玉米秸秆收获关键技术与装备研究及数字化仿真分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
玉米秸秆是重要的生物质能资源,与矿物燃料相比,生物质能具有可再生、低污染和二氧化碳零排放等特点;与其它可再生能源相比,具有资源丰富、分布面广和用途广泛等特点。因此,许多国家都在大力发展生物质能技术,世界粮农组织(FAO)预测,到2050年,以生物质能为主的可再生能源将提供全世界60%的电力和40%的燃料。
     目前我国玉米秸秆的资源化收集利用尚未形成规模,主要有两方面原因:一是玉米摘穗收获期的秸秆含水率高达70%-80%,采用自然状态下晾晒,失水速度慢、干燥时间长,影响即时收获和打捆;二是玉米秸秆坚硬挺实,难于打捆,且打捆后因弹性变形应力作用易产生涨捆现象。本文在国家863计划和国家科技支撑项目的支持下,以实现秸秆规模化收集利用的技术突破为研究目标,针对上述问题展开研究。
     研究内容分为玉米秸秆收获关键技术研究和秸秆调质玉米收获机整机研制两个方面。主要研究结论及创新点如下:
     玉米秸秆收获关键技术主要研究秸秆切割技术和秸秆调质(指对玉米秸秆进行挤压、揉搓使其破节、裂皮的处理过程)技术,具体研究了秸秆切割和调质的技术原理和典型机构,开展了秸秆特性、秸秆切割部件以及秸秆调质部件等相关试验研究。首次开发出了玉米秸秆切割调质技术和部件,实现了玉米秸秆破节、裂皮的调质目标。
     玉米秸秆切割调质部件研究采用了三维实体造型技术、多体动力学计算机仿真技术和柔性体建模技术。首次建立了玉米秸秆柔性体仿真模型,开展了秸秆弯曲和调质的仿真台架试验,建立了切割调质台数字样机的秸秆柔性体模型仿真研究平台,对秸秆和样机模型进行了刚柔耦合仿真分析,实现了切割、输送、调质工作过程的虚拟再现,得出了秸秆的运动学和动力学参数,验证了仿真研究平台的有效性,为进一步深入研究提供基础和参考。
     秸秆调质玉米收获机整机研制过程集成了不分行摘穗台、秸秆切割调质台、高效清杂装置、果穗输送和收集装置、自走式全液压动力底盘等多项技术。样机通过田间性能试验测试,在收获果穗的同时,对玉米秸秆进行切割调质处理,使其破节、裂皮,加速秸秆的水分蒸发和减小变形应力,改变了其力学及物理状态,满足了玉米秸秆高密度成捆作业要求,促进了玉米秸秆规模化综合利用。首次实现了玉米摘穗收获技术与秸秆调质铺条技术的联合匹配应用,补充和完善了我国玉米收获技术体系。
     论文采用数字化设计新技术,探索了农机产品研发的新模式,为缩短农业装备开发周期和降低研制成本提供了技术支持。通过自主创新开发,获得具有完全自主知识产权、适合国情的核心技术和装备,为构建玉米秸秆收集固化成型装备技术体系做出了贡献。
Corn stalks are important biomass resources. Compared with fossil fuels, biomass has characteristics of being renewable, low pollution and zero emissions of carbon dioxide. Compared with other renewable energy resources, it has characteristics of being abundant, widely distributed, and multi-purpose. With the continuous development of modern biomass technologies, biomass will play an important role in the sustainable energy systems in future. Many countries of the world are seeking to develop biomass for fuel. The UN Food and Agriculture Organization (FAO) predicted that by2050, biomass-based renewable energy will provide60percent of the world's electricity and40percent of the fuel.
     There are two issues that constrain corn stalk collection and utilization in China. Firstly, the water content of corn stalks is70%~80%during the harvest season. If left to dry naturally, the water loss rate will be very slow. This will have an adverse effect on the harvesting and baling. Secondly, corn stalks are hard and strong and difficult to bale due to the elastic recovery. The bale is easy to produce but tends to expand after compaction. Supported by National863Project and National Science and Technology Support Plan, this research was carried out by focusing on the above issues. The research aim was to develop a corn stalk adjusting(squeezing and kneading stalks,let it to be broken and split the epidermis) technology,and manufacture corn harvester with stalks adjusting device.
