爆炸荷载作用下钢结构损伤机理及砌体墙破碎过程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,大规模恐怖爆炸活动在全球范围内频繁发生;另一方面,日常生活中因对天然气、烟花、爆竹等易燃性物品的不正确操作或存放不当引发的意外性爆炸事故也时有发生。在城市环境中,突发性爆炸事件的危害不仅体现在爆炸冲击波对周围人员和设备的直接杀伤和破坏作用,更主要体现在邻近建筑物在爆炸荷载作用下发生严重破坏或倒塌,进而导致更加严重的灾害。因此,提高建筑结构的抗爆性能可有效减轻爆炸灾害效应。本文主要从钢柱在爆炸及其次生火灾作用下的损伤评估,平板网架结构和钢框架结构在爆炸冲击作用下的破坏机理和连续性倒塌机制,以及砌体填充墙在爆炸荷载作用下的破碎特性等三个方面,系统地研究了爆炸荷载作用下钢结构的损伤机理和砌体填充墙的破碎过程。主要研究内容和研究成果包括以下几方面:
     (1)提出了一种用于评估钢柱在爆炸与火灾综合作用下损伤程度的计算方法。在传统Johnson-Cock强度模型基础上,引入了一种基于连续损伤力学的Bonora损伤模型,可准确记录爆炸荷载导致的钢材物理损伤,同时考虑钢材在塑性阶段的应力硬化和高应变率导致的强度提高。通过对钢板抗爆试验的数值模拟,验证了该材料模型的可靠性。通过对方钢管柱的数值计算,建立了压强—冲量(P-I)相干曲线和方程,可用于评估钢柱在爆炸荷载作用下的损伤程度。另一方面,利用欧洲规范建议的ISO834标准火灾环境模拟爆炸发生后的火灾作用,根据火灾中钢材的升温规律和强度折减规律,分析了钢柱在承受爆炸荷载作用后的抗火性能。提出了用爆炸压强、冲量和火灾时间3个基本变量表示钢柱综合损伤程度的方法,建立了P-I-t曲面图及其数学表达式。最后,针对方钢管柱几何尺寸对P-I-t曲面图的影响,相应开展了几何变量的参数分析。
     (2)研究了4种不同柱子布置形式的平板网架结构在受到室外爆炸荷载作用时的动态响应行为和破坏倒塌模式,并分别计算了不同边柱作为爆炸荷载受力柱时的极限爆炸压强。研究表明:1)对于仅布置纵向边柱的平板网架,当外部爆炸发生在角柱附近区域时,网架最易发生倒塌,倒塌过程起始于角柱附近杆件的屈曲;2)对于纵向两侧和山墙上均设有柱子的平板网架,角柱的抗爆能力最强,易发生局部倒塌;中段边柱的抗爆性能相对较弱;3)对于跨中设有纵向中柱的网架,不同位置的边柱抵抗外部爆炸荷载的能力差别不明显,最终的倒塌状态一般为靠近爆炸源的单跨倒塌;4)对于两侧有悬挑的平板网架,角柱的抗爆能力明显低于其他边柱,倒塌模式主要表现为跨内整体塌陷,悬挑段反挑。
     (3)提出了一种将结构爆炸响应分析分两步进行的数值模拟方法,并将该方法应用于对钢框架结构在爆炸荷载作用下动态响应和破坏倒塌的分析。首先,采用AUTODYN中Remap技术模拟了爆炸波在空气中的传播过程,利用压强测点记录框架结构梁、柱表面的爆炸压强值,并根据计算结果,研究了压强分布规律;其次,建立了钢框架的精细化有限元模型,并将前一步记录的爆炸压强逐一施加于结构构件上,利用LS-DYNA显式求解器计算结构在爆炸荷载作用下的动态响应和破坏过程。研究表明:相同炸药量和爆炸距离情况下,作用于梁、柱表面的压强明显小于作用于大面积墙体表面的爆炸压强;在框架节点附近区域的压强分布存在骤增或骤减;美国防爆安全局主持编写的《突发性爆炸荷载作用下结构设计手册》(TM5-1300)不能用于估算作用于框架梁、柱表面的爆炸荷载值;钢框架整体结构具有较好的抗爆性能,在一般规模的室外爆炸事件发生时,主体结构能够保证整体安全;但在发生超大规模爆炸时,易发生次梁塌落等局部破坏,也可能发生连续性整体倒塌。
     (4)提出了一种用于研究在爆炸或冲击荷载作用下脆性材料破碎过程的数值方法,并将该方法应用于研究单层砌体填充墙在爆炸冲击波作用下的破坏过程。该方法以断裂力学、微观裂缝发展原理和空气动力学为理论基础,以显式有限元程序为辅助工具,用于计算碎片几何尺寸和碎片抛射距离。利用Drucker-Prager修正模型模拟砖和砂浆在爆炸荷载作用下的本构关系,充分考虑了材料的物理损伤和高应变率效应。另外,引入了一种等效砌体模型,并通过对比分析,验证了该等效模型的高效性和准确性。根据对多个不同爆炸比例距离的爆炸工况中砌体填充墙碎片特性的数值计算,分析了爆炸比例距离分别与砌体碎片尺寸和抛射距离分布特征的定量关系。研究表明:碎片尺寸的概率密度函数可用广义极限分布函数表示;当比例距离较小时,抛射距离的概率密度函数同样符合广义极限分布;当比例距离较大时,抛射距离的概率密度函数符合指数分布。碎片尺寸的均值和方差均与爆炸比例距离线性相关;而抛射距离的均值和方差与比例距离的关系可用波尔兹曼方程表示。
Recently, large-scaled terrorist explosions occur frequently all over the world. On the other hand, accidental explosions induced by misoperation or improper storage of inflammable substances (e.g. natural gas, firework) also occur commonly in the daily life. In urban environment, the explosions would result in serious casualty and economical lose, and more severe disaster would be caused by serious damage or progressive collapse of buildings subjected to blast load. Therefore, the destruction level caused by blast would be mitigated through improving the explosion resistance of structures. In this thesis, three aspects of structural response under blast load are discussed, and they are 1) a method for evaluating the damage of steel square tubular column caused by explosion and post-explosion fire is proposed; 2) the damage patterns and collapse mechanism of planar lattice structures and steel frame structures are discussed; 3) the fragmentation process of masonry infill wall subjected to blast load is studied. More detailed introduction and some conclusions are presented as the following.
