeclin1-dependent autophagy. Cell,2005,122:927~939
    134Luo S, Rubinsztein DC. Apoptosis blocks Beclin1–dependentautophagosome synthesis: An effect rescued by Bcl-xL. Cell DeathDiffer.2010,17:268~277

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700