     Key technologies of corn stalks harvesting include cutting technology and adjusting technology. The theory and typical mechanism of these two technologies was researched, and experiments for cutting and adjusting corn stalk were carried out. A corn stalks cutting and adjusting parts were developed for the first time in China, they can quickly break the nodes and split the epidermis.
     3D solid modeling technology, the multi-body dynamics simulation technology and flexible body modeling technology were adopted during research on corn stalk cutting and adjusting parts. A corn stalk flexible body model was developed for the first time. A simulation experiment for stalk bending and adjusting was carried out. Digital prototyping for corn stalk cutting and adjusting device was built based on the flexible body model. Virtual simulation for cutting, conveying, adjusting corn stalk was realized. Kinematics and dynamics analysis was carried out and parameters of corn stalk and related working parts was achieved. The effectiveness of the simulation platform was tested.
     A prototype of corn harvester with stalk adjusting device was manufactured,which was integrated a row independent corn snapping head,a corn stalk cutting and adjusting device, a removing stems and leaves device, a ear transport and storage device, full hydraulic power self-propelled chassis. The matching application of corn harvesting technology and stalk adjusting technology was realized for the first time. Simultaneously with the harvesting of ears, the corn stalks can be cut, conveyed, squeezed and broken, and the epidermis split, stalks mechanics and physical state thus can be changed, the water loss rate would be accelerated, the elastic recovery can be decreased, the stalk can be baled with high density. This will promote the large scale utilization of corn stalks as a biomass fuel.
     The new R&D model of agricultural machine was explored, and technical support to accelerate the development cycle and reduce development cost was provided. Through independent innovation development, core technologies and equipment suited to China's national conditions were acquired, The establishment of corn stalk collecting, curing, molding technology system was promoted.
引文
[1]吴鸿欣,曹洪国,等.中国玉米秸秆综合利用技术介绍与探讨[J].农业工程,2011,1(3):9-12
    [2]国家发展和改革委员会.可再生能源中长期发展规划[M],2007,9