     (1) A method for evaluating the damage degree of steel column subjected to blast load and fire action is introduced. Johnson-Cook strength model and Bonora damage model are employed to describe the constitutive model of mild carbon steel, in which both the plastic stress hardening and strain rate effect are considered, and the mechanical damage caused by blast load is also taken into account. The reliability of the proposed material model is verified through a numerical simulation of a fieldtest. Pressure-Impulse (P-I) diagram is established for evaluating the damage level of steel square tubular column subjected to blast load. Moreover, according to the steel temperature in ISO834 standard fire environment and the strength reduction law suggested by Euro-code, the fire resistance of the explosion-survived steel column is studied. The effects of blast pressure, impulse and fire time on the column residual capacity are discussed. A Pressure-Impulse-Fire time (P-I-t) coherence function is presented, and it can be used to predict the damage degree of the tubular column under the integrated action of blast and fire. A parametric study on the effects of geometric sizes is conducted.
     (2) The dynamic response and collapse patterns of planar lattice structures with four common different layouts of steel column under blast loads are numerically studied, and the critical blast pressures of the lattice structure with different explosion-evolved columns are calculated. The results indicate the following four conclusions, which are listed as: 1) If the planar lattice structure is only supported by the side columns, catastrophic collapse is likely to happen when the explosion occurs near the corner column, and the collapse process would begin with the buckling of the compressive bars in the corner region; 2) If the columns are also set up at the location of frontispieces, the anti-explosion capacity of corner column is reinforced, and local collapse could happen, instead of global collapse; 3) If center columns are designed in the lattice structure, the critical blast pressure is not related with the location of outside explosion; 4) If there is a cantilevered section beyond the span, the anti-explosion capacity of corner columns is obviously smaller than others, and the collapse pattern is identified as a global fall inside the span, and the cantilevered section is turned over.
     (3) A numerical method for studying the structural response caused by blast loads is proposed, and the main idea of this method is to divide the analysis into two individual steps. In this thesis, this method is employed to study the dynamic response and collapse process of steel frame structure subjected to blast load. Firstly, The Remap tool in AUTODYN is used to simulate the propagation of blast wave, and the reflection pressure on the surfaces of frame members are measured by numerical gauges. Based on the numerical results, the distribution of pressure along member surface is discussed. Secondly, a refined finite element model of a steel frame structure is modeled, and the blast loads measured above are applied on the surface of frame members. The numerical simulation is carried out by explicit solver LS-DYNA, and the structural response and damage induced by blast load are numerically investigated. The results reflect that the blast pressure on the surface of column or beam is much smaller than wall surface involved in same blast scenario, and the pressure around frame joints is much different with other locations. The empirical method provided by TM5-1300 is not accurate enough to predict the pressure on the surface of beam or column. Steel frame structures can survive in a medium-scaled blast event, but would partly damage or progressively collapse if they are subjected to a large-scaled blast load.
     (4) A numerical method for studying the fragmentation of fragile materials subjected to impact loads is proposed, and the method is employed to analyze the fragmentation of masonry infill wall under blast load in this thesis. The proposed method is established with the principles of fracture mechanics, the theories of micro-crack development and aerodynamics. With the implement of explicit solver, the numerical method can be used to determine the fragment size and launch distance quantitatively. The modified Drucker-Prager criterion is employed to describe the constitutive model of brick and mortar, and the mechanical damage and strain rate effects are taken into account. On the other hand, a homogenized masonry material model is introduced in the thesis, and the efficiency and reliability of the homogenized model is verified through a comparative analysis. Based on several numerical cases with different blast loads, a statistical study of fragment size and ejection distance is carried out. The results reflect that the distribution density function of fragment size can be represented by the generalized extreme value distribution. The distribution of fragment ejection distance is different with different scaled distance. If the scaled distance is smaller, the ejection distance follows the generalized extreme value distribution as well, and if the scaled distance is comparatively bigger, the density function can be represented as the exponential function. Moreover, both the mean value and variance of fragment size are linearly related with scaled distance, and in the case of launch distance, the relationships between mean value, variance and scaled distance can be described as Boltzman equations.
引文
[1]钱七虎.反爆炸恐怖安全对策.北京:科学出版社,2004.
    [2]李忠献,方秦.工程结构抗爆防爆的研究与发展.国家自然科学基金委员会材料与工程学部学科发展战略研究报告系列之《土木工程卷》,2006.
    [3]师燕超.爆炸荷载作用下钢筋混凝土结构的动态响应行为与损伤破坏机理.天津:天津大学博士论文,2009.
    [4] Committee for Oversight and Assessment of Blast Effects and Related Research Board on Infrastructure and the Constructed Environment Commission on Engineering and Technical Systems. Blast Mitigation for Structures, Washington D.C.: National Academy Press, 2000.
    [5] Department of Defence (DoD). Unified facilities criteria (UFC)-DoD Minimum antiterrorism standards for buildings (UFC 4-010-01), US Army Corps of Engineering, Washington, D. C., 2002.
    [6] Technical Manual (TM5-1300). To resist the effect of accidental explosions. Washington, D. C.: Department of the Army, Navy and the Air Force, 1990.
    [7] Smith P D, Rose T. Blast wave propagation in city streets– an overview. Progress in Structural Engineering and Materials, 2006, 8(1):16-28.
    [8] Remennikov A M, Rose T A. Modelling blast loads on buildings in complex city geometries. Computers and Structures, 2005, 83(27): 2197-2205.
    [9] Kambouchev N, Noels L, Radovitzky R. Numerical simulation of the fluid-structure interaction between air blast wave and free-standing plates. Computers and Structures, 2007,85(11-14):923-931.
    [10] Zhou X Q, Hao H. Prediction of airblast loads on structures hehind a protective barrier. International Journal of Impact Engineering, 2008, 35(5):363-375.
    [11] Shi Y C, Hao H, Li Z X. Numerical simulation of blast wave interaction with structure columns. Shock Waves, 2007, 17(1-2):113-133.