    [3]农业部.农业生物质能产业发展规划(2007-2015年)[M],2007,5
    [4]工业和信息化部.农机工业发展规划(2011-2015年)[M],2011,3
    [5]阎楚良,杨方飞.农业机械产品数字化设计技术及展望[J].中国工程科学,2006,9(8)
    [6]王君荣.农作物秸秆综合利用技术[J].中国农业大学出版社,2007
    [7]汪家铭.农作物秸秆综合利用潜力巨大[M].中国资源综合利用,2000,3
    [8]曾麟,王革华.世界主要发展生物质能国家的目的与举措[J].可再生能源,2005,2:53-55
    [9]WeigangLin, WenliSong. Power production from biomass in Denmark[J]. JOURNAL OF FUEL CHEMISTRY AND TECHNOLOGY,2005,33 (6):650-655
    [10]石磊,赵由才,柴晓利.我国农作物秸秆的综合利用技术进展[J].中国沼气,2005,23(2):11-14
    [11]伊晓路,孙立,郭东彦,等.生物质秸秆预处理技术[J].可再生能源,2005,2:31-33
    [12]迟姚玲,丁福臣,易玉峰,等.生物质能的开发利用[J].北京石油化工学院学报,2008,6(16):11-14
    [13]邓晟,陈波.秸秆发电利弊分析.水利电力机械[J].2006,12(28):42-44
    [14]万发春,刘晓牧,朱鑫.2009年中国主要粗饲料产量分析[J].饲料工业,2010,31(16):59-60
    [15]王俊友,吕黄珍,燕晓辉,等.国外玉米和小麦秸秆收集装备发展及启示[C].中国农业机槭学会2008年学术年会论文,319-322
    [16]张艳丽,王飞,赵立欣,等.我国秸秆收储运系统的运营模式、存在问题及发展对策[J].可再生能源,2009,2(27)1-5
    [17]刘艳艳.浅谈我国秸秆收集技术与秸秆收储运行模式[C].首届农村废弃物及可再生能源开发利用技术装备发展论坛,南京,2010,8:222-226
    [18]尹建军,李耀明,李双,等.秸秆机械化收集、粉碎、制粒与气化技术体系的探讨[C].首届农村废弃物及可再生能源开发利用技术装备发展论坛,南京,2010,8:109-112
    [19]朱新华,杨中平.陕西省秸秆资源收储体系研究[J].农机化研究,2011,33(7):69-72
    [20]建农.“智能农业装备与设施”成农村科技重大专题[J].农业装备技术,2011(4):1
    [21]Summers M D, Jenkins B M, Hyde P R, Williams J F, etc. Biomass production and allocation in rice with implications for straw harvesting and utilization[J]. Biomass and Bioenergy,2003
    [22]Edwards R A H, Huld T H, Dallemand J F. GIS-based assessment of cereal straw energy resource in the European Union[C]. Proceedings of thel4th European Biomass Conference&Exhibition. Biomass for Energy, Industry and Climate Protection.2005
    [23]Jia-MingWang. The synthesis utilize of crop's straw[J]. China Resource Utilize.2000
    [24]阎楚良主编.农业机械数字化设计新技术[M].北京:中国农业科学技术出版社,2003
    [25]徐建新,杨传东.三维数字化设计及其应用[J].煤炭科技,2010(4):72-73
    [26]Richard T H, Hamid N, David S. Tacit to explicit knowledge conversion knowledge exchange protocols[J]. Journal of Knowledge Management,2001,5 (1):107-116
    [27]Devedzic V. A survey of modern knowledge modeling techniques [J]. Expert Systems with Applications,1999,17 (4):275-294
    [28]Noh J B, Lee K C, Kim J K, etal. A case 2 based reasoning approach to cognitive map 2 driven tacit knowledge management[J]. Expert Systems with Applications,2000,19 (4):249-259
    [29]Nonaka I, Takeuchi H. The knowledge 2 creating company[M]. Oxford:Oxford University Press,1995