    [12] Wu Y K, Hao H, Zhou Y X, et al. Propagation characteristics of blast-induced shock waves in a jointed rock mass. Soil Dynamics and Earthquake Engineering, 1998,17(6):407-412.
    [13] Lu Y, Wang Z Q, Chong K A. comparative study of buried structure in soil subjected to blast load using 2D and 3D numerical simulations. Soil Dynamics and Earthquake Engineering, 2005, 25(4):275-288.
    [14] Wu C, Hao H. Numerical study of characteristics of underground blast induced surface ground motion and their effect on above-ground structures-Part I Ground motion characteristics. Soil Dynamics and Earthquake Engineering, 2005, 25(1):27-38.
    [15] Hao H, Wu C. Numerical study of characteristics of underground blast induced surface ground motion and their effect on above-ground structures-Part II Effect on structural responses. Soil Dynamics and Earthquake Engineering, 2005, 25(1):39-53.
    [16] Smith P D, Vismeg P, Teo L C, et al. Blast wave transmission along rough-walled tunnels. International Journal of Impact Engineering, 1998, 21(6):419-432.
    [17] Berg A C, Weerheijm J. Blast phenomena in urban tunnel systems. Journal of Loss Prevention in the Process Industries, 2006, 19(6):598-603.
    [18] Feldgun V R, Kochetkov A V, Karinski A V, et al. Internal blast loading in a buried lined tunnel. International Journal of Impact Engineering, 2008, 35(3):172-183.
    [19] Teeling-Smith R G, Nurick G N. The deformation and tearing of thin circular plates subjected to impulsive loads. International Journal of Impact Engineering, 1991, 11(1):77-91.
    [20] Nurick G N, Shave G C. The deformation and tearing of thin square plates subjected to impulsive loads-An experimental study. International Journal of Impact Engineering, 1996;18(1):99-116.
    [21] Yuen S C K, Nurick G N, Verster W, et al. Deformation of mild steel plates subjected to large-scaled explosions. International Journal of Impact Engineering, 2008, 35(8):684-703.
    [22] Morrill K B, Crawford J E, Magallanes J M, et al. Development of simplified tools to predict blast response of steel beam-column connections. In: Proceeding of 2008 Structural Engineering Institute Congress, Long Beach, California, USA, 2008.
    [23] Krauthammer T, Ku C K. Hybrid computational approach for the analysis of blast resistant connections. Computers and structures, 1996, 61(5):831-43.
    [24] Krauthammer T. Blast-resistant structural concrete and steel connections. International Journal of Impact Engineering. 1999, 22(9-10):887-910.
    [25] Sabuwala T, Linzell D, Krauthzmmer T. Finite element analysis of steel beam to column connections subjected to blast loads. International journal of Impact Engineering, 2005, 31(7):861-76.
    [26] Jama H H, Bambach M R, Nurick G N, et al. Numerical modeling of square tubular steel beams subjected to transverse blast loads. Thin-Wall Structures, 2009, 47(12):1523-34.
    [27] Shi Y C, Hao H, and Li Z X. Numerical derivation of pressure-impulse diagrams for prediction of RC column damage to blast loads. International Journal of Impact Engineering, 2008, 35(11):1213-27.
    [28] Luccioni B M, Ambrosini R D, Danesi R F. Analysis of building collapse under blast loads. Engineering Structures, 2004, 26(1):63-71.
    [29] Quan X, Brinbaum N K. Computer simulation of impact and collapse of New York World Trade Center North Tower on September 11. 20th International Symposium on Ballistics, Orlando, Florida, 2002.
    [30]陆新征,江见鲸.世界贸易中心飞机撞击后倒塌过程的仿真分析.土木工程学报,2001,34(6):8-10.
    [31] Kaewkulchai G, Williamson E B. Beam element formulation and solution procedure for dynamic progressive collapse analysis. Computer and Structures, 2004, 82(7-8):639-651.
    [32] Izzuddin B A, Vlassis A G, Elghazouli A Y, et al. Progressive collapse of multi-story buildings due to sudden column loss– Part I: Simplified assessment framework. Engineering Structures, 2008, 30(5):1308-1318.
    [33] Izzuddin B A, Vlassis A G, Elghazouli A Y, et al. Progressive collapse of multi-story buildings due to sudden column loss– Part II:Application. Engineering Structures, 2008, 30(5):1424-1438.
    [34]师燕超,李忠献,郝洪.爆炸荷载作用下钢筋混凝土框架结构的连续倒塌分析.解放军理工大学学报,2007,8(6):652-658.
    [35] Li Z X, Shi Y C. Methods for progressive collapse analysis of building structures under blast and impact loads. Transations of Tianjin University, 2008, 14(5):329-339.
    [36] Gronsten G A, Forsen R. Debris launch velocity from overloaded concrete cubicles. Proceeding of International Symposium on Interaction of the Effects of Munitions with Structures, Orlando, Florida, 2007.
    [37] Gilvarry J J. Fracture of brittle solids. I. distribution function for fragment size in single fracture (Theoretical). J Appl Phys, 1961;32(3):391-399.
    [38] Gilvarry J J. Fracture of brittle solids.Ⅳ. Two-dimensional distribution function for fragment size in single fracture (Theoretical). J Appl Phys, 1962;33(11):3214-3217.
    [39] Gaidukov E E, Myzdrikov Y A. Zones of crushing in rock blasting. Journal of Mining Science, 1974, 10(6):681-684.
    [40] Kuznetsov V M. The mean diameter of the fragments formed by blasting rock. Journal of Mining Science, 1973;9(2):144-148.
    [41] Mott N F. Fragmentation of shell cases. Proceedings of the Royal Society of London. Series A, 1947;189(1018):300-308.
    [42] Grady D E. Local inertial effects in dynamic fragmentation. J Appl Phys, 1982;53(1): 322-325.
    [43] Grady D E. The spall strength of condensed matter. J Mech Phys Solids, 1988;36(3):353-384.
    [44] Yew C H, Taylor P A. A thermodynamic theory of dynamic fragmentation. Int J Impact Engng, 1994;15(4):385-394.
    [45] Grady D E, Kipp M E. Geometric statistics and dynamic fragmentation. J Appl Phys, 1985;58(3):1210-1222.
    [46] Grady D E. Particle size statistics in dynamic fragmentation. J Appl Phys, 1990;68(12):6099-6105.
    [47] Grady D E., Kipp M E. Continuum modeling of explosive fracture in oil shale. Int J Rock Mech Min Sci Geomech Abstr, 1980;17(3):147-157.
    [48] Liu L Q, Katsabanis P D. Development of a continuum damage model for blasting analysis. Int J Rock Mech Min Sci Geomech Abstr, 1997;34(2):217-231.
    [49] Zhang Y Q, Hao H, Lu Y. Anisotropic dynamic damage and fragmentation of rock materials under explosive loading. Int J Engng Sci, 2003;41(9):917-929.
    [50] Xu X P, Needleman A. Numerical simulations of fast crack growth in brittle solids. J Mech Phys Solids, 1994;42(9):1397-1434.
    [51] Camacho G T, Ortiz M. Computational modeling of impact damage in brittle materials. Int J Solids Struct, 1996;33(20-22):2899-2938.
    [52] Cundall P A. A computer model for simulating progressive, large scale movements in blocky rock systems. Symp. ISRM, Nancy, France, 1971; Proc. 2:129-136.
    [53] Kun F, Herrmann H J. A study of fragmentation processes using a discrete element method. Comput Methods Appl Mech Eng, 1996;138(1-4):3-18.
    [54] Pelessone D, Cusatis G, Baylot J T. Application of the lattice discrete particle model (LDPM) to simulate the effects of munitions on reinforced concrete structures. Proceeding of International Symposium on Interaction of the Effects of Munitions with Structures, Orlando, Florida, 2007.
    [55] Cusatis G, Bazant Z P, Cedolin L. Confinement-shear lattice model for concrete damage in tension and compression: I. Theory. Journal of Engineering Mechanics, ASCE, 2003;129(12):1439-1448.
    [56] Cusatis G, Bazant Z P, Cedolin L. Confinement-shear lattice CSL model for fracture propagation in concrete. Computer Methods in Applied Mechanics and Engineering, 2006; 195(52):7154-7171.
    [57] Lucy L B. A numerical approach to the testing of the fission hypothesis. Astronomical Journal, 1977;82:1013-1024.