    [30]续彦芳.崔俊杰.苏铁雄虚拟样机技术及其在ADAMS中的应用[J].机械管理开发,2005(1)
    [31]张俊,下一代虚拟样机技术的思考[J]. CAD/CAM与制造业信息化,2009(10):12-14
    [32]王成,王效岳.虚拟样机技术及ADAMS[J].机械工程与自动化,2004(6)
    [33]李伯虎,柴旭东.复杂产品虚拟样机工程[J].计算机集成制造系统—CIMS,2002,9:678-683
    [34]宁汝新,姚珺,赵宁.数字化技术推动制造科学的创新和变革[J].数字制造科学,2003,1(14):52-60
    [35]Jayaram S, Connacher H, Lyons K. Virtual assembly using virtual-reality techniques [J]. Computer Aided Design,1997,29 (8):575-584
    [36]李宏,张建荣.农业机械数字化设计与制造技术的应用[J].农业装备技术,2007,33(6):34-37
    [37]周成,王静学,马增奇.虚拟样机技术及其在农机产品开发中的应用[J].现代化农业,2004(11)
    [38]陆林,李耀明.虚拟样机技术及其在农业机械设计中的应用[J].中国农机化,2004(4)
    [39]阎楚良,杨方飞,张书明.数字化设计技术及其在农业机械设计中的应用[J].农业机械学报,2004,11(35):211-214
    [40]李杰,阎楚良,杨方飞.联合收获机数字化建模与关键部件仿真[J].农业机械学报,2006,37(4):83-86
    [41]张建中.基于绿色设计的农业机械虚拟样机探究[J].安徽农学通报2009,15(23):179-180
    [42]张旭,毛恩荣.机械系统虚拟样机技术的研究与开发[J].中国农业大学学报,1999,4(2):94-98
    [43]胡珊珊,李尚平,孙秀花.小型甘蔗联合收割机虚拟设计及仿真分析技术[J].农机化研究,2006(3):76-80
    [44]王长春.基于ADAMS的虚拟样机技术及其在农业机械上的应用[J].农机化研究2007,(9)
    [45]贺俊林,佟金,陈志.指形拨禾轮分禾机构的虚拟设计与运动仿真[J].农业机械学报,2007, 6(38):53-56
    [46]漆向军,刘明丹.数字化设计技术在农业机械化领域中的应用及展望[J].农业网络信息,2006(6):4-5
    [47]王丽丽,王增辉计算机模拟在玉米秸秆切碎刀研究中的应用[J].农机化研究,2010,32(12):177-179
    [48]世界玉米分布生产情况[J].黑龙江粮食,2003(05)
    [49]郭清保.当前中国玉米产业发展现状及趋势[J].农业展望,2008(06)
    [50]冯艳玲,李佳忠.中国玉米生产与美国玉米生产比较研究[J].吉林农业,2010(09)
    [51]郭庆海.中国玉米主产区的演变与发展[J].玉米科学,2010(01)
    [52]李少昆,王崇桃.中国玉米生产技术的演变与发展[J].中国农业科学,2009(06)
    [53]佟屏亚.美国的玉米产量为什么这样高?[J].世界农业,1980(01)
    [54]2006年世界玉米主产国(地区)收获面积、单产、总产排序[J].农业展望.2008(01)
    [55]Duvick, DN.The contribution of breeding to yield advances in maize (Zea mays L.) [J]. Advances in Agronomy,2005
    [56]李晓东,邱立春.玉米秸秆物理机械特性试验研究[J].农业科技与装备2011(2):62-64
    [57]贺俊林.低损伤玉米摘穗部件表面仿生技术和不分行喂入机构仿真[D]:[博士学位论文],吉林:吉林大学,2007
    [58]范林.揉碎玉米秸秆机械特性的试验研究[D]:[硕士学位论文].内蒙古:内蒙古农业大学,2008
    [59]唐忠,李耀明,徐立章,等.单茎秆切割试验台的设计与试验[J].农机化研究,2009,12:141-143
    [60]袁志华,李云东,陈合顺.玉米茎秆的力学模型及抗倒伏分析[J].玉米科学,2002,10(3):74-75
    [61]勾玲,赵明,黄建军,等.玉米茎秆弯曲性能与抗倒能力的研究[J].作物学报,2008,34(4):653-661
    [62]高梦祥,郭康权,杨中平.玉米秸秆的力学特性测试研究[J].农业工程学报,2003,7(34):47-49
    [63]王波.揉切后玉米秸秆的压缩试验研究[D]:[硕士学位论文].山东:山东农业大学,2005
    [64]丛宏斌.玉米茎秆卷压特性研究与收储装备设计[D]:[博士学位论文],山东:山东农业大学,2010
    [65]K.B.沙季洛夫等.玉米收获机械[M].中国农业机械化科学研究院收获机械研究室,1983
    [66]陈晓峰,张东峰.低割茬茎秆收割机的研制[J].农机化研究,2006(3):93-94
    [67]林君堂,刘秀艳,陈宝昌,等.玉米割秆放铺机的研究设计[J].农机化研究,2010,32(2):101-103
    [68]石增武,张道林,刘声春,等.玉米收获机茎秆切割铺放装置的设计与试验[J].农机化研究,2011,33(12):113-115