    [58] Monaghan J J. An introduction to SPH. Computer Physics Communications, 1988; 48(1):89-96.
    [59] Scheffer U, Hiermaier S. Improving a SPH code by alternative interpolation schemes. Baustatic-Baupraxis, 7 Meskouris, Balkema, Rotterdam. 1999.
    [60] Rabczuk T, Eibl J. Simulation of high velocity concrete fragmentation using SPH/MLSPH. International Journal for Numerical Methods in Engineering, 2003;56(10):1421-1444.
    [61]张守中.爆炸基本原理.北京:国防工业出版社,1988.
    [62] J.亨利奇.爆炸动力学及其应用(熊建国等译).北京:科学出版社,1987.
    [63]周听清.爆炸动力学及其应用.合肥:中国科学技术大学出版社,2001.
    [64]张守中.爆炸与冲击动力学.北京:兵器工业出版社,1993.
    [65] Zhao J C. Application of the direct iteration method for non-linear analysis of steel frames in fire, Fire Safety Journal, 2000, 35(3):241-255.
    [66] Liu T C H, Fahad M K, Davies J M. Experimental investigation of behavior of axially restrained steel beams in fire. Journal of Constructional Steel Research, 2002,58(9):1211-30.
    [67] Landesmann A, Batista E M, Alves J L D. Implementation of advanced analysis method for steel-framed structures under fire conditions. Fire Safety Journal, 2005, 40(4):339-66.
    [68] Yang K C, Lee H H, Chan O. Experimental study of fire-resistant steel H-columns at elevated temperature. Journal of Constructional Steel Research, 2006, 62(6):544-553.
    [69] Yin J, Zha X X, Li L Y. Fire resistance of axially loaded concrete filled steel tube columns. Journal of Constructional Steel Research, 2006, 62(7):723-29.
    [70] Wang W Y, Li G Q. Fire-resistance study of restrained steel columns with partial damage to fire protection. Fire Safety Journal, 2009, 44(8):1088-94.
    [71] Song L, Izzuddin B A, Elnashai A S, et al. An integrated adaptive environment for fire and explosion analysis of steel frames-PART I: analytical models. Journal of Constructional Steel Research, 2000, 53(1):63-85.
    [72] Izzuddin B A, Song L, Elnashai A S, et al. An integrated adaptive environment for fire and explosion analysis of steel frames-PART II: verification and application. Journal of Constructional Steel Research, 2000, 53(1):87-111.
    [73] Liew J Y R, Chen H. Explosion and fire analysis of steel frames using fiber element approach. Journal of Structural Engineering, 2004, 130(7):991-1000.
    [74] Chen H, Liew J Y R. Explosion and fire analysis of steel frames using mixed element approach. Journal of Engineering Mechanics, 2005, 131(6):606-16.
    [75] Liew J Y R. Survivability of steel frame structures subjected to blast and fire. Journal of Constructional Steel Research, 2008, 64(7-8):854-866.
    [76]Department for Communities and Local Government. Tall buildings-Performance of passive fire protection in extreme loading events-An initial scoping study (BD2467). UK, 2009.
    [77] Johnson G R, Cook W H. A constitutive model and data for metals subjected to large strains, high strain rate and high temperatures. Proceeding of the 7th International Symposium on Ballistics, Hugue, Netherlands, 1983.
    [78] Johnson G R, Cook W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Engineering Fracture Mechanics, 1985, 21(1):31-48.
    [79] Bonora N. A nonlinear CDM model for ductile failure. Engineering Fracture Mechanics, 1997, 58(1-2): 12-28.
    [80] Ikkurthi V R, Chaturvedi S. Use of different damage models for simulating impact-driven spallation in metal plates. International Journal of Impact Engineering, 2004, 30(3):275-301.
    [81] Schwer L. Optional strain-rate forms for the Johnson cook constitutive model and the role of the parameter Epsilon. Proceeding of the 6th LS-DYNA Anwenderforum, Frankenthal, German, 2007.
    [82] Jarrett D F. Derivation of british explosion safety distances. Annuals of the New York Academ of Science, 1968, 152(Article 1): 18-35.
    [83] Mays G C, Smith P D. Blast effects on building-design of building to optimize resistance to blast loading. London: Thomas Telford, 1995.
    [84] Merrifield R. Simplified calculations of blast induced injuries and damage. Rep. No 37, Health and Safety Executive Specialist Inspector, 1993.
    [85] European Committee for Standardisation. Eurocode 1—Actions on structures: Part1-2 General actions—Actions on structures exposed to fire, 1991.
    [86] European Committee for Standardisation. Eurocode 3—Design of steel structures: Part1-2 General rules—Structural fire design, 1993
    [87] Wang W Y, Li G Q. Fire-resistance study of restrained steel columns with partial damage to fire protection. Fire Safety Journal, 2009, 44(8):1088-94.
    [88] Nurick G N, Gelman M E, Marshall N S. Tearing of blast loaded plates with clamped boundary conditions. International Journal of Impact Engineering, 1996, 18(7):802-827.
    [89]方秦,吴平安.爆炸荷载作用下影响RC梁破坏形式的主要因素分析.计算力学学报,2003,20(1):39-42.
    [90]李忠献,刘志侠,丁阳.爆炸荷载作用下钢结构的动力响应与破坏模式.建筑结构学报,2008,29(4):106-111.
    [91] Bangash M Y H, Bangash T. Explosion-Resistant Buildings: Design, Analysis, and Case Studies. Germany: Springer Berlin Heidelberg, 2006.
    [92] Shockey D A, Curran D R, Seaman L, et al. Fragmentation of rock under dynamic loads. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 1974, 11(8):303-317.
    [93] Lu Y, Xu K. Modelling of dynamic behaviour of concrete materials under blast loading. Internation Journal of Solids and Structure, 2004, 41(1):131-143.
    [94] Xu K, Lu Y. Numerical simulation study of spallation in reinforced concrete splates subjected to blast loading. Computers and Structure, 2006, 84(5-6):431-438.
    [95] Kanninen M F, Popelar C H. Advanced Fracture Mechanics. New York: Oxford University Press, 1985.
    [96] Wei X Y, Hao H. Numerical derivation of homogenized dynamic masonry material properties with strain rate effect. International Journal of Impact Engineering, 2009, 36(3):522-536.
    [97] Ma G W, Hao H, Lu Y. Homogenization of masonry using numerical simulations. Journal of Engineering mechanics (ASCE), 2001, 127(5):421-431.
    [98] Wu C Q, Hao H. Derivation of 3D masonry properties using numerical homogenization technique. International Journal for Numerical Methods in Engineering, 2006, 66(4):1717-1737.
    [99] Hao H, Tarason B. Experimental Study of Strain Rate Effects on Clay Brick and Mortar Material Properties. Australian Journal of Structural Engineering, 2008, 8(2):117-131.
    [100] Mazars J. A description of micro- and macroscale damage of concrete structures. Engineering Fracture Mechanics, 1986, 25(5-6):729-737.
    [101] Page A W. Finite element model for masonry. Journal of the Structural Division, 1978, 104(8):1267-1285.
    [102] Lotfi H R, Shing P B. Interface model applied to fracture of masonry structures. Journal of Structural Engineering (ASCE), 1994; 120:63-80.
    [103] Ali S S, Page W. Finite element model for masonry subjected to concentrated loads. Journal of Engineering, 1988, 114(8):1761-1784.
    [104] Pande G N, Liang J X, Middleton J. Equivalent elastic moduli for brick masonry. Computers and Geotechnics, 1989, 8(3):243-265.
    [105] Buhan P de, Felice G de. A homogenization approach to the ultimate strength of brick masonry. Journal of the Mechanics and Physics of Solids, 1997, 45(7):1085-1104.
    [106] Cluni F, Gusella V. Homogenization of non-periodic masonry structures. International Journal of Solids and Structures, 2004, 41(7):1911-1923.
    [107] Zucchini A, Lourenco P B. A coupled homogenisation-damage model for masonry cracking. Computers and Structures, 2004, 82(11-12):917-929.
    [108] Wei X Y, Hao H. Numerical derivation of strain rate effects on material properties of masonry with solid clay bricks. Transactions of Tianjin University, 2006, 12(z1):147-151. .

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700