    [69]李汝莘,高丽霞,赵毅彬,等.玉米秸秆的压缩特性及其压力与压缩密度的数学模型[J].农 机化研究,2005(2):160-162
    [70]李荣丽,刘小勇,张占国,等.玉米秸秆含水率与常温压缩成型压力之间关系的研究[J].工程与试验,2009,49(3):61-63
    [71]李耀明,秦同娣,陈进,等.玉米茎秆往复切割力学特性试验与分析[J].农业工程学报,2011,1:160-164
    [72]张季高.国外秸秆调质设备[J].饲料机械,1982,3
    [73]姚利玲,刘师多,师清翔,等玉米秸秆调质装置的试验[J].河南科技大学学报,2010(2):74-76
    [74]李文哲,董欣,王德福,等.螺旋齿辊式秸秆调质装置性能试验[J].农业机械学报,2011,12:143-147
    [75]刘玉婷.甘蔗收获机甘蔗数字化模型知识库的建立及其仿真分析[D]:[硕士学位论文].广西:广西大学,2007
    [76]王海龙,常建国,林君堂,等.玉米收获机秸秆放铺机构的运动模拟仿真[J].农机化研究,2010,32(11):44-47
    [77]张湝渭,彭斌彬,RecurDyn多体系统优化仿真技术[M],清华大学出版社,2010,12
    [78]张磊磊.Recurdyn软件在机械设计中的应用[J],机电信息,2012,02
    [79]毛立民,于海涛.基于RecurDyn的四履带足机器人运动学仿真[J],微计算机信息,2009(35)
    [80]黄铁球,果琳丽,曾海波.基于RecurDyn的动力学与控制一体化仿真模式研究[J],航天控制,2010(03)
    [81]Shivesh Kumar, Rajeevlochana C. G., Subir Kumar Saha. Realistic Modeling and Dynamic Simulation of KUKA KR5 Robot using RecurDyn[C], Program and Abstract Book of the sixth Asian Conference on Multibody Dynamics (ACMD 2012)
    [82]廖娜,韩鲁佳,黄光群,等.基于ANSYS的玉米秸秆轴向压缩过程数值模拟研究[J].纪念中国农业工程学会成立三十周年暨中国农业工程学会2009年学术年会[C],太原,2009,8:1-5
    [83]曹洪国.玉米收获机械化技术与装备[J].农业机械,2010,2:32-34
    [84]贺俊林,佟金.我国玉米收获机械的现状及其发展[J].农机化研究,2006(4):29-31,36
    [85]胡伟.我国玉米收获机械技术进展分析[C].湖州:第十一届全国联合收获机技术发展及市场动态研讨会论文集,2004:10-15
    [86]刘静.玉米收获机不对行技术的研究[D]:[硕士学位论文].山东:山东理工大学,2007
    [87]刘声春,张道林,张继磊,等.我国玉米收获机研制现状及发展展望[J],农机化研究,2009,31(11):241-246
    [88]孙进良,刘师多,丁慧玲我国玉米收获机械化的应用现状与展望[J].农机化研究,2009,3:217-219
    [89]吴鸿欣,曹洪国,等.玉米植株抗弯特性对分禾器结构的影响分析[J].农业机械学报,2011,42:6-9
    [90]吴修远,刁培松,于红鹏,基于虚拟样机技术的玉米收获机分禾器仿真分析[J].农业装备与车辆工程,2009,(1):31-33
    [91]范国昌,齐新,张辉辰,等.摘穗青贮型玉米复式割台的试验分析[J].农业工程学报,2004,3:85-88
    [92]张春伟.玉米联合收获机摘穗装置主要结构与运动参数研究[D]:[硕士学位论文].河南:河南科技大学,2007
    [93]李鲁予.玉米-秸秆高速联合收获机的研究与应用[C].首届农村废弃物及可再生能源开发利用技术装备发展论坛,南京,2010,8:72-76
    [94]贺俊林,佟金,胡伟,等.辊型和作业速度对玉米收获机摘穗性能的影响[J].农业机械学报,2006,37(3):46-49
    [95]范国昌,周祖锷.玉米摘穗秸秆青贮型复式割台的研究[J].河北农业科学,2002,6(6):33-39
    [96]张继磊,张道林,杨洪峰.无链式玉米收获机不对行收获技术分析[J].农机化研究,2009,31(11):40-42
    [97]Hanna H Mark, Kohl Kris D, Haden David A. Machine losses from conventional versus narrow row corn harvester[J]. Applied Engineering in Agriculture,2002,8 (4): 405-409
    [98]张道林,刁培松,张士新.玉米收获机切碎装置虚拟设计与动态仿真分析[J].农机化研究2008,(9):43-46
    [99]姚利玲,刘师多,师清翔,等.玉米秸秆调质装置的试验[J].河南科技大学学报(自然科学版),2010,31(1):74-76
    [100]姚利玲.收获机摘穗与秸秆调质装置的试验研究河南科技大学[D]:[硕士学位论文].河南:河南科技大学,2009

